Fabrication of ILs-Assisted AgTaO3 Nanoparticles for the Water Splitting Reaction: The Effect of ILs on Morphology and Photoactivity
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of AgTaO3
- Preparation of AgTaO3 by the solvothermal method. The AgTaO3 powder was obtained as follows: 0.95 g AgNO3 was dissolved in 120 mL of ethylene glycol and then 2.02 g TaCl5 was added. The solution was stirred for 15 min. The resulting mixture was transferred into a Teflon-lined stainless steel autoclave (LabPartner, Warsaw, Poland) and treated at 180 °C for 24 h. After cooling to room temperature, the obtained precipitate was separated by centrifugation, washed several times with deionized water, dried overnight at 60 °C and finally calcined at 800 °C for 4 h.
- Preparation of AgTaO3 by the sol-gel method. In the first step 2 g of AgNO3 was dissolved in 50 mL of deionized water and 4.19 g of TaCl5 was added. The mixture was kept under constant stirring conditions and 20 mL NH4OH was added dropwise to the above mixture. After stirring for 1 h, the resulting dark precipitate was separated by centrifugation, washed several times with deionized water and then dried at 60 °C until the liquid had completely evaporated. The obtained powder was further annealed at 800 °C for 2 h.
- Preparation of AgTaO3 by the hydrothermal method. In the hydrothermal route, Ag2O was first obtained. As in typical synthesis, NaOH (0.1 M) was slowly added under stirring conditions to AgNO3 (0.1 M). Then, the brown precipitation was collected and washed with deionized water several times, and dried overnight at 60 °C. The as-prepared Ag2O powder was mixed with Ta2O5, NH4HF2, H2O and H2O2. The solution was mixed for 10 min, transferred into a Teflon-lined stainless steel autoclave and treated at 180 °C for 24 h. After cooling to room temperature, the obtained precipitate was separated by centrifugation, washed several times with deionized water and dried overnight at 60 °C.
- Preparation of AgTaO3 by the solid state reaction. The precursor, Ag2O, was first obtained as described above. The as-prepared Ag2O was mixed with Ta2O5 in a stoichiometric ratio in the presence of Ag2O and ground by hand in an agate mortar. It is known that silver-based materials suffer a loss of silver at high calcination temperature. Therefore, to overcome this drawback, 3.0 wt% of Ag2O was added in excess to maintain the required stoichiometry [33,47]. The mixture was calcinated in air at 900 °C for 24 h, with a heating rate of 1 °C·min−1. After this process, the sample was naturally cooled down in a furnace to the ambient temperature.
2.3. Modification of AgTaO3 with IL and Co-Catalyst Pt by Using the Photodeposition Method
2.4. Characterization of Materials
2.5. Measurements of Photocatalytic Activity in Water-Splitting Reaction
3. Results and Discussion
3.1. Morphology
3.2. The XRD and BET Analyses
3.3. The XPS Analyses
3.4. The FTIR and Raman Analyses of Lattice Vibration Modes
