Enhancing the Mechanical Properties of Glass-Ionomer Dental Cements: A Review
Abstract
:1. Introduction
2. Mechanical Properties of Conventional and Resin-Modified Glass-Ionomer Cements
3. Comparison with Tooth Materials
4. Metal Reinforcement
5. Fibre Reinforcement
6. Nanoparticle Reinforcement
7. Other Inorganic Powders
8. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Mount, G.J. Color Atlas of Glass Ionomer Cement, 2nd ed.; Martin Dunitz: London, UK, 2002. [Google Scholar]
- Sidhu, S.K.; Schmalz, G. The biocompatibility of glass-ionomer materials: A status report for the American Journal of Dentistry. Am. J. Dent. 2001, 14, 387–396. [Google Scholar] [PubMed]
- Wiegand, A.; Buchalla, W.; Attin, T. Review on fluoride-releasing restorative materials-fluoride release and uptake characteristics, antibacterial activity and influence on caries formation. Dent. Mater. 2007, 23, 343–362. [Google Scholar] [CrossRef] [PubMed]
- Forsten, L. Fluoride release and uptake by glass-ionomers and related materials and its clinical effect. Biomaterials 1998, 19, 503–508. [Google Scholar] [CrossRef]
- Nicholson, J.W. Adhesion of glass-ionomer cements to teeth: A review. Int. J. Adhes. Adhes. 2016, 69, 33–38. [Google Scholar] [CrossRef]
- Yamakami, S.A.; Ubaldini, A.L.M.; Sato, F.; Medina Neto, A.; Pascotto, R.C.; Baesso, M.L. Study of the chemical interaction between a high-viscosity glass ionomer cement and dentin. J. Appl. Oral Sci. 2018, 26, e20170384. [Google Scholar] [CrossRef]
- Collado-González, M.; Pecci-Lloret, M.R.; Tomás-Catalá, C.J.; García-Bernal, D.; Oñate-Sánchez, R.E.; Llena, C.; Forner, L.; Rosa, V.; Rodriguez-Lozano, F.J. Thermo-setting glass ionomer cements promote variable biological responses of human dental pulp stem cells. Dent. Mater. 2018, 34, 932–943. [Google Scholar] [CrossRef]
- Hill, R.G.; Wilson, A.D. Some structural aspects of glasses used in ionomer cements. Glass Technol. 1988, 29, 150–158. [Google Scholar]
- Nicholson, J.W.; Czarnecka, B. Materials for the Direct Restoration of Teeth, Ch 6: Conventional Glass-Ionomer Cements; Woodhead Publishing: Cambridge, UK, 2016. [Google Scholar]
- Nicholson, J.W.; Sidhu, S.K. A review of glass-ionomer cements for clinical dentistry. J. Funct. Biomater. 2016, 7, 16. [Google Scholar] [CrossRef]
- Crisp, S.; Lewis, B.G.; Wilson, A.D. Characterization of glass-ionomer cements. 3. Effect of polyacid concentration on the physical properties. J. Dent. 1977, 5, 51–56. [Google Scholar] [CrossRef]
- Wasson, E.A.; Nicholson, J.W. New aspects of the setting of glass-ionomer cements. J. Dent. Res. 1993, 72, 481–483. [Google Scholar] [CrossRef]
- Shahid, S.; Billington, R.W.; Pearson, G.J. The role of glass composition in the glass acetic acid and glass lactic acid cements. J. Mater. Sci. Mater. Med. 2008, 19, 541–545. [Google Scholar] [CrossRef] [PubMed]
- Nicholson, J.W. Maturation in glass-ionomer dental cements. Acta Biomater. Odontol. Scand. 2018, 4, 63–71. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wilson, A.D.; Kent, B. The glass-ionomer cement, a new translucent dental filling material. J. Appl. Chem. Biotechnol. 1971, 21, 313. [Google Scholar] [CrossRef]
- Mitra, S.B. Adhesion to dentin and physical properties of a light-cured glass-ionomer liner/base. J. Dent. Res. 1991, 70, 72–74. [Google Scholar] [CrossRef] [PubMed]
- Mitra, S.B. In vitro fluoride release from a light-cured glass-ionomer liner/base. J. Dent. 1991, 70, 75–78. [Google Scholar] [CrossRef]
