Low-Temperature Molten Salt Synthesis and the Characterisation of Submicron-Sized Al8B4C7 Powder
Abstract
:1. Introduction
2. Experimental Procedure
2.1. Raw Materials
2.2. Sample Preparation
2.3. Sample Characterisation
3. Results and Preliminary Discussion
3.1. Effect of Firing Temperature on the Formation of Al8B4C7
3.2. Supplementary Experiment for Mechanism Clarification
3.3. Effect of Salt Type/Assembly on the Formation of Al8B4C7
3.4. Microstructure of As-Prepared Al8B4C7 Powder
4. Further Discussion and Reaction/Synthesis Mechanisms
5. Conclusions
- Al8B4C7 particles with an average size of about 200 nm were successfully synthesised after 6 h of firing in NaCl-NaF at 1250 °C, from Al, B4C and C starting powders. They were essentially phase-pure and generally well-dispersed.
- Compared with the temperature required by a conventional synthesis technique, the synthesis temperature (1250 °C) in the present work was significantly lower (350–500 °C lower), owing to the great accelerating effect of NaCl-NaF salt.
- Al8B4C7 particles were formed via the following mechanisms: at the test temperatures, NaCl and NaF interacted with each other, forming a liquid medium in which Al slightly dissolved. The dissolved Al diffused rapidly through the molten salt onto the surfaces of C and B4C, reacting with them to form Al4C3, and Al3BC + AlB2, respectively. AlB2 is not stable at >1000 °C, so at the test temperatures, it decomposed into B and Al. The newly formed B also slightly dissolved in the salt, diffused onto the surface of the Al4C3 formed earlier, and reacted with it to form Al8B4C7, which consumed Al and B in the salt, making the Al3BC formed earlier decompose into additional Al8B4C7, Al and B.
Author Contributions
Funding
Conflicts of Interest
References
- Wang, T.; Yamaguchi, A. Oxidation protection of MgO–C refractories by means of Al8B4C7. J. Am. Ceram. Soc. 2001, 84, 577–582. [Google Scholar] [CrossRef]
- Wang, T.; Yamaguchi, A. Antioxidation behavior and effect of ZrB2–Al3BC3 composites prepared using Al–B4C–C additives and spark plasma sintering added to carbon-containing refractories. J. Ceram. Soc. Jpn. 2000, 108, 818–822. [Google Scholar] [CrossRef] [Green Version]
- Yamaguchi, A.; Nakano, Y.; Wang, T. Effect and behaviour of Al-B-C system antioxidants added to MgO-C refractories. Can. Metall. Q. 2000, 39, 381–386. [Google Scholar] [CrossRef]
- Zhang, S.; Marriott, N.J.; Lee, W.E. Thermochemistry and microstructures of MgO–C refractories containing various antioxidants. J. Eur. Ceram. Soc. 2000, 21, 1037–1047. [Google Scholar] [CrossRef]
- Zhang, S.; Lee, W.E. Influence of additives on corrosion resistance and corroded microstructures of MgO–C refractories. J. Eur. Ceram. Soc. 2001, 21, 2393–2405. [Google Scholar] [CrossRef]
- Lee, S.H.; Kim, B.N.; Tanaka, H. Low temperature sintering of nano-SiC using a novel Al8B4C7 additive. J. Mater. Res. 2010, 25, 471–475. [Google Scholar] [CrossRef]
- Lee, S.H.; Sakka, Y.; Tanaka, H.; Kagawa, Y. Wet Processing and low-temperature pressureless sintering of SiC using a novel Al3BC3 sintering additive. J. Am. Ceram. Soc. 2009, 92, 2888–2893. [Google Scholar] [CrossRef]
- Wang, H.; Feng, L.; Lee, S.H.; Chen, J.; Fan, B.; Chen, D.; Lu, H.; Xu, H.; Zhang, R. ZrB2–Al3BC3 composites prepared using Al–B4C–C additives and spark plasma sintering. Ceram. Int. 2013, 39, 897–901. [Google Scholar] [CrossRef]
- Jung, J.Y.; Jung, S.H.; Oh, H.C.; Lee, S.H.; Choi, S.C. Spark plasma sintering of ZrB2 using Al3BC3 as an additive. J. Ceram. Process. Res. 2012, 13, 641–645. [Google Scholar]
- Da Rocha, R.M.; de Melo, F.C.L. Sintering of B4C by pressureless liquid phase sintering. Mater. Sci. Forum 2010, 660, 170–175. [Google Scholar] [CrossRef]
- Li, F.; Zhou, Y.; He, L.; Liu, B.; Wang, J. Synthesis, microstructure, and mechanical properties of Al3BC3. J. Am. Ceram. Soc. 2008, 91, 2343–2348. [Google Scholar] [CrossRef]
- Wang, T.; Yamaguchi, A. Some properties of sintered Al8B4C7. J. Mater. Sci. Lett. 2000, 19, 1045–1046. [Google Scholar] [CrossRef]
- Wang, T.; Yamaguchi, A. Synthesis of Al8B4C7 and its oxidation properties in air. J. Ceram. Soc. Jpn. 2000, 108, 375–380. [Google Scholar] [CrossRef] [Green Version]
- Hashimoto, S.; Ishihara, T.; Inoue, K.; Honda, S.; Iwamoto, Y.; Zhang, S. Synthesis and mechanical properties of Al8B4C7. J. Ceram. Soc. Jpn. 2009, 117, 18–21. [Google Scholar] [CrossRef] [Green Version]