3.5. Optical Properties
3.6. Photocatalytic Activity in the Water-Splitting Reaction
3.7. Discussion of Photocatalytic Mechanism
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Van Ruijven, B.; Lamarque, J.-F.; van Vuuren, D.P.; Kram, T.; Eerens, H. Emission scenarios for a global hydrogen economy and the consequences for global air pollution. Glob. Environ. Chang. 2011, 21, 983–994. [Google Scholar] [CrossRef] [Green Version]
- Yildiz Bircan, S.; Matsumoto, K.; Kitagaw, K. Environmental Impacts of Hydrogen Production by Hydrothermal Gasification of a Real Biowaste. Gasif. Pract. Appl. 2012, 211–224. [Google Scholar] [CrossRef] [Green Version]
- Nowotny, J.; Veziroglu, T.N. Impact of hydrogen on the environment. Int. J. Hydrog. Energy 2011, 36, 13218–13224. [Google Scholar] [CrossRef]
- Singh, P.; Borthakur, A.; Tiwary, D.; Mishra, P. Nano-Materials as Photocatalysts for Degradation of Environmental Pollutants; Elsevier: Amsterdam, The Netherlands, 2019. [Google Scholar]
- Balat, M. Potential Importance of Hydrogen as a Future Solution to Environmental and Transportation Problems. Int. J. Hydrog. Energy 2008, 33, 4013–4029. [Google Scholar] [CrossRef]
- Pareek, A.; Dom, R.; Gupta, J.; Chandran, J.; Adepu, V.; Borse, P.H. Insights into renewable hydrogen energy: Recent advances and prospects. Mater. Sci. Energy Technol. 2020, 3, 319–327. [Google Scholar] [CrossRef]
- Widera, B. Renewable hydrogen implementations for combined energy storage, transportation and stationary applications. Therm. Sci. Eng. Prog. 2020, 16, 100460. [Google Scholar] [CrossRef]
- Asmatulu, R.; Nuraje, N.; Mul, G. Chapter 1 Introduction to Green Nanostructured Photocatalysts. In Green Photo-Active Nanomaterials: Sustainable Energy and Environmental Remediation; The Royal Society of Chemistry: London, UK, 2016; pp. 1–12. [Google Scholar]
- Acar, C.; Dincer, I.; Naterer, G.F. Review of photocatalytic water-splitting methods for sustainable hydrogen production. Int. J. Energy Res. 2016, 40, 1449–1473. [Google Scholar] [CrossRef]
- Li, X.; Low, J.; Yu, J. Photocatalytic Hydrogen Generation. Photocatal. Appl. 2016, 255–302. [Google Scholar] [CrossRef]
- Owusu, P.; Asumadu Sarkodie, S. A Review of Renewable Energy Sources, Sustainability Issues and Climate Change Mitigation. Cogent Eng. 2016, 3, 1167990. [Google Scholar] [CrossRef]
- Chen, X.; Guo, L.; Mao, Y. Semiconductor-Based Photocatalytic Hydrogen Generation. Chem. Rev. 2010, 110, 6503–6570. [Google Scholar] [CrossRef]
- Corredor, J.; Rivero, M.; Rangel, C.; Gloaguen, F.; Ortiz, I. Comprehensive review and future perspectives on the photocatalytic hydrogen production. J. Chem. Technol. Biotechnol. 2019, 94, 3049–3063. [Google Scholar] [CrossRef] [Green Version]
- Bhatt, M.D.; Lee, J.S. Nanomaterials for photocatalytic hydrogen production: From theoretical perspectives. RSC Adv. 2017, 7, 34875–34885. [Google Scholar] [CrossRef] [Green Version]
