Horsetail (Equisetum Arvense) as a Functional Filler for Natural Rubber Biocomposites
Abstract
:1. Introduction
2. Materials and Methods
2.1. Polymer
2.2. Filler
- the UV ageing process was simulated in a UV 2000 apparatus from Atlas (Mount Prospect, IL, USA). The conditions in the aging chamber included two repeating segments: daily segment (UV radiation intensity = 0.7 W/m2, temperature = 60 °C, duration = 8 h) and night segment (without UV radiation, temperature = 50 °C, duration = 4 h);
- the weather aging process was performed using a Weather-Ometer Ci 4000 (Atlas, Mount Prospect, IL, USA). Parameters of aging: radiation (340 nm) intensity = 0.4 W/m2, temperature = 38 °C, humidity = 55%;
- the thermo-oxidative degradation of the natural rubber biocomposites was carried out at a temperature of 70 °C for 14 days, according to the PN-82/C-04216 standard. Samples were exposed to air in a dryer (Binder, Tuttlingen, Germany) with thermo-circulation.
3. Results and Discussion
3.1. Ultraviolet–Visible Spectroscopy (UV-VIS)
3.2. Thermogravimetric Analysis (TGA) of the Filler
3.3. Fourier-Transform Infrared Spectroscopy (FTIR)
3.4. Analysis of Metals(II) Concentration
3.5. Morphology of the Filler and Biocomposites
3.6. Rheometric Properties
3.7. Thermogravimetric Analysis (TGA) of the Composites
3.8. Mechanical Properties
3.9. Aging Processes
3.9.1. Effect of Aging on the Crosslinking Density of NR Vulcanizates
- the reaction of a free radical with an oxygen molecule and formation of a peroxide radical (NR−O−O)
- isolation of a hydrogen atom from another polymer chain with hydroperoxide generation (NR−O−OH)
- decomposition of hydroxide into two new free radicals (NR−O and OH)
- radical recombination or disproportionation.
3.9.2. Effect of Aging on the Mechanical Properties of NR Vulcanizates
3.9.3. Color Change of NR Vulcanizates after Aging Processes
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Radulović, N.; Stojanović, G.; Palić, R. Composition and antimicrobial activity ofEquisetum arvense L. essential oil. Phytotherapy Res. 2006, 20, 85–88. [Google Scholar] [CrossRef] [PubMed]
- Asgarpanah, J.; Roohi, E. Phytochemistry and pharmacological properties of Equisetum arvense L. J. Med. Plants Res. 2012, 6, 3689–3693. [Google Scholar] [CrossRef] [Green Version]
- Hauke, R.L. A Taxonomic Monograph of Equisetum Subgenus Equisetum. Nova Hedwigia 1979, 30, 385–456. [Google Scholar] [CrossRef]
- Tschudy, R.H. The significance of certain abnormalities in equisetum. Am. J. Bot. 1939, 26, 744–749. [Google Scholar] [CrossRef]
- Bierhorst, D.W. Vessels in Equisetum. Am. J. Bot. 1958, 45, 534–537. [Google Scholar] [CrossRef]
- Niklas, K. Relative Resistance of Hollow, Septate Internodes to Twisting and Bending. Ann. Bot. 1997, 80, 275–287. [Google Scholar] [CrossRef] [Green Version]
