Influence of ZrO2 Addition on Structural and Biological Activity of Phosphate Glasses for Bone Regeneration
Abstract
:1. Introduction
2. Materials and Methods
2.1. Preparation of Bioglass Materials
2.2. Thermal Analysis
2.3. Bioactivity Assessment
2.4. Powder XRD
2.5. Fourier Transform Infrared Spectroscopy Analysis
2.6. SEM-EDS Micrographs
2.7. Degradation Behavior
2.8. pH Evaluation
3. Results and Discussion
3.1. Thermal Properties
3.2. XRD Analysis
3.3. FTIR Spectroscopic Analysis
3.4. SEM-EDS Analysis
3.5. pH Measurement and Weight Loss Studies
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Hench, L.L.; Splinter, R.J.; Allen, W.C.; Greenlee, T.K. Bonding mechanisms at the interface of ceramic prosthetic materials. J. Biomed. Mater. Res. 1971, 5, 117–141. [Google Scholar] [CrossRef]
- Hench, L.L. Bioceramics: From Concept to Clinic. J. Am. Ceram. Soc. 1991, 74, 1487–1510. [Google Scholar] [CrossRef]
- Kokubo, T.; Kushitani, H.; Sakka, S.; Kitsugi, T.; Yamamuro, T. Solutions able to reproduce in vivo surface-structure changes in bioactive glass-ceramic A-W3. J. Biomed. Mater. Res. 1990, 24, 721–734. [Google Scholar] [CrossRef] [PubMed]
- Bellucci, D.; Bianchi, M.; Graziani, G.; Gambardella, A.; Berni, M.; Russo, A.; Cannillo, V. Pulsed Electron Deposition of nanostructured bioactive glass coatings for biomedical applications. Ceram. Int. 2017, 43, 15862–15867. [Google Scholar] [CrossRef]
- Shirtliff, V.J.; Hench, L.L. Bioactive materials for tissue engineering, regeneration and repair. J. Mater. Sci. 2003, 38, 4697–4707. [Google Scholar] [CrossRef]
- Hench, L.L.; Xynos, I.D.; Polak, J.M.; Hench, L.L.; Xynos, I.D.; Polak, J.M. Bioactive glasses for in situ tissue regeneration. J. Biomater. Sci. 2012, 15, 543–562. [Google Scholar] [CrossRef] [PubMed]
- Kokubo, T.; Takadama, H. How useful is SBF in predicting in vivo bone bioactivity? Biomaterials 2006, 27, 2907–2915. [Google Scholar] [CrossRef]
- Kokubo, T.; Ohtsuki, C.; Sakka, S.; Yamamuro, T. Chemical reaction of bioactive glass and glass-ceramics with a simulated body fluid. Mater. Med. 1992, 3, 79–83. [Google Scholar] [CrossRef]
- Samudrala, R.; Reddy, G.V.N.; Manavathi, B.; Azeem, P.A. Synthesis, characterization and cytocompatibility of ZrO2 doped borosilicate bioglasses. J. Non Cryst. Solids 2016, 447, 150–155. [Google Scholar] [CrossRef]
- Boi, M.; Bianchi, M.; Gambardella, A.; Liscio, F.; Kaciulis, S.; Visani, A.; Barbalinardo, M.; Valle, F.; Iafisco, M.; Lungaro, L.; et al. Tough Adhes. Nanostructured Calcium Phosphate Thin Film. Depos. By Pulsed Plasma Depos. Method. Rsc Adv. 2015, 5, 78561–78571. [Google Scholar] [CrossRef]
- Mollazadeh, S.; Eftekhari Yekta, B.; Javadpour, J.; Yusefi, A.; Jafarzadeh, T.S. The role of TiO2, ZrO2, BaO and SiO2 on the mechanical properties and crystallization behavior of fluorapatite-mullite glass-ceramics. J. Non Cryst. Solids 2013, 361, 70–77. [Google Scholar] [CrossRef]
- Gautam, C.; Joyner, J.; Gautam, A.; Rao, J.; Vajtai, R. Zirconia based dental ceramics: Structure, mechanical properties, biocompatibility and applications. Dalt. Trans. 2016, 45, 19194–19215. [Google Scholar] [CrossRef] [PubMed]