- Berzins, D.W.; Abey, S.; Costache, M.C.; Wilkie, C.A.; Roberts, H.W. Resin-modified glass-ionomer setting reaction competition. J. Dent. Res. 2010, 89, 82–86. [Google Scholar] [CrossRef]
- Yelamanchili, A.; Darvell, B.W. Network competition in a resin-modified glass-ionomer cement. Dent. Mater. 2008, 24, 1065–1069. [Google Scholar] [CrossRef] [Green Version]
- Thomas, J.T.; Roberts, H.W.; Diaz, L.; Bradley, T.G.; Berzins, D.W. Effect of light-cure initiation time on polymerization efficiency and orthodontic bond strength with a resin-modified glass-ionomer. Orthod. Craniofac. Res. 2012, 15, 124–134. [Google Scholar] [CrossRef]
- Palmer, G.; Anstice, H.M.; Pearson, G.J. The effect of curing regime on the release of hydroxethyl methacylate (HEMA) from resin-modified glass-ionomer cements. J. Dent. 1999, 27, 303–311. [Google Scholar] [CrossRef]
- Hamid, A.; Hume, W.R. Diffusion of resin monomers through human carious dentin in vitro. Endod. Dent. Traumatol. 1997, 13, 1–5. [Google Scholar] [CrossRef]
- Kan, K.C.; Messer, L.B.; Messer, H.H. Variability in cytotoxicity and fluoride release of resin-modified glass-ionomer cements. J. Dent. Res. 1997, 76, 1502–1507. [Google Scholar] [CrossRef] [PubMed]
- Kanerva, L.; Jolanki, R.; Leino, T.; Estlander, T. Occupational allergic contact dermatitis from 2-hydroxethyl methacrylate and ethylene glycol dimethacrylate in a modified acrylic structural adhesive. Contact Dermat. 1995, 33, 84–89. [Google Scholar] [CrossRef] [PubMed]
- Nicholson, J.W.; Czarnecka, B. The biocompatibility of resin-modified glass-ionomer cements for dentistry. Dent. Mater. 2008, 24, 1702–1708. [Google Scholar] [CrossRef] [PubMed]
- Sidhu, S.K. Clinical evaluations of resin-modified glass-ionomer restorations. Dent. Mater. 2010, 26, 7–12. [Google Scholar] [CrossRef]
- Al Shaibani, D.; Bamusa, R.; Bajafar, S.; Al Eidan, S.; Almuhaidib, D.; Alhakeem, F.; Bakhadher, W. Modifications of glass ionomer restorative material: A review of literature. EC Dent. Sci. 2019, 18, 1001–1006. [Google Scholar]
- Smales, R.J.; Wong, K.C. Two-year clinical performance of a resin-modified glass ionomer sealant. Am. J. Dent. 1999, 12, 62–64. [Google Scholar]
- Pameijer, C.H. Crown retention with three resin-modified glass ionomer luting cements. J. Am. Dent. Assoc. 2012, 143, 1218–1222. [Google Scholar] [CrossRef]
- McLean, J.W.; Nicholson, J.W.; Wilson, A.D. Proposed nomenclature for glass-ionomer dental cements and related materials. Guest Editor. Quintessence Int. 1994, 25, 587–589. [Google Scholar]
- Mount, G.J.; Tyas, M.J.; Ferracane, J.L.; Nicholson, J.W.; Berg, J.H.; Simonsen, R.J.; Ngo, H.C. A revised classification for direct tooth-colored restorative materials. Quintessence Int. 2009, 40, 691–697. [Google Scholar]
- International Organization for Standardization. ISO 9917-1: Dentistry-Water Based Cements, Part 1: Powder/Liquid acid-Base Cements; ISO: Geneva, Switzerland, 2007. [Google Scholar]
- International Organization for Standardization. ISO 9917-2: Dentistry-Water Based Cements, Part 2: Resin-Modified Cements; ISO: Geneva, Switzerland, 2010. [Google Scholar]
- Ilie, N.; Hickel, R. Mechanical behaviour of glass ionomer cements as a function of loading and mixing procedures. Dent. Mater. J. 2007, 26, 526–533. [Google Scholar] [CrossRef] [Green Version]