- Kalamaras, C.; Efstathiou, A. Hydrogen Production Technologies: Current State and Future Developments. Conf. Pap. Energy 2013, 2013, 690627. [Google Scholar] [CrossRef] [Green Version]
- Rafique, M.; Mubashar, R.; Irshad, M.; Gillani, S.; Tahir, M.B.; Khalid, N.R.; Shehzad, A.; Shehzad, M.A. A Comprehensive Study on Methods and Materials for Photocatalytic Water Splitting and Hydrogen Production as a Renewable Energy Resource. J. Inorg. Organomet. Polym. Mater. 2020, 22, 24. [Google Scholar] [CrossRef]
- Tentu, R.D.; Basu, S. Photocatalytic water splitting for hydrogen production. Curr. Opin. Electrochem. 2017, 5, 56–62. [Google Scholar] [CrossRef]
- Rao, V.N.; Reddy, N.L.; Kumari, M.M.; Cheralathan, K.K.; Ravi, P.; Sathish, M.; Neppolian, B.; Reddy, K.R.; Shetti, N.P.; Prathap, P.; et al. Sustainable hydrogen production for the greener environment by quantum dots-based efficient photocatalysts: A review. J. Environ. Manag. 2019, 248, 109246. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Zhang, Y.; Li, X.; Zhao, X.; Anning, C.; Crittenden, J.; Lyu, X. Photocatalytic water splitting of ternary graphene-like photocatalyst for the photocatalytic hydrogen production. Front. Environ. Sci. Eng. 2020, 14, 69. [Google Scholar] [CrossRef]
- Tan, X.; Zhang, J.; Dongxing, T.; Jinbiao, S.; Cheng, X.; Zhang, F.; Liu, L.; Zhang, B.; Su, Z.; Han, B. Ionic liquids produce heteroatom-doped Pt/TiO2 nanocrystals for efficient photocatalytic hydrogen production. Nano Res. 2019, 12, 1967–1972. [Google Scholar] [CrossRef]
- Ravishankar, T.N.; de Vaz, O.M.; Ramakrishnappa, T.; Teixeira, S.R.; Dupont, J. Ionic liquid–assisted hydrothermal synthesis of Nb/TiO2 nanocomposites for efficient photocatalytic hydrogen production and photodecolorization of Rhodamine B under UV-visible and visible light illuminations. Mater. Today Chem. 2019, 12, 373–385. [Google Scholar] [CrossRef]
- Hagiwara, H.; Nozawa, I.; Hayakawa, K.; Ishihara, T. Hydrogen production by photocatalytic water splitting of aqueous hydrogen iodide over Pt/alkali metal tantalates. Sustain. Energy Fuels 2019, 3, 3021–3028. [Google Scholar] [CrossRef]
- Ismail, A.A.; Bahnemann, D.W. Photochemical splitting of water for hydrogen production by photocatalysis: A review. Sol. Energy Mater. Sol. Cells 2014, 128, 85–101. [Google Scholar] [CrossRef]
- Ohtani, B. Photocatalysis A to Z—What we know and what we do not know in a scientific sense. J. Photochem. Photobiol. C Photochem. Rev. 2010, 11, 157–178. [Google Scholar] [CrossRef] [Green Version]
- Hoffmann, M.R.; Martin, S.T.; Choi, W.; Bahnemann, D.W. Environmental Applications of Semiconductor Photocatalysis. Chem. Rev. 1995, 95, 69–96. [Google Scholar] [CrossRef]
- Nakata, K.; Fujishima, A. TiO2 photocatalysis: Design and applications. J. Photochem. Photobiol. C Photochem. Rev. 2012, 13, 169–189. [Google Scholar] [CrossRef]
- Kato, H.; Kudo, A. Photocatalytic Water Splitting into H2 and O2 Over Various Tantalate Photocatalysts. Catal. Today 2003, 78, 561–569. [Google Scholar] [CrossRef]