- Mondal, D.; So-Ra, S.; Lee, B.T. Fabrication and characterization of ZrO2-CaO-P2O5-Na2O-SiO2 bioactive glass ceramics. J. Mater. Sci. 2013, 48, 1863–1872. [Google Scholar] [CrossRef]
- Lu, X.; Deng, L.; Du, J. Effect of ZrO2 on the structure and properties of soda-lime silicate glasses from molecular dynamics simulations. J. Non Cryst. Solids 2018, 491, 141–150. [Google Scholar] [CrossRef]
- Kord, M.; Marghussian, V.K.; Eftekhari-yekta, B.; Bahrami, A. Effect of ZrO2 addition on crystallization behaviour, porosity and chemical-mechanical properties of a CaO-TiO2-P2O5 microporous glass ceramic. Mater. Res. Bull. 2009, 44, 1670–1675. [Google Scholar] [CrossRef]
- Rajkumar, G.; Aravindan, S.; Rajendran, V. Structural analysis of zirconia-doped calcium phosphate glasses. J. Non Cryst. Solids 2010, 356, 1432–1438. [Google Scholar] [CrossRef]
- Zheng, C.Y.; Li, S.J.; Hao, Y.L.; Yang, R. Effect of ZrO2 on Mechanical and Biological Properties of Calcium Phosphate-Based Glass-Ceramics for Biomedical Applications. Key Eng. Mater. 2008, 368, 1429–1432. [Google Scholar] [CrossRef]
- Sergi, R.; Bellucci, D.; Cannillo, V. A Comprehensive Review of Bioactive Glass Coatings: State of the Art, Challenges and Future Perspectives. Coatings 2020, 10, 757. [Google Scholar] [CrossRef]
- Goel, A.; Rajagopal, R.R.; Ferreira, J.M.F. Influence of strontium on structure, sintering and biodegradation behaviour of CaO–MgO–SrO–SiO2–P2O5–CaF2 glasses. Acta Biomater. 2011, 7, 4071–4080. [Google Scholar] [CrossRef]
- Wheeler, D.L.; Eschbach, E.J.; Hoellrich, R.G.; Lmontfort, T.M.J.; Chamberland, L. Assessment of Resorbable Bioactive Material for Grafting of Critical-size Cancellous Defects. J. Orthop. Res. 2000, 18, 140–148. [Google Scholar] [CrossRef]
- Sene, F.F.; Martinelli, J.R.; Gomes, L. Synthesis and characterization of niobium phosphate glasses containing barium and potassium. Proc. J. Non-Cryst. Solids 2004, 348, 30–37. [Google Scholar] [CrossRef]
- Terra, J.; Dourado, E.R.; Eon, J.G.; Ellis, D.E.; Gonzalez, G.; Rossi, A.M. The structure of strontium-doped hydroxyapatite: An experimental and theoretical study. Phys. Chem. Chem. Phys. 2009, 11, 568–577. [Google Scholar] [CrossRef] [PubMed]
- Cai, S.; Zhang, W.J.; Xu, G.H.; Li, J.Y.; Wang, D.M.; Jiang, W. Microstructural characteristics and crystallization of CaO-P2O5-Na2O-ZnO glass ceramics prepared by sol-gel method. J. Non Cryst. Solids 2009, 355, 273–279. [Google Scholar] [CrossRef]
- Brauer, D.S.; Karpukhina, N.; O’Donnell, M.D.; Law, R.V.; Hill, R.G. Fluoride-containing bioactive glasses: Effect of glass design and structure on degradation, pH and apatite formation in simulated body fluid. Acta Biomater. 2010, 6, 3275–3282. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Babu, M.M.; Prasad, P.S.; Venkateswara Rao, P.; Govindan, N.P.; Singh, R.K.; Kim, H.-W.; Veeraiah, N. Titanium incorporated Zinc-Phosphate bioactive glasses for bone tissue repair and regeneration: Impact of Ti4+ on physico-mechanical and in vitro bioactivity. Ceram. Int. 2019, 45, 23715–23727. [Google Scholar] [CrossRef]