- Busanello, L.; Telles, M.; Miranda Junior, W.G.; Imparato, J.C.; Jacques, L.B.; Mallman, A. Compressive strength of glass-ionomer cements used for atraumatic restorative treatment. Rev. Odont. Cienc. 2009, 24, 295–298. [Google Scholar]
- Wasson, E.A.; Nicholson, J.W. Effect of operator skill in determining the physical properties of glass-ionomer cements. Clin. Mater. 1994, 15, 169–173. [Google Scholar] [CrossRef]
- Rodrigues, D.S.; Buciumeanu, M.; Martinelli, A.E.; Nascimento, R.M.; Henriques, B.; Silva, F.S.; Souza, J.C.M. Mechanical strength and wear of dental glass-ionomer and resin composites affected by porosity and chemical composition. J. Bio Tribo-Corr. 2015, 1, 24. [Google Scholar] [CrossRef] [Green Version]
- Uno, S.; Finger, W.J.; Fritz, U. Long-term mechanical characteristics of resin-modified glass ionomer restorative material. Dent. Mater. 1996, 12, 64–69. [Google Scholar] [CrossRef]
- Farret, M.M.; de Lima, E.M.; Mota, E.G.; Oshima, H.M.S.; Maguilnik, G.; Scheld, P.A. Assessment of the mechanical properties of glass ionomer cements for orthodontic cementation. Dent. Press J. Orthodont. 2012, 17, 154–159. [Google Scholar] [CrossRef]
- Moberg, M.; Brewster, J.; Nicholson, J.W.; Roberts, H. Physical property investigation of contemporary glass ionomer and resin modified glass ionomer restorative materials. Clin. Oral Investig. 2019, 23, 1295–1308. [Google Scholar] [CrossRef]
- Zhang, Y.-R.; Du, W.; Zhou, X.-D.; Yu, H.Y. Review of research on the mechanical properties of the human tooth. Int. J. Oral Sci. 2014, 6, 61–69. [Google Scholar] [CrossRef] [Green Version]
- Cuy, J.L.; Mann, A.B.; Livi, K.J.; Teaford, M.F.; Weihs, T.P. Nanoindentation mapping of the mechanical properties of human molar tooth enamel. Arch. Oral Biol. 2002, 47, 281–291. [Google Scholar] [CrossRef]
- Biswas, N.; Dey, A.; Kundu, S.; Chakraborty, H.; Mukhopadhyay, A.K. Mechanical properties of enamel nanocomposite. ISRN Biomater. 2013, 253761. [Google Scholar] [CrossRef] [Green Version]
- He, L.H.; Fujisawa, N.; Swain, M.V. Elastic modulus and stress-starin response of human enamel by nano-identation. Biomaterials 2006, 27, 4388–4398. [Google Scholar] [CrossRef]
- Jeng, Y.R.; Lin, T.T.; Hsu, H.M.; Chang, H.J.; Shieh, D.B. Human enamel rod presents anisotropic nanotribological properties. J. Mech. Behave. Biomed. Mater. 2011, 4, 515–522. [Google Scholar] [CrossRef] [PubMed]
- Bajaj, D.; Arola, D.D. On the R-curve behavior of human tooth enamel. Acta Biomater. 2009, 30, 4037–4046. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kinney, J.H.; Marshall, S.J.; Marshall, G.W. The mechanical properties of human dentin: A critical review and re-evaluation of the dental literature. Crit. Rev. Oral Biol. Med. 2003, 14, 13–29. [Google Scholar] [CrossRef] [PubMed]
- Mahoney, W.; Holt, A.; Swain, M.; Kilpatrick, N. The hardness and modulus of elasticity of primary molar teeth: An ultra-micro-indentation study. J. Dent. 2000, 28, 589–594. [Google Scholar] [CrossRef]
- Angker, L.; Swain, M.V.; Kilpatrick, N. Characterising the micro-mechanical behavior of carious dentine primary teeth using nano-indentation. J. Biomech. 2005, 38, 1535–1542. [Google Scholar] [CrossRef]
- Yan, J.; Taskonal, B.; Mecholsky, J.J., Jr. Fractography and fracture toughness of human dentin. J. Mech. Behav. Biomed. Mater. 2009, 478–484. [Google Scholar] [CrossRef]
- Iwamoto, N.; Ruse, N.D. Fracture toughness of human dentin. J. Biomed. Mater. Res. A 2003, 5, 3045–3046. [Google Scholar] [CrossRef]