- Monte, F.H.D.; Dos Santos, J.G.; Russi, M.; Lanziotti, V.M.N.B.; Leal, L.K.A.M.; Cunha, G.M.D.A. Antinociceptive and anti-inflammatory properties of the hydroalcoholic extract of stems from Equisetum arvense L. in mice. Pharmacol. Res. 2004, 49, 239–243. [Google Scholar] [CrossRef]
- Oh, H.; Kim, D.-H.; Cho, J.-H.; Kim, Y.-C. Hepatoprotective and free radical scavenging activities of phenolic petrosins and flavonoids isolated from Equisetum arvense. J. Ethnopharmacol. 2004, 95, 421–424. [Google Scholar] [CrossRef]
- Mekhfi, H.; El Haouari, M.; Legssyer, A.; Bnouham, M.; Aziz, M.; Atmani, F.; Remmal, A.; Ziyyat, A. Platelet anti-aggregant property of some Moroccan medicinal plants. J. Ethnopharmacol. 2004, 94, 317–322. [Google Scholar] [CrossRef]
- Soleimani, S.; Azarbaizani, F.F.; Nejati, V. The Effect of Equisetum arvense L. (Equisetaceae) in Histological Changes of Pancreatic ß Cells in Streptozotocin-Induced Diabetic in Rats. Pak. J. Biol. Sci. 2007, 10, 4236–4240. [Google Scholar] [CrossRef]
- Sandhu, N.S.; Kaur, S.; Chopra, D. Equietum arvense: Pharmacology and phytochemistry—A review. Asian J. Pharm. Clin. Res. 2010, 3, 146–150. [Google Scholar]
- Sola-Rabada, A.; Rinck, J.; Belton, D.J.; Powell, A.K.; Perry, C.C. Isolation of a wide range of minerals from a thermally treated plant: Equisetum arvense, a Mare’s tale. JBIC J. Boil. Inorg. Chem. 2016, 21, 101–112. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pittler, M. Herbal Drugs and Phytopharmaceuticals. Focus Altern. Complement. Ther. 2010, 9, 242. [Google Scholar] [CrossRef]
- Beckert, C.; Horn, C.; Schnitzler, J.-P.; Lehning, A.; Heller, W.; Veit, M. Styrylpyrone biosynthesis in Equisetum arvense. Phytochemistry 1997, 44, 275–283. [Google Scholar] [CrossRef]
- Veit, M.; Geiger, H.; Czygan, F.-C.; Markham, K.R. Malonylated flavone 5-O-glucosides in the barren sprouts of Equisetum arvense. Phytochemistry 1990, 29, 2555–2560. [Google Scholar] [CrossRef]
- Sapei, L.; Nöske, R.; Strauch, P.; Paris, O. Isolation of Mesoporous Biogenic Silica from the Perennial Plant Equisetum hyemale. Chem. Mater. 2008, 20, 2020–2025. [Google Scholar] [CrossRef]
- Currie, H.A.; Perry, C.C. Chemical evidence for intrinsic ‘Si’ within Equisetum cell walls. Phytochemistry 2009, 70, 2089–2095. [Google Scholar] [CrossRef]
- Četojević-Simin, D.D.; Čanadanović-Brunet, J.M.; Bogdanović, G.M.; Djilas, S.M.; Ćetković, G.S.; Tumbas, V.T.; Stojiljković, B.T. Antioxidative and Antiproliferative Activities of Different Horsetail (Equisetum arvense L.) Extracts. J. Med. Food 2010, 13, 452–459. [Google Scholar] [CrossRef]
- Gierlinger, N.; Sapei, L.; Paris, O. Insights into the chemical composition of Equisetum hyemale by high resolution Raman imaging. Planta 2008, 227, 969–980. [Google Scholar] [CrossRef] [Green Version]