- Li, H.C.; Wang, D.G.; Hu, J.H.; Chen, C.Z. Crystallization, mechanical properties and in vitro bioactivity of sol-gel derived Na2O-CaO-SiO2-P2O5 glass-ceramics by partial substitution of CaF2 for CaO. J. Sol-Gel Sci. Technol. 2013, 67, 56–65. [Google Scholar] [CrossRef]
- Little Flower, G.; Sahaya Baskaran, G.; Srinivasa Reddy, M.; Veeraiah, N. The structural investigations of PbO-P2O5-Sb2O3 glasses with MoO3 as additive by means of dielectric, spectroscopic and magnetic studies. Phys. B Condens. Matter 2007, 393, 61–72. [Google Scholar] [CrossRef]
- Babu, M.M.; Venkateswara Rao, P.; Veeraiah, N.; Prasad, P.S. Effect of Al3+ ions substitution in novel zinc phosphate glasses on formation of HAp layer for bone graft applications. Colloids Surf. B Biointerfaces 2020, 185, 110591. [Google Scholar] [CrossRef]
- Kalita, H.; Prashanth Kumar, B.N.; Konar, S.; Tantubay, S.; Kr. Mahto, M.; Mandal, M.; Pathak, A. Sonochemically synthesized biocompatible zirconium phosphate nanoparticles for pH sensitive drug delivery application. Mater. Sci. Eng. C 2016, 60, 84–91. [Google Scholar] [CrossRef]
- Lucacel Ciceo, R.; Trandafir, D.L.; Radu, T.; Ponta, O.; Simon, V. Synthesis, characterisation and in vitro evaluation of sol-gel derived SiO2-P2O5-CaO-B2O3 bioactive system. Ceram. Int. 2014, 40, 9517–9524. [Google Scholar] [CrossRef]
- Abo-Naf, S.M.; Khalil, E.S.M.; El-Sayed, E.S.M.; Zayed, H.A.; Youness, R.A. In vitro bioactivity evaluation, mechanical properties and microstructural characterization of Na2O-CaO-B2O3-P2O5 glasses. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2015, 144, 88–98. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Mizuno, M.; Yanagisawa, M.; Takadama, H. Bioactive behaviors of porous apatite- and wollastonite-containing glass-ceramic in two kinds of simulated body fluid. J. Mater. Res. 2003, 18, 433–441. [Google Scholar] [CrossRef]
- Saldaña, L.; Méndez-Vilas, A.; Jiang, L.; Multigner, M.; González-Carrasco, J.L.; Pérez-Prado, M.T.; González-Martín, M.L.; Munuera, L.; Vilaboa, N. In vitro biocompatibility of an ultrafine grained zirconium. Biomaterials 2007, 28, 4343–4354. [Google Scholar] [CrossRef]
- Balamurugan, A.; Balossier, G.; Kannan, S.; Michel, J.; Rebelo, A.H.S.; Ferreira, J.M.F. Development and in vitro characterization of sol-gel derived CaO-P2O5-SiO2-ZnO bioglass. Acta Biomater. 2007, 3, 255–262. [Google Scholar] [CrossRef] [PubMed]
- Vallet-Regí, M.; Romero, A.M.; Ragel, C.V.; LeGeros, R.Z. XRD, SEM-EDS, and FTIR studies of in vitro growth of an apatite-like layer on sol-gel glasses. J. Biomed. Mater. Res. 1999, 44, 416–421. [Google Scholar] [CrossRef]
- Yin, P.; Yuan, J.W.; Liu, L.H.; Xiao, T.; Lei, T. Effect of ZrO2 on the bioactivity properties of gel-derived CaO-P2O5-SiO2-SrO glasses. Ceram. Int. 2017, 43, 9691–9698. [Google Scholar] [CrossRef]
- Chen, X.; Meng, Y.; Li, Y.; Zhao, N. Investigation on bio-mineralization of melt and sol-gel derived bioactive glasses. Appl. Surf. Sci. 2008, 255, 562–564. [Google Scholar] [CrossRef]
- Krishnamacharyulu, N.; Mohini, G.J.; Baskaran, G.S.; Kumar, V.R.; Veeraiah, N. Effect of ZrO2 on the bioactive properties of B2O3–SiO2–P2O5–Na2O–CaO glass system. J. Non Cryst. Solids 2016, 452, 23–29. [Google Scholar] [CrossRef]