- Chuang, S.-F.; Lin, S.-Y.; Wei, P.-J.; Han, C.-F.; Lin, J.-F.; Chang, H.C. Characterization of the elastic and viscoelastic properties of dentin by a nanoindentation creep test. J. Biomech. 2015, 48, 2155–2161. [Google Scholar] [CrossRef]
- Zaytsev, D.; Panfilov, P. The strength properties of human dentinoenamel junction. Mater. Lett. 2016, 178, 107–110. [Google Scholar] [CrossRef]
- Narasimha Bharadwaj, T.P.; Solomon, P.; Parameswaran, A. Tooth restored with composite resins–A comparative analysis. Trends Biomater. Artif. Organs 2002, 15, 57–60. [Google Scholar]
- de Norouha, F.; Scelza, M.F.Z.; de Silva, L.E.; de Carvalho, W.R. Evaluation of compressive strength in the first premolars between young and elderly people: Ex vivo study. Gerodontology 2012, 29, e898–e901. [Google Scholar] [CrossRef] [PubMed]
- Lohbauer, U. Dental glass ionomer cements as permanent filling materials?–Properties, limitations future trends. Materials 2010, 3, 76. [Google Scholar] [CrossRef]
- Wasson, E.A. Reinforced glass-ionomer cements–a review of properties and clinical use. Clin. Mater. 1993, 12, 181–190. [Google Scholar] [CrossRef]
- Simmons, J.J. Silver-alloy powder and glass ionomer cement. J. Amer. Dent. Assoc. 1990, 120, 49–52. [Google Scholar] [CrossRef]
- McLean, J.W. Cermet cements. J. Am. Dent. Assoc. 1990, 120, 43–47. [Google Scholar] [CrossRef]
- Sced, I.; Wilson, A.D. Polycarboxylic Acid Hardenable Compositions. British Patent 2,028,855A, 1980. [Google Scholar]
- Baig, M.S.; Fleming, G.J.P. Conventional glass-ionomer materials: A review of the developments in glass powder, polyacid liquid and the strategies for reinforcement. J. Dent. 2015, 43, 897–912. [Google Scholar] [CrossRef]
- Moshaverinia, A.; Roopour, N.; Chee, W.W.L.; Schricker, S. A review of powder modifications in conventional glass-ionomer dental cements. J. Mater. Chem. 2011, 21, 1319–1328. [Google Scholar] [CrossRef]
- Bhatia, H.P.; Singh, S.; Sood, S.; Sharma, N. A comparative evaluation of sorption, solubility and compressive strength of three different glass ionomer cements in artificial saliva: An in vitro study. Int. J. Clin. Pediatr. Dent. 2017, 10, 49–54. [Google Scholar] [CrossRef]
- Nakajima, H.; Watkins, J.H.; Arita, K.; Hanaoka, K.; Okabe, T. Mechanical properties of glass ionomers under static and dynamic loading. Dent. Mater. 1996, 12, 30–37. [Google Scholar] [CrossRef]
- Williams, J.A.; Billington, R.W.; Pearson, G.J. The comparative strengths of commercial glass-ionomer cements with and without metal additions. Br. Dent. J. 1992, 172, 279–282. [Google Scholar] [CrossRef]
- Walls, A.W.G.; Adamson, J.; McCabe, J.F.; Murray, J.J. The properties of glass polyalkenoate (ionomer) cement incorporating sintered metallic particles. Dent. Mater. 1987, 3, 113–116. [Google Scholar] [CrossRef]
- Kerby, R.E.; Bleiholder, R.F. Physical properties of stainless steel and silver-reinforced glass-ionomer cements. J. Dent. Res. 1991, 70, 1358–1361. [Google Scholar] [CrossRef] [PubMed]
- Oldfield, C.W.B.; Ellis, B. Fibrous reinforcement of glass-ionomer cements. Clin. Mater. 1991, 7, 313–323. [Google Scholar] [CrossRef]
- Kobayashi, M.; Kon, M.; Miyai, K.; Asaoka, K. Strengthening of glass-ionomer cement by compounding short fibres with CaO-P2O5-SiO2-Al2O3 glass. Biomaterials 2000, 21, 2051–2058. [Google Scholar] [CrossRef]