- Wiegel, M.; Emond, M.H.J.; Stobbe, E.R.; Blasse, G. Luminescence of alkali tantalates and niobates. J. Phys. Chem. Solids 1994, 55, 773–778. [Google Scholar] [CrossRef]
- Takasugi, S.; Tomita, K.; Iwaoka, M.; Kato, H.; Kakihana, M. The hydrothermal and solvothermal synthesis of LiTaO3 photocatalyst: Suppressing the deterioration of the water splitting activity without using a cocatalyst. Int. J. Hydrog. Energy 2015, 40, 5638–5643. [Google Scholar] [CrossRef]
- Liu, Y.-L.; Yang, C.-L.; Wang, M.-S.; Ma, X.-G.; Yi, Y.-G. Te-doped perovskite NaTaO3 as a promising photocatalytic material for hydrogen production from water splitting driven by visible light. Mater. Res. Bull. 2018, 107, 125–131. [Google Scholar] [CrossRef]
- Modak, B.; Ghosh, S.K. Improving visible light photocatalytic activity of KTaO3 using cation-anion dopant pair. Sol. Energy Mater. Sol. Cells 2017, 159, 590–598. [Google Scholar] [CrossRef]
- Edalati, K.; Fujiwara, K.; Takechi, S.; Wang, Q.; Arita, M.; Watanabe, M.; Sauvage, X.; Ishihara, T.; Horita, Z. Improved Photocatalytic Hydrogen Evolution on Tantalate Perovskites CsTaO3 and LiTaO3 by Strain-Induced Vacancies. ACS Appl. Energy Mater. 2020, 3, 1710–1718. [Google Scholar] [CrossRef]
- Carrasco-Jaim, O.A.; Torres-Martínez, L.M.; Moctezuma, E. Enhanced photocatalytic hydrogen production of AgMO3 (M = Ta, Nb, V) perovskite materials using CdS and NiO as co-catalysts. J. Photochem. Photobiol. A Chem. 2018, 358, 167–176. [Google Scholar] [CrossRef]
- Li, M.; Zhang, J.; Dang, W.; Cushing, S.K.; Guo, D.; Wu, N.; Yin, P. Photocatalytic hydrogen generation enhanced by band gap narrowing and improved charge carrier mobility in AgTaO3 by compensated co-doping. Phys. Chem. Chem. Phys. 2013, 15, 16220–16226. [Google Scholar] [CrossRef] [PubMed]
- Wang, F.; Wang, T.; Lang, J.; Su, Y.; Wang, X. Improved photocatalytic activity and durability of AgTaO3/AgBr heterojunction: The relevance of phase and electronic structure. J. Mol. Catal. A Chem. 2017, 426, 52–59. [Google Scholar] [CrossRef]
- Carrasco-Jaim, O.A.; Huerta-Flores, A.M.; Torres-Martínez, L.M.; Moctezuma, E. Fast in-situ photodeposition of Ag and Cu nanoparticles onto AgTaO3 perovskite for an enhanced photocatalytic hydrogen generation. Int. J. Hydrog. Energy 2020, 45, 9744–9757. [Google Scholar] [CrossRef]
- Yang, J.; Wang, D.; Han, H.; Li, C. Roles of Cocatalysts in Photocatalysis and Photoelectrocatalysis. Acc. Chem. Res. 2013, 46, 1900–1909. [Google Scholar] [CrossRef]
- Xu, X.; Liu, G.; Azad, A.K. Visible light photocatalysis by in situ growth of plasmonic Ag nanoparticles upon AgTaO3. Int. J. Hydrog. Energy 2015, 40, 3672–3678. [Google Scholar] [CrossRef]
- Yu, J.; Zhang, L.; Qian, J.; Zhu, Z.; Ni, S.; Liu, G.; Xu, X. In situ exsolution of silver nanoparticles on AgTaO3-SrTiO3 solid solutions as efficient plasmonic photocatalysts for water splitting. Appl. Catal. B Environ. 2019, 256, 117818. [Google Scholar] [CrossRef]