Glass Code | ZnO | Na2O | CaO | P2O5 | ZrO2 |
---|---|---|---|---|---|
Z.1 | 8.0 | 22.0 | 23.9 | 46.0 | 0.1 |
Z.3 | 8.0 | 22.0 | 23.7 | 46.0 | 0.3 |
Z.5 | 8.0 | 22.0 | 23.5 | 46.0 | 0.5 |
Z.7 | 8.0 | 22.0 | 23.3 | 46.0 | 0.7 |
Ion Type | Na+ | K+ | Mg2+ | Ca2+ | Cl− | HCO3− | HPO42− | SO4− |
---|---|---|---|---|---|---|---|---|
Concentration (mM) | 142.0 | 5.0 | 1.5 | 2.5 | 148.8 | 4.2 | 1.0 | 0.5 |
Human blood plasma | 142.0 | 5.0 | 1.5 | 2.5 | 103.0 | 27.0 | 1.0 | 0.5 |
Sample Code | Tg (°C) | Tc (°C) | Tm (°C) | ΔT (°C) | KH |
---|---|---|---|---|---|
Z.1 | 262.21 (± 1.11) | 335.67 | 672.67 | 73.46 (± 0.45) | 0.22 |
Z.3 | 271.10 (± 1.30) | 349.21 | 686.92 | 78.10 (± 0.38) | 0.23 |
Z.5 | 280.40 (± 1.24) | 362.87 | 691.84 | 82.47 (± 0.43) | 0.25 |
Z.7 | 301.15 (± 1.25) | 386.32 | 697.49 | 85.16 (± 0.35) | 0.27 |
Wavenumber (cm−1) | Assignments | References | ||
---|---|---|---|---|
0 day | 1 day | 5 days | ||
506 | 555 | 557 | ~506 PO43− O–P–O bending vibrations/P–O amorphous | [15,16,22] |
~555–557 HAp (PO34) | [25] | |||
752 | 736 | 738 | ~752 P–O–P symmetric stretching ~736–738 P–O–P pyrophosphate (P2O7)4− group | [10,23] [26] |
978 | 916 | 918 | ~978cm−1 P–O–P stretching vibrations ~916–918 P–O–P stretching vibrations | [10,23] [26] |
- | 1126 | 1143 | PO2 symmetric stretching vibration | [22,25,27] |
- | 1265 | - | PO2− asymmetric group /P=O stretching vibration | [22,25,27] |
- | - | 1410 | –OH, hydroxyl carbonate group | [22,25,27] |
- | - | 1543 | –OH groups | [22,25,27] |
1642 | 1650 | - | ~1642–1650 cm−1 stretching vibrations of P-O-H group | [9,28] |
2382 | - | - | P–O–H group /CO32− and HCO3− groups | [23,24] |
- | 2998 | - | C–H stretching vibrations | [22,29,30] |
- | - | 3198 | C–H | [22,29,30] |
3464 | 3414 | 3553 | ~3414–3464 H–O–H bond /CO32− and HCO3− | [9,25,29] |
~3553 O–H symmetric stretching | [25,29] |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mohan Babu, M.; Syam Prasad, P.; Venkateswara Rao, P.; Hima Bindu, S.; Prasad, A.; Veeraiah, N.; Özcan, M. Influence of ZrO2 Addition on Structural and Biological Activity of Phosphate Glasses for Bone Regeneration. Materials 2020, 13, 4058. https://doi.org/10.3390/ma13184058
Mohan Babu M, Syam Prasad P, Venkateswara Rao P, Hima Bindu S, Prasad A, Veeraiah N, Özcan M. Influence of ZrO2 Addition on Structural and Biological Activity of Phosphate Glasses for Bone Regeneration. Materials. 2020; 13(18):4058. https://doi.org/10.3390/ma13184058
Chicago/Turabian StyleMohan Babu, M., P. Syam Prasad, P. Venkateswara Rao, S. Hima Bindu, A. Prasad, N. Veeraiah, and Mutlu Özcan. 2020. "Influence of ZrO2 Addition on Structural and Biological Activity of Phosphate Glasses for Bone Regeneration" Materials 13, no. 18: 4058. https://doi.org/10.3390/ma13184058
APA StyleMohan Babu, M., Syam Prasad, P., Venkateswara Rao, P., Hima Bindu, S., Prasad, A., Veeraiah, N., & Özcan, M. (2020). Influence of ZrO2 Addition on Structural and Biological Activity of Phosphate Glasses for Bone Regeneration. Materials, 13(18), 4058. https://doi.org/10.3390/ma13184058