- Kawano, F.; Kon, M.; Kobayashi, M.; Miyai, K. Reinforcement effect of short glass fibres with CaO-P2O5-SiO2-Al2O3 glass on strength of glass ionomer cements. J. Dent. 2001, 29, 377–380. [Google Scholar] [CrossRef]
- Lohbauer, U.; Walker, J.; Nikolaenko, S.; Werner, J.; Clare, A.; Petschelt, A.; Griel, P. Reactive fibre reinforced glass ionomer cements. Biomaterials 2003, 17, 2901–2907. [Google Scholar] [CrossRef]
- Hamouda, I.M. Reinforcement of conventional glass-ionomer restorative material with short glass fibres. J. Mech. Behav. Biomed. Mater. 2009, 2, 73–81. [Google Scholar] [CrossRef]
- Garoushi, S.; Vallittu, P.; Lassila, L. Hollow glass fibres in reinforcing glass ionomer cements. Dent. Mater. 2017, 33, e86–e93. [Google Scholar] [CrossRef]
- Bao, X.; Garoushi, S.K.; Lui, F.; Lassila, L.L.J.; Vallittu, P.K.; He, J. Enhancing mechanical properties of glass ionomer cements with basalt fibres. Silicon 2019. [Google Scholar] [CrossRef]
- Ross, A. Basalt fibres: Alternative to glass? Compos. Technol. 2006, 12, 44–48. [Google Scholar]
- Lee, S.O.; Rhee, K.Y.; Park, S.T. Influence of chemical surface treatment of basalt fibres on interlaminar shear strength and fracture toughness of epoxy-based composites. J. Ind. Eng. Chem. 2015, 32, 153–156. [Google Scholar] [CrossRef]
- Silva, R.M.; Santos, P.H.N.; Souza, L.B.; Dumont, V.C.; Soares, J.A.; Santos, M.H. Effects of cellulose fibres on the physical and chemical properties of glass ionomer dental restorative materials. Mater. Res. Bull. 2013, 48, 118–126. [Google Scholar] [CrossRef]
- Silva, R.M.; Pereira, F.V.; Mota, F.A.P.; Watanabe, E.; Soares, S.M.C.S.; Santos, M.H. Dental glass ionomer cement reinforced by cellulose microfibres and cellulose nanocrystals. Mater. Sci. Eng. C 2016, 58, 389–395. [Google Scholar] [CrossRef] [PubMed]
- Silva, R.M.; Pereira, F.V.; Santos, M.H.; Soares, J.A.; Miranda, J.L. Biocompatibility of a new dental glass ionomer cement with cellulose microfibres and cellulose nanocrystals. Braz. Dent. J. 2017, 28, 172–178. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Elsaka, S.E.; Hamouda, I.M.; Swain, M.V. Titanium dioxide nanoparticles addition to a conventional glass-ionomer restorative: Influence on physical and antibacterial properties. J. Dent. 2011, 39, 589–598. [Google Scholar] [CrossRef] [PubMed]
- Dowling, A.H.; Schmitt, W.S.; Fleming, G.J.P. Modification of titanium dioxide particles to reinforce glass-ionomer restoratives. Dent. Mater. 2014, 30S, e159–e160. [Google Scholar] [CrossRef]
- Khademolhosseini, M.R.; Barounian, M.H.; Eskandari, A.; Aminzare, M.; Zahedi, A.M.; Ghahremani, D. Development of new Al2O3/TiO2 reinforced glass-ionomer cements (GICs) nanocomposites. J. Basic Appl. Sci. Res. 2012, 2, 7526–7529. [Google Scholar]
- Semyari, H.; Sattari, M.; Atai, M.; Pournasir, M. The effect of nanozirconia mixed with glass-ionomer on proliferation of epithelial cells and adhesive molecules. J. Periodontol. Implant Dent. 2011, 3, 63–68. [Google Scholar] [CrossRef]
- Cibim, D.D.; Saito, M.T.; Giovani, P.A.; Borges, A.F.S.; Pecorari, V.G.A.; Gomes, O.P.; Lisboa-Filho, P.N.; Niciti-Junior, F.H.; Puppin-Rontani, R.M.; Kantovitz, K.R. Novel nanotechnology of TiO2 improves physical-chemical and biological properties of glass ionomer cement. Int. J. Biomater. 2017, 2017, 7123919. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gjorgievska, E.; Nicholson, J.W.; Grabić, D.; Guclu, Z.A.; Melitić, I.; Coleman, N.J. Assessment of the impact of the addition of nanoparticles on the properties of glass-ionomer cements. Materials 2020, 13, 276. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gjorgievska, E.; Van Tendeloo, G.; Nicholson, J.W.; Coleman, N.J.; Slipper, I.J.; Booth, S. The incorporation of nanoparticles into conventional glass-ionomer dental restorative cements. Microsc. Microanal. 2015, 21, 392–406. [Google Scholar] [CrossRef] [PubMed]
