Characteristics and Mechanisms of Asphalt–Filler Interactions from a Multi-Scale Perspective
Abstract
:1. Introduction
- Investigate the macro-rheological behaviors of asphalt mastic by considering different types and contents of mineral fillers, and to evaluate the asphalt–filler interaction ability by selecting appropriate macro-rheological indexes.
- Develop the characteristics and mechanisms of the asphalt–filler interaction through physico-chemical interaction analysis based on FTIR and micro-morphological characteristics observation based on SEM and AFM tests.
- Establish a grey relational analysis model to quantitatively evaluate the influence of mineral fillers on macro–micro properties of asphalt mastics and the asphalt–filler interaction ability.
2. Materials and Test Methods
2.1. Materials
2.1.1. Asphalt Binder and Mineral Filler
2.1.2. Asphalt Mastic
2.2. Test Methods
2.2.1. Dynamic Shear Rheometer
2.2.2. Fourier Transform Infrared Spectroscopy
2.2.3. Scanning Electron Microscopy
2.2.4. Atomic Force Microscopy
2.2.5. Grey Relation Analysis
3. Results and Discussion
3.1. Asphalt–Filler Interaction Ability Evaluation
3.1.1. Analysis Index
3.1.2. Evaluation Results
3.2. Micro-Structural Characteristics of Asphalt Mastics
3.2.1. FTIR
3.2.2. SEM
3.2.3. AFM
3.2.4. Quantitative Analysis of the AFM Images
3.3. Analysis of GRA
4. Conclusions
- The asphalt–filler interaction ability could be effectively evaluated using the K-B- index and K-B- index. Furthermore, the values of K-B- and K-B- presented an ascending trend with the increase of filler contents for the three asphalt mastics.
- The interaction between the asphalt binder and filler was mainly caused by physical action since no obvious new absorption peaks appeared in the FTIR spectra.
- The limestone filler, with its rough and uneven microsurface, exhibited the strongest asphalt–filler interaction ability in comparison with the diabase and granite fillers.
- The micro-morphological characteristics of the asphalt mastics were susceptible to the acidity and content of the mineral fillers, which was reflected by the adsorption of the mineral fillers for polar fractions and the dispersion effect of the mineral fillers on wax crystals in the asphalt binder in AFM images. Furthermore, the effect of the asphalt–filler interaction on the micro-morphological differences in the asphalt mastics were quantitatively analyzed using the micro-morphological indexes, namely, the bee phase area, surface height, and surface roughness.
- Through the GRA, the filler acidity and content exhibited a greater influence on the macro–micro properties of the asphalt mastics, while the SSA of the filler particles has a greater impact on the asphalt–filler interaction ability. Furthermore, the K-B- index is recommended as a more appropriate index for evaluating the asphalt–filler interaction ability.
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Roshan, H.; Dessouky, S.; Montoya, A.; Papagiannakis, A. Energy harvesting from asphalt pavement roadways vehicle-induced stresses: A feasibility study. Appl. Energy 2016, 182, 210–218. [Google Scholar] [CrossRef]
- Cheng, Y.C.; Ma, H.L.; Huang, J.P.; Zhang, P.; Tao, J.L. Performances Comparison of Mine Filler Asphalt Mortar and Diatomite Asphalt Mortar. Appl. Mech. Mater. 2013, 361–363, 1861–1864. [Google Scholar] [CrossRef]
- Shashidhar, N.; Shenoy, A. On using micromechanical models to describe dynamic mechanical behavior of asphalt mastics. Mech. Mater. 2002, 34, 657–669. [Google Scholar] [CrossRef]
- Elisabeth, A.; Roman, L.; Christian, P. Multiscale Prediction of Viscoelastic Properties of Asphalt Concrete. J. Mater. Civ. Eng. 2009, 21, 771–780. [Google Scholar] [CrossRef] [Green Version]
- Clopotel, C.; Velasquez, R.; Bahia, H. Measuring physico-chemical interaction in mastics using glass transition. Road Mater. Pavement Des. 2012, 13, 304–320. [Google Scholar] [CrossRef]
- Kim, M.; Buttlar, W. Stiffening Mechanisms of