- Paszkiewicz-Gawron, M.; Gołąbiewska, A.; Pancielejko, A.; Lisowski, W.; Zwara, J.; Paszkiewicz, M.; Zaleska-Medynska, A.; Łuczak, J. Impact of Tetrazolium Ionic Liquid Thermal Decomposition in Solvothermal Reaction on the Remarkable Photocatalytic Properties of TiO2 Particles. Nanomaterials 2019, 9, 557–561. [Google Scholar] [CrossRef] [Green Version]
- Paszkiewicz, M.; Łuczak, J.; Lisowski, W.; Patyk, P.; Zaleska-Medynska, A. The ILs-assisted solvothermal synthesis of TiO2 spheres: The effect of ionic liquids on morphology and photoactivity of TiO2. Appl. Catal. B Environ. 2016, 184, 223–237. [Google Scholar] [CrossRef]
- Yu, J.; Li, Q.; Liu, S.; Jaroniec, M. Ionic-Liquid-Assisted Synthesis of Uniform Fluorinated B/C-Codoped TiO2 Nanocrystals and Their Enhanced Visible-Light Photocatalytic Activity. Chem. Eur. J. 2013, 19, 2433–2441. [Google Scholar] [CrossRef]
- Paszkiewicz-Gawron, M.; Długokȩcka, M.; Lisowski, W.; Cristina Paganini, M.; Giamello, E.; Klimczuk, T.; Paszkiewicz, M.; Grabowska, E.; Zaleska-Medynska, A.; Łuczak, J. Dependence between Ionic Liquid Structure and Mechanism of Visible-Light-Induced Activity of TiO2 Obtained by Ionic-Liquid- Assisted Solvothermal Synthesis. ACS Sustain. Chem. Eng. 2018, 6, 3927–3937. [Google Scholar] [CrossRef]
- Ramanathan, R.; Bansal, V. Ionic liquid mediated synthesis of nitrogen, carbon and fluorine-codoped rutile TiO 2 nanorods for improved UV and visible light photocatalysis. RSC Adv. 2015, 5, 1424–1429. [Google Scholar] [CrossRef]
- Łuczak, J.; Paszkiewicz-Gawron, M.; Długokęcka, M.; Lisowski, W.; Grabowska, E.; Makurat, S.; Rak, J.; Zaleska-Medynska, A. Visible light photocatalytic activity of ionic liquid-TiO2 spheres: Effect of the ionic liquid’s anion structure. ChemCatChem 2017, 9, 4377–4388. [Google Scholar] [CrossRef]
- Qi, L.; Yu, J.; Jaroniec, M. Enhanced and suppressed effects of ionic liquid on the photocatalytic activity of TiO2. Adsorption 2013, 19, 557–561. [Google Scholar] [CrossRef]
- Muduli, R.; Kumar, P.; Panda, R.K.; Panigrahi, S. Dielectric, ferroelectric and impedance spectroscopic studies of Mn and W modified AgNbO3 ceramics. Mater. Chem. Phys. 2016, 180, 422–431. [Google Scholar] [CrossRef]
- Zwara, J.; Paszkiewicz-Gawron, M.; Łuczak, J.; Pancielejko, A.; Lisowski, W.; Trykowski, G.; Zaleska-Medynska, A.; Grabowska, E. The effect of imidazolium ionic liquid on the morphology of Pt nanoparticles deposited on the surface of SrTiO3 and photoactivity of Pt–SrTiO3 composite in the H2 generation reaction. Int. J. Hydrog. Energy 2019, 44, 26308–26321. [Google Scholar] [CrossRef]
- Naumkin, A.V.; Kraut-Vass, A.; Gaarenstroom, S.W.; Powell, C.J. NIST X-ray Photoelectron Spectroscopy Database 20; Version 4.1. Available online: http://srdata.nist.gov/xps/ (accessed on 10 September 2020).
- Mahmood, D.A.; Ramay, S.; Rafique, H.M.; Al-zaghayer, Y.; Khan, S. First-principles study of electronic, optical and thermoelectric properties in cubic perovskite materials AgMO3 (M = V, Nb, Ta). Mod. Phys. Lett. B 2014, 28, 1450077. [Google Scholar] [CrossRef]