- Zhu, H.; Pan, C.; Deng, C.; Yuan, W. Preparation of Al8B4C7 composite materials by using oxide raw materials. IOP Conf. Ser. Mater. Sci. Eng. 2011, 18, 222008. [Google Scholar] [CrossRef] [Green Version]
- Deng, C.; Zhou, W.; Zhu, H.; Yu, Y. Synthesis of Al8B4C7 from Al/Na2B4O7·10H2O/C Mixed Powders. Adv. Mater. Res. 2009, 79, 1375–1378. [Google Scholar] [CrossRef]
- Cui, P.; Yuan, W.; Deng, C.; Zhu, H.; Li, J. Synthesis of Al8B4C7 from Aluminum, Boron Trioxide and Activated Carbon Mixed Powders. Adv. Mater. Res. 2013, 634, 2383–2387. [Google Scholar] [CrossRef]
- Lee, S.H.; Yin, J.; Feng, L.; Lee, J.S. Synthesis of Al3BC3 particulates by carbo-thermal reduction process—Parameter optimization and mechanism analysis. J. Ceram. Soc. Jpn. 2014, 122, 772–776. [Google Scholar] [CrossRef] [Green Version]
- Lee, S.H.; Kim, H.D.; Choi, S.C.; Nishimura, T.; Lee, J.S.; Tanaka, H. Chemical composition and microstructure of Al3BC3 prepared by different densification methods. J. Eur. Ceram. Soc. 2010, 30, 1015–1020. [Google Scholar] [CrossRef]
- Che, Q.; Ma, Q.; Lu, J. Fabrication of Al3BC3-based porous ceramics by pressureless sintering. Adv. Mater. Res. 2012, 412, 340–343. [Google Scholar] [CrossRef]
- Gao, Y.; Huang, Z.; Fang, M.; Liu, Y.; Huang, S.; Ouyang, X. Synthesis of Al8B4C7 ceramic powder from Al/B4C/C mixtures. Powder Technol. 2012, 226, 269–273. [Google Scholar] [CrossRef]
- Inoue, Z.; Tanaka, H.; Inomata, Y. Synthesis and X-ray crystallography of aluminium boron carbide, Al8B4C7. J. Mater. Sci. 1980, 15, 3036–3040. [Google Scholar] [CrossRef]
- Li, Z.; Zhang, S.; Lee, W.E. Molten salt synthesis of LaAlO3 powder at low temperatures. J. Eur. Ceram. Soc. 2007, 27, 3201–3205. [Google Scholar] [CrossRef]
- Jayaseelan, D.D.; Zhang, S.; Hashimoto, S.; Lee, W.E. Template formation of magnesium aluminate (MgAl2O4) spinel microplatelets in molten salt. J. Eur. Ceram. Soc. 2007, 27, 4745–4749. [Google Scholar] [CrossRef]
- Xie, W.; Möbus, G.; Zhang, S. Molten salt synthesis of silicon carbide nanorods using carbon nanotubes as templates. J. Mater. Chem. 2011, 21, 18325. [Google Scholar] [CrossRef]
- Yoshida, K.; Dewing, E.W. The Solubility of Aluminum in Cryolite Melts. Essential Readings in Light Metals: Aluminum Reduction Technology; John Wiley & Sons Inc.: Hoboken, NJ, USA, 2016; pp. 12–18. [Google Scholar]
- Yoshida, K.; Dewing, E.W. The apparent solubility of aluminum in cryolite melts. Metall. Mater. Trans. 1972, 3, 1817–1821. [Google Scholar] [CrossRef]
- Ren, D.; Deng, Q.; Wang, J.; Li, Y.; Li, M.; Ran, S.; Du, S.; Huang, Q. Densification and mechanical properties of pulsed electric current sintered B4C with in situ synthesized Al3BC obtained by the molten-salt method. J. Eur. Ceram. Soc. 2017, 37, 4524–4531. [Google Scholar] [CrossRef]
- Bao, K.; Wen, Y.; Khangkhamano, M.; Zhang, S. Low-temperature preparation of titanium diboride fine powder via magnesiothermic reduction in molten salt. J. Am. Ceram. Soc. 2017, 100, 2266–2272. [Google Scholar] [CrossRef]
- Zhang, S.; Khangkhamano, M.; Zhang, H.; Yeprem, H.A. Novel Synthesis of ZrB2 Powder Via Molten-Salt-Mediated Magnesiothermic Reduction. J. Am. Ceram. Soc. 2014, 97, 1686–1688. [Google Scholar] [CrossRef]
- Viala, J.C.; Bouix, J.; Gonzalez, G.; Esnouf, C. Chemical reactivity of aluminium with boron carbide. J. Mater. Sci. 1997, 32, 4559–4573. [Google Scholar] [CrossRef]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, C.; Liu, X.; Hou, Z.; Jia, Q.; Cheng, B.; Zhang, S. Low-Temperature Molten Salt Synthesis and the Characterisation of Submicron-Sized Al8B4C7 Powder. Materials 2020, 13, 70. https://doi.org/10.3390/ma13010070
Liu C, Liu X, Hou Z, Jia Q, Cheng B, Zhang S. Low-Temperature Molten Salt Synthesis and the Characterisation of Submicron-Sized Al8B4C7 Powder. Materials. 2020; 13(1):70. https://doi.org/10.3390/ma13010070
Chicago/Turabian StyleLiu, Cheng, Xueyin Liu, Zhaoping Hou, Quanli Jia, Benjun Cheng, and Shaowei Zhang. 2020. "Low-Temperature Molten Salt Synthesis and the Characterisation of Submicron-Sized Al8B4C7 Powder" Materials 13, no. 1: 70. https://doi.org/10.3390/ma13010070
APA StyleLiu, C., Liu, X., Hou, Z., Jia, Q., Cheng, B., & Zhang, S. (2020). Low-Temperature Molten Salt Synthesis and the Characterisation of Submicron-Sized Al8B4C7 Powder. Materials, 13(1), 70. https://doi.org/10.3390/ma13010070