- Dos Santos, J.G.; Blanco, M.M.; Do Monte, F.H.M.; Russi, M.; Lanziotti, V.M.N.B.; Leal, L.K.A.M.; Cunha, G.M. Sedative and anticonvulsant effects of hydroalcoholic extract of Equisetum arvense. Fitoterapia 2005, 76, 508–513. [Google Scholar] [CrossRef]
- Pietta, P.-G. Flavonoids as Antioxidants. J. Nat. Prod. 2000, 63, 1035–1042. [Google Scholar] [CrossRef] [PubMed]
- Arif, T.; Bhosale, J.D.; Kumar, N.; Mandal, T.K.; Bendre, R.S.; Lavekar, G.S.; Dabur, R. Natural products – antifungal agents derived from plants. J. Asian Nat. Prod. Res. 2009, 11, 621–638. [Google Scholar] [CrossRef] [PubMed]
- Cushnie, T.P.T.; Lamb, A.J. Antimicrobial activity of flavonoids. Int. J. Antimicrob. Agents 2005, 26, 343–356. [Google Scholar] [CrossRef] [PubMed]
- Menta, P.; Motaung, T.E.; Hlangothi, S.P. Natural Rubber and Reclaimed Rubber Composites—A Systematic Review. Polym. Sci. 2016, 2. [Google Scholar] [CrossRef] [Green Version]
- Masek, A.; Zaborski, M.; Kosmalska, A.; Chrzescijanska, E. Eco-friendly elastomeric composites containing Sencha and Gun Powder green tea extracts. Comptes Rendus Chim. 2012, 15, 331–335. [Google Scholar] [CrossRef]
- Latos-Brozio, M.; Masek, A. The application of (+)-catechin and polydatin as functional additives for biodegradable polyesters. Int. J. Mol. Sci. 2020, 21, 414. [Google Scholar] [CrossRef] [Green Version]
- Flory, P.J.; Rehner, J. Statistical Mechanics of Cross-Linked Polymer Networks I. Rubberlike Elasticity. J. Chem. Phys. 1943, 11, 512. [Google Scholar] [CrossRef]
- Roovers, J.; Toporowski, P.M. Characteristic Ratio and Plateau Modulus of 1,2-Polybutadiene. A Comparison with Other Rubbers. Rubber Chem. Technol. 1990, 63, 734–746. [Google Scholar] [CrossRef]
- Ahmed, K.; Nizami, S.S.; Raza, N.Z.; Habib, F. The effect of silica on the properties of marble sludge filled hybrid natural rubber composites. J. King Saud Univ. Sci. 2013, 25, 331–339. [Google Scholar] [CrossRef] [Green Version]
- Masek, A.; Latos-Brozio, M.; Chrzescijanska, E.; Podsedek, A. Polyphenolic Profile and Antioxidant Activity of Juglans regia L. Leaves and Husk Extracts. Forests 2019, 10, 988. [Google Scholar] [CrossRef] [Green Version]
- Čanadanović-Brunet, J.M.; Ćetković, G.S.; Djilas, S.M.; Tumbas, V.T.; Savatović, S.S.; Mandić, A.I.; Markov, S.L.; Cvetković, D.D. Radical scavenging and antimicrobial activity of horsetail (Equisetum arvense L.) extracts. Int. J. Food Sci. Technol. 2009, 44, 269–278. [Google Scholar] [CrossRef]
- Butnariu, M.; Coradini, C.Z. Evaluation of Biologically Active Compounds from Calendula officinalis Flowers using Spectrophotometry. Chem. Cent. J. 2012, 6, 35. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, H.; Yan, R.; Chen, H.; Lee, D.H.; Zheng, C. Characteristics of hemicellulose, cellulose and lignin pyrolysis. Fuel 2007, 86, 1781–1788. [Google Scholar] [CrossRef]