- Alatawi, R.A.S.; Elsayed, N.H.; Mohammed, W.S. Influence of hydroxyapatite nanoparticles on the properties of glass ionomer cement. J. Mater. Res. Technol. 2019, 8, 344–349. [Google Scholar] [CrossRef]
- Sayyedan, F.S.; Fathi, M.H.; Edris, H.; Doostmohammed, A.; Mortazari, V.; Hanifi, A. Effect of forsterite nanoparticles on mechanical properties of glass ionomer cements. Ceram. Int. 2014, 40, 10743–10748. [Google Scholar] [CrossRef]
- Menezes-Silva, R.; de Oliveira, B.M.B.; Fernandes, P.H.M.; Shimohara, L.Y.; Pereira, F.V.; Borges, A.F.S.; Buzalaf, M.A.R.; Pascotto, R.C.; Sidhu, S.K.; de Lima Navarro, M.F. Effects of the reinforced cellulose nanocrystals on glass-ionomer cements. Dent. Mater. 2019, 35, 564–573. [Google Scholar] [CrossRef]
- Paiva, L.; Fidalgo, T.K.S.; da Costa, L.P.; Maia, L.C.; Balan, L.; Anselme, K.; Ploux, L.; Thiré, R.M.S. Antibacterials properties and compressive strength of new one-step preparation silver nanoparticles in glass-ionomer cements (NanoAg-GIC). J. Dent. 2018, 69, 102–109. [Google Scholar] [CrossRef]
- Jowkar, Z.; Jowkar, M.; Shafiei, F. Mechanical and dentin bond strength properties of the nanosilver enriched glass ionomer cement. J. Clin. Exp. Dent. 2019. [Google Scholar] [CrossRef]
- Rai, M.; Yadav, A.; Gade, A. Silver nanoparticles as a new generation of antimicrobials. Biotechnol. Adv. 2009, 27, 76–83. [Google Scholar] [CrossRef]
- Yoshida, Y.; Van Meerbeck, B.; Nakayama, Y.; Yoshioka, M.; Snauwaert, J.; Abe, Y.; Lambrechts, P.; Vanherle, G.; Okazaki, O. Adhesion to and decalcification of hydroxyapatite by carboxylic acids. J. Dent. Res. 2001, 80, 1565–1569. [Google Scholar] [CrossRef]
- Nicholson, J.W.; Hawkins, S.J.; Smith, J.E. The incorporation of hydroxyapatite into glass-polyalkenoate (“glass-ionomer”) cements: A preliminary study. J. Mater. Sci. Mater. Med. 1993, 4, 418–421. [Google Scholar] [CrossRef]
- Yap, A.U.P.; Pek, Y.S.; Kumar, R.A.; Cheang, P.; Khor, K.A. Experimental studies on a new bioactive material: HA ionomer cements. Biomaterials 2002, 23, 955–962. [Google Scholar] [CrossRef]
- Gu, Y.; Yap, A.U.P.; Cheang, P.; Khor, K.A. Effects of incorporation of HA/ZrO2 into glass-ionomer cement (GIC). Biomaterials 2005, 26, 713–720. [Google Scholar] [CrossRef] [PubMed]
- Lucas, M.E.; Arita, K.; Nishino, M. Toughness, bonding and fluoride-release properties of hydroxyapatite-added glass ionomer cement. Biomaterials 2003, 24, 3787–3794. [Google Scholar] [CrossRef]
- Moshaverinia, A.; Ansari, S.; Moshaverinia, M.; Roohpour, N.; Darr, J.; Rehman, A. Effects of incorporation of hydroxyapatite and fluorapatite nanobioceramics into conventional glass-ionomer cements (GIC). Acta Biomater. 2008, 4, 432–440. [Google Scholar] [CrossRef] [PubMed]
- Yli-Urpo, H.; Lassila, L.V.J.; Narhi, T.; Vallittu, P.K. Compressive strength and surface characterisation of glass-ionomer cements modified by particles of bioactive glass. Dent. Mater. 2005, 21, 201–209. [Google Scholar] [CrossRef]