- Kato, H.; Kobayashi, H.; Kudo, A. Role of Ag+ in the Band Structures and Photocatalytic Properties of AgMO3 (M: Ta and Nb) with the Perovskite Structure. Cheminform 2002, 34, 12441–12447. [Google Scholar] [CrossRef]
- Irie, H.; Ni, L. Nb-Doped AgTaO3 as a Water-Splitting Photocatalyst Under Visible Light. ECS Meeting Abstr. 2013, 1288. [Google Scholar] [CrossRef]
- Huo, J.; Fang, L.; Lei, Y.; Zeng, G.; Zeng, H.-P. Facile preparation of yttrium and aluminum co-doped ZnO via a sol–gel route for photocatalytic hydrogen production. J. Mater. Chem. A 2014, 2, 11040–11044. [Google Scholar] [CrossRef]
- Chou, H.-L.; Hwang, B.J.; Sun, C.-L. Chapter 9 - Catalysis in Fuel Cells and Hydrogen Production. In New and Future Developments in Catalysis; Elsevier: Amsterdam, The Netherlands, 2013; pp. 217–270. [Google Scholar]
- Paszkiewicz-Gawron, M.; Makurat, S.; Rak, J.; Zdrowowicz, M.; Lisowski, W.; Zaleska-Medynska, A.; Kowalska, E.; Mazierski, P.; Łuczak, J. Theoretical and Experimental Studies on the Visible Light Activity of TiO2 Modified with Halide-Based Ionic Liquids. Catalysts 2020, 10, 371. [Google Scholar] [CrossRef] [Green Version]
- Wei, Z.; Li, R.; Wang, R. Enhanced visible light photocatalytic activity of BiOBr by: In situ reactable ionic liquid modification for pollutant degradation. RSC Adv. 2018, 8, 7956–7962. [Google Scholar] [CrossRef] [Green Version]
- Naldoni, A.; D’Arienzo, M.; Altomare, M.; Marelli, M.; Scotti, R.; Morazzoni, F.; Selli, E.; Dal Santo, V. Pt and Au/TiO2 photocatalysts for methanol reforming: Role of metal nanoparticles in tuning charge trapping properties and photoefficiency. Appl. Catal. B Environ. 2013, 130–131, 239–248. [Google Scholar] [CrossRef]
- Hidalgo, M.C.; Maicu, M.; Navío, J.A.; Colón, G. Photocatalytic properties of surface modified platinised TiO2: Effects of particle size and structural composition. Catal. Today 2007, 129, 43–49. [Google Scholar] [CrossRef]
- Arney, D.; Hardy, C.; Greve, B.; Maggard, P. Flux Synthesis of AgNbO3: Effect of Particle Surfaces and Sizes on Photocatalytic Activity. J. Photochem. Photobiol. A-Chem. 2010, 214, 54–60. [Google Scholar] [CrossRef]
- Klein, M.; Nadolna, J.; Gołąbiewska, A.; Mazierski, P.; Klimczuk, T.; Remita, H.; Zaleska-Medynska, A. The effect of metal cluster deposition route on structure and photocatalytic activity of mono- and bimetallic nanoparticles supported on TiO2 by radiolytic method. Appl. Surf. Sci. 2016, 378, 37–48. [Google Scholar] [CrossRef]
Sample Label | a = b (A) | c (A) | V (A3) | Crystallite Size (A) | Specific Surface Area (m2·g−1) | Amount of H2 Evolved after 240 min (μmol g−1) under UV-Vis Irradiation |
---|---|---|---|---|---|---|
AgTaO3 | 5.4923 | 13.7718 | 359.78 | 215.4 | 0.9226 | 20.4 |
AgTaO3_[OMIM][BF4] | 5.8026 | 13.5746 | 366.07 | 269.5 | 0.8694 | 1.6 |