- Lv, D.; Xu, M.; Liu, X.; Zhan, Z.; Li, Z.; Yao, H. Effect of cellulose, lignin, alkali and alkaline earth metallic species on biomass pyrolysis and gasification. Fuel Process. Technol. 2010, 91, 903–909. [Google Scholar] [CrossRef]
- Neumann, M.; Wagner, S.; Noske, R.; Tiersch, B.; Strauch, P. Morphology and Structure of Biomorphous Silica Isolated from Equisetum hyemale and Equisetum telmateia. Z. Nat. B 2010, 65, 1113–1120. [Google Scholar] [CrossRef]
- Sinha, E.; Rout, S.K. Influence of fibre-surface treatment on structural, thermal and mechanical properties of jute fibre and its composite. Bull. Mater. Sci. 2009, 32, 65–76. [Google Scholar] [CrossRef]
- Heredia-Guerrero, J.A.; Benà tez, J.J.; Domà nguez, E.; Bayer, I.S.; Cingolani, R.; Athanassiou, A.; Heredia, A. Infrared and Raman spectroscopic features of plant cuticles: A review. Front. Plant Sci. 2014. [Google Scholar] [CrossRef] [Green Version]
- Sills, D.L.; Gossett, J.M. Using FTIR to predict saccharification from enzymatic hydrolysis of alkali-pretreated biomasses. Biotechnol. Bioeng. 2012, 109, 353–362. [Google Scholar] [CrossRef]
- Khan, A.S.; Khalid, H.; Sarfraz, Z.; Khan, M.; Iqbal, J.; Muhammad, N.; Fareed, M.A.; Rehman, I.U. Vibrational spectroscopy of selective dental restorative materials. Appl. Spectrosc. Rev. 2017, 52, 507–540. [Google Scholar] [CrossRef]
- Nefed’eva, E.E.; Sevriukova, G.A.; Zheltobryukhov, V.F.; Gracheva, N.V.; Abdulabbas, A.Y.A. Assortment of herbaceous plants for remediation of soils contaminated with oil products and heavy metals. IOP Conf. Ser. Earth Environ. Sci. 2020, 421, 062008. [Google Scholar] [CrossRef]
- Shen, Z.J.; Xu, D.C.; Chen, Y.S.; Zhang, Z. Heavy metals translocation and accumulation from the rhizosphere soils to the edible parts of the medicinal plant Fengdan (Paeonia ostii) grown on a metal mining area, China. Ecotoxicol. Environ. Saf. 2017, 143, 19–27. [Google Scholar] [CrossRef] [PubMed]
- Kahle, H. Response of roots of trees to heavy metals. Environ. Exp. Bot. 1993, 33, 99–119. [Google Scholar] [CrossRef]
- Reeves, R.D.; Baker, A.J.M. Metal Accumulating Plants. In Phytoremediation of Toxic Metals: Using Plants to Clean Up the Environment; Raskin, I., Ensley, B.D., Eds.; Wiley: Hoboken, NJ, USA, 1999. [Google Scholar]
- Mattos, B.D.; Gomes, G.R.; De Matos, M.; Ramos, L.P.; Magalhães, W.L.E. Consecutive Production of Hydroalcoholic Extracts, Carbohydrates Derivatives and Silica Nanoparticles from Equisetum arvense. Waste Biomass Valorization 2017, 9, 1993–2002. [Google Scholar] [CrossRef]
- Law, C.; Exley, C. New insight into silica deposition in horsetail (Equisetum arvense). BMC Plant Boil. 2011, 11, 112. [Google Scholar] [CrossRef] [Green Version]
- Holzhoter, G.; Narayanan, K.; Gerber, T. Structure of silica in Equisetum arvense. Anal. Bioanal. Chem. 2003, 376, 512–517. [Google Scholar] [CrossRef]