- Dowling, A.H.; Stamboulis, A.; Fleming, G.J.P. The influence of montmorillonite clay reinforcement on the performance of a glass ionomer restorative. Dent. Mater. 2006, 34, 802–810. [Google Scholar] [CrossRef]
- Bansal, R.K.; Tewari, U.S.; Singh, P.; Murthy, D.V.S. Modified polyalkenoate (glass ionomer) cement–a study. J. Oral Rehabil. 1995, 22, 533–537. [Google Scholar] [CrossRef]
- Bhattacharya, A.; Vaidya, S.; Tomer, A.K.; Raina, A. GIC at its best–A review on ceramic reinforced GIC. Int. J. Appl. Dent. Sci. 2017, 3, 405–408. [Google Scholar]
- Albeshti, R.; Shahid, S. Evaluation of microleakage of ZirconomerR, a zirconia reinforced glass ionomer cement. Acta Stomatol. Croat. 2018, 52, 97–101. [Google Scholar] [CrossRef]
- Callister, W.D. Chapter 9 in “Materials Science and Engineering: An Introduction”, 7th ed.; John Wiley and Sons, Inc.: New York, NY, USA, 2007. [Google Scholar]
- Abdulsamee, N.; Elkhadem, A.H. Zirconomer and Zirconomer Improved (white amalgams): Restorative materials for the future. Rev. EC Dent. Sci. 2017, 15, 134–150. [Google Scholar]
- Kamath, U.; Salam, A. Fracture resistance of maxillary premolars with MOD cavities restored with Zirconomer: An in vitro comparative study. Int. J. Appl. Dent. Sci. 2016, 2, 77–80. [Google Scholar]
- Wang, Y.; Darvell, B.W. Hertzian load-bearing capacity of a ceramic-reinforced glass-ionomer stored wet and dry. Dent. Mater. 2011, 25, 952–955. [Google Scholar] [CrossRef] [PubMed]
Substance | Property | Value | Reference |
---|---|---|---|
Enamel | Hardness | 2.0–3.5 GPa | [42] |
Young’s Modulus | 80–120 GPa | [43,44,45] | |
Fracture Toughness | 0.67–3.93 MPa m½ | [46] | |
Dentine | Hardness | 0.3–0.7 GPa | [47] |
Young’s Modulus | 10–40 GPa | [43,48,49] | |
Fracture Toughness | 1.1–2.3 MPa m½ | [50,51] |
Tooth Condition | Load at Failure/kg |
---|---|
Sound, uncut | 104.65 (13.59) |
Cavity prepared | 48.88 (6.25) |
Restored with composite layered obliquely | 84.05 (14.03) |
Cement | Compressive Strength/MPa | Flexural Strength/MPa |
---|---|---|
Unreinforced | 64 | 8.9 |
Fibre reinforced | 170 | 15.6 |
Material | Type | Compressive Strength/MPa | Flexural Strength/MPa | Diametral Tensile Strength/MPa |
---|---|---|---|---|
Fuji IX | Conventional | 98.0 (12.0) | 26.3 (9.0) | 7.8 (1.7) |
FIX/5% fibre | 82.8 (13.8) | 29.8 (6.0) | 14.2 (2.6) | |
FIX/10% fibre | 96.5 (9.0) | 44.6 (4.0) | 17.1 (3.5) | |
Fuji II LC | Resin-modified | 123.0 (17.0) | 55.2 (9.3) | 17.7 (2.6) |
FII/5% fibre | 118.0 (8.3) | 58.0 (8.4) | 18.6 (4.2) | |
FII/10% fibre | 154.2 (13.0) | 75.2 (13.0) | 23.0 (3.9) |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nicholson, J.W.; Sidhu, S.K.; Czarnecka, B. Enhancing the Mechanical Properties of Glass-Ionomer Dental Cements: A Review. Materials 2020, 13, 2510. https://doi.org/10.3390/ma13112510
Nicholson JW, Sidhu SK, Czarnecka B. Enhancing the Mechanical Properties of Glass-Ionomer Dental Cements: A Review. Materials. 2020; 13(11):2510. https://doi.org/10.3390/ma13112510
Chicago/Turabian StyleNicholson, John W., Sharanbir K. Sidhu, and Beata Czarnecka. 2020. "Enhancing the Mechanical Properties of Glass-Ionomer Dental Cements: A Review" Materials 13, no. 11: 2510. https://doi.org/10.3390/ma13112510
APA StyleNicholson, J. W., Sidhu, S. K., & Czarnecka, B. (2020). Enhancing the Mechanical Properties of Glass-Ionomer Dental Cements: A Review. Materials, 13(11), 2510. https://doi.org/10.3390/ma13112510