AgTaO3_[OMIM][Tf2N] | 5.5300 | 13.6315 | 361.01 | 218.2 | 1.1184 | 21.3 |
AgTaO3_[TBA][Cl] | 5.5415 | 13.7251 | 364.54 | 267.6 | 0.5617 | 11.3 |
AgTaO3_[TPTZ][Cl] | 5.5482 | 13.6898 | 359.78 | 294.5 | 0.7193 | 3.7 |
AgTaO3_0.2% Pt | 5.5667 | 13.7238 | 368.30 | 259.4 | 1.1408 | 248.5 |
AgTaO3_[OMIM][BF4]_0.2% Pt | 5.5386 | 13.7068 | 364.14 | 245.9 | 1.0362 | 176.2 |
AgTaO3_[OMIM][Tf2N]_0.2% Pt | 5.5673 | 13.7832 | 369.97 | 262.2 | 1.0342 | 221.2 |
AgTaO3_[TBA][Cl]_0.2% Pt | 5.5250 | 13.6974 | 362.11 | 243.8 | 0.7124 | 25.1 |
AgTaO3_[TPTZ][Cl]_0.2% Pt | 5.5345 | 13.7027 | 364.84 | 284.1 | 0.6986 | 55.4 |
- | Pt 4f7/2 Fraction (%) | ||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
- | Elements Content (at.%) | Pt1 | Pt2 | Pt3 | |||||||||||
Sample Label | Ag | Ta | O | Pt | C | F | B | S | Cl | N | Pt/Ag | C/Ag | Pt-Ag 69.9–70.2 eV | Pt(0), Pt-CO 70.8–71.4 eV | Pt-CxHy, Pt-IL 71.8–72.7 eV |
AgTaO3_0.2%Pt | 16.80 | 22.24 | 45.56 | 0.81 | 14.59 | - | - | - | - | - | 0.048 | 0.87 | 76.25 | 15.20 | 8.55 |
AgTaO3_[OMIM][BF4]_0.2%Pt | 15.40 | 21.96 | 46.67 | 0.82 | 13.10 | 0.46 | 0.38 | - | - | 1.22 | 0.053 | 0.85 | 69.02 | 22.21 | 8.77 |
AgTaO3_[OMIM][Tf2N]_0.2%Pt | 16.38 | 21.96 | 43.92 | 0.74 | 14.93 | 0.40 | - | 0.14 | - | 1.54 | 0.045 | 0.91 | 74.20 | 17.09 | 8.71 |
AgTaO3_[TBA][Cl]_0.2%Pt | 11.61 | 22.94 | 43.38 | 1.20 | 19.23 | - | - | - | 0.28 | 1.36 | 0.103 | 1.66 | 66.77 | 24.12 | 9.11 |
AgTaO3_[TPTZ][Cl]_0.2%Pt | 11.48 | 23.29 | 44.50 | 1.28 | 16.38 | - | - | - | 0.35 | 2.72 | 0.111 | 1.43 | 63.40 | 27.47 | 9.13 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zwara, J.; Pancielejko, A.; Paszkiewicz-Gawron, M.; Łuczak, J.; Miodyńska, M.; Lisowski, W.; Zaleska-Medynska, A.; Grabowska-Musiał, E. Fabrication of ILs-Assisted AgTaO3 Nanoparticles for the Water Splitting Reaction: The Effect of ILs on Morphology and Photoactivity. Materials 2020, 13, 4055. https://doi.org/10.3390/ma13184055
Zwara J, Pancielejko A, Paszkiewicz-Gawron M, Łuczak J, Miodyńska M, Lisowski W, Zaleska-Medynska A, Grabowska-Musiał E. Fabrication of ILs-Assisted AgTaO3 Nanoparticles for the Water Splitting Reaction: The Effect of ILs on Morphology and Photoactivity. Materials. 2020; 13(18):4055. https://doi.org/10.3390/ma13184055
Chicago/Turabian StyleZwara, Julia, Anna Pancielejko, Marta Paszkiewicz-Gawron, Justyna Łuczak, Magdalena Miodyńska, Wojciech Lisowski, Adriana Zaleska-Medynska, and Ewelina Grabowska-Musiał. 2020. "Fabrication of ILs-Assisted AgTaO3 Nanoparticles for the Water Splitting Reaction: The Effect of ILs on Morphology and Photoactivity" Materials 13, no. 18: 4055. https://doi.org/10.3390/ma13184055
APA StyleZwara, J., Pancielejko, A., Paszkiewicz-Gawron, M., Łuczak, J., Miodyńska, M., Lisowski, W., Zaleska-Medynska, A., & Grabowska-Musiał, E. (2020). Fabrication of ILs-Assisted AgTaO3 Nanoparticles for the Water Splitting Reaction: The Effect of ILs on Morphology and Photoactivity. Materials, 13(18), 4055. https://doi.org/10.3390/ma13184055