- Nylese, T.L.; Berry, A.; Oscher, S. Elemental Analysis of Silicon in Plant Material with Variable-Pressure SEM. Microsc. Today 2015, 23, 26–31. [Google Scholar] [CrossRef] [Green Version]
- Sae-oui, P.; Sirisinha, C.; Thepsuwan, U.; Hatthapanit, K. Dependence of mechanical and aging properties of chloroprene rubber on silica and ethylene thiourea loadings. Eur. Polym. J. 2007, 43, 185–193. [Google Scholar] [CrossRef]
- Kim, I.-S.; Lee, B.-W.; Sohn, K.-S.; Yoon, J.; Lee, J.-H. Characterization of the UV Oxidation of Raw Natural Rubber Thin Film Using Image and FT-IR Analysis. Elastomers Compos. 2016, 51, 1–9. [Google Scholar] [CrossRef]
- Moon, B.; Lee, J.; Park, S.; Seok, C.-S. Study on the Aging Behavior of Natural Rubber/Butadiene Rubber (NR/BR) Blends Using a Parallel Spring Model. Polymers 2018, 10, 658. [Google Scholar] [CrossRef] [Green Version]
- Maciejewska, M.; Sowinska, A.; Kucharsk, J. Organic zinc salts as pro-ecological activators for sulfur vulcanization of styrene-butadiene rubber. Polymers 2019, 11, 1723. [Google Scholar] [CrossRef] [Green Version]
- Manaila, E.; Stelescu, M.D.; Craciun, G. Degradation studies realized on natural rubber and plasticized potato starch based eco-composites obtained by peroxide cross-linking. Int. J. Mol. Sci. 2018, 19, 2862. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fatima, S.; Mohanty, A.R. Acoustical and fire-retardant properties of jute composite materials. Appl. Acoust. 2011, 72, 108–114. [Google Scholar] [CrossRef]
Sample | 0NR | 10HT | 20HT | 30HT | 40HT | 50HT |
---|---|---|---|---|---|---|
HT (phr) | - | 10 | 20 | 30 | 40 | 50 |
NR (phr) | 100 | |||||
ZnO (phr) | 5 | |||||
MBT (phr) | 2 | |||||
SA (phr) | 2 | |||||
S (phr) | 1 |
Samples | Co(II) (mg/kg) | Ni(II) (mg/kg) | Cd(II) (mg/kg) | Pb(II) (mg/kg) |
---|---|---|---|---|
0NR | 0.16 | 0.88 | 0.41 | 27.07 |
10HT | 0.22 | 0.96 | 0.42 | 24.17 |
20HT | 0.25 | 1.04 | 0.40 | 21.91 |
30HT | 0.32 | 1.22 | 0.39 | 21.43 |
40HT | 0.32 | 1.23 | 0.36 | 17.96 |
50HT | 0.35 | 1.18 | 0.35 | 16.71 |
Horsetail pure | 0.80 | 2.04 | 0.24 | 0.86 |
Sample | T5% (°C) | T50% (°C) | Δm (25–600 °C) (%) | Δm (600–900 °C) (%) | R900 (%) |
---|---|---|---|---|---|
Argon Atmosphere | Air Atmosphere | ||||
0NR | 320 | 389 | 6.2 | 1.5 | 4.6 |
10HT | 290 | 386 | 9.0 | 2.8 | 6.2 |
20HT | 282 | 384 | 10.0 | 3.4 | 6.5 |
30HT | 270 | 384 | 11.9 | 4.4 | 7.5 |
40HT | 267 | 384 | 13.3 | 5.3 | 7.9 |
50HT | 260 | 382 | 14.4 | 6.3 | 8.1 |
Sample | SE100 (MPa) | SE200 (MPa) | SE300 (MPa) | TS (MPa) | Eb (%) |
---|---|---|---|---|---|
0NR | 0.75 ± 0.03 | 1.12 ± 0.05 | 1.53± 0.03 | 12.6 ± 0.2 | 712 ± 7 |
10HT | 0.87 ± 0.03 | 1.37 ± 0.03 | 1.90 ± 0.04 | 16.1 ± 0.3 | 754 ± 8 |
20HT | 1.06 ± 0.04 | 1.69 ± 0.03 | 2.32 ± 0.07 | 15.2 ±0.4 | 720 ± 6 |
30HT | 1.32 ± 0.05 | 2.05 ± 0.04 | 2.78 ± 0.02 | 14.6 ± 0.3 | 709 ± 9 |
40HT | 1.44 ± 0.02 | 2.20 ± 0.05 | 2.98 ± 0.06 | 13.2 ± 0.3 | 678 ± 8 |
50HT | 1.83 ± 0.04 | 2.69 ± 0.05 | 3.69 ± 0.04 | 12.7 ± 0.5 | 611 ± 8 |
No Aging | UV_24h | UV_48h | UV_72h | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Sample | Before Aging | After Aging | K | After Aging | K | After Aging | K | ||||
TS (MPa) | Eb (%) | TS (MPa) | Eb (%) | TS (MPa) | Eb (%) | TS (MPa) | Eb (%) | ||||
0NR | 12.6 | 712 | 9.9 | 653 | 0.72 | 9.6 | 648 | 0.69 | 9.6 | 645 | 0.69 |
10HT | 16.1 | 754 | 12.8 | 719 | 0.76 | 12.6 | 719 | 0.74 | 12.3 | 708 | 0.72 |
20HT | 15.2 | 720 | 13.0 | 718 | 0.85 | 12.3 | 710 | 0.80 | 12.2 | 711 | 0.79 |
30HT | 14.6 | 709 | 13.0 | 706 | 0.88 | 11.3 | 706 | 0.77 | 11.3 | 705 | 0.77 |
40HT | 13.2 | 678 | 12.2 | 693 | 0.95 | 10.6 | 680 | 0.80 | 10.9 | 655 | 0.80 |
50HT | 12.7 | 611 | 11.7 | 597 | 0.90 | 12.1 | 588 | 0.91 | 11.2 | 575 | 0.83 |
No Aging | W_24h | W_48h | ||||||
---|---|---|---|---|---|---|---|---|
Sample | Before Aging | After Aging | K | After Aging | K | |||
TS (MPa) | Eb (%) | TS (MPa) | Eb (%) | TS (MPa) | Eb (%) | |||
0NR | 12.6 | 712 | 11.8 | 654 | 0.86 | 11.3 | 642 | 0.81 |
10HT | 16.1 | 754 | 13.2 | 665 | 0.72 | 10.0 | 619 | 0.51 |
20HT | 15.2 | 720 | 9.7 | 640 | 0.57 | 7.1 | 620 | 0.40 |
30HT | 14.6 | 709 | 8.0 | 602 | 0.46 | 7.1 | 601 | 0.41 |
40HT | 13.2 | 678 | 6.8 | 602 | 0.46 | 6.7 | 598 | 0.45 |
50HT | 12.7 | 611 | 7.4 | 558 | 0.53 | 7.1 | 557 | 0.51 |
Sample | Before Aging | After Aging TO_336h | K | ||
---|---|---|---|---|---|
TS (MPa) | Eb (%) | TS (MPa) | Eb (%) | ||
0NR | 12.6 | 712 | 10.7 | 652 | 0.78 |
10HT | 16.1 | 754 | 15.5 | 691 | 0.88 |
20HT | 15.2 | 720 | 14.4 | 665 | 0.87 |
30HT | 14.6 | 709 | 13.0 | 654 | 0.82 |
40HT | 13.2 | 678 | 11.7 | 626 | 0.82 |
50HT | 12.7 | 611 | 10.0 | 583 | 0.75 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Masłowski, M.; Miedzianowska, J.; Czylkowska, A.; Strzelec, K. Horsetail (Equisetum Arvense) as a Functional Filler for Natural Rubber Biocomposites. Materials 2020, 13, 2526. https://doi.org/10.3390/ma13112526
Masłowski M, Miedzianowska J, Czylkowska A, Strzelec K. Horsetail (Equisetum Arvense) as a Functional Filler for Natural Rubber Biocomposites. Materials. 2020; 13(11):2526. https://doi.org/10.3390/ma13112526
Chicago/Turabian StyleMasłowski, Marcin, Justyna Miedzianowska, Agnieszka Czylkowska, and Krzysztof Strzelec. 2020. "Horsetail (Equisetum Arvense) as a Functional Filler for Natural Rubber Biocomposites" Materials 13, no. 11: 2526. https://doi.org/10.3390/ma13112526
APA StyleMasłowski, M., Miedzianowska, J., Czylkowska, A., & Strzelec, K. (2020). Horsetail (Equisetum Arvense) as a Functional Filler for Natural Rubber Biocomposites. Materials, 13(11), 2526. https://doi.org/10.3390/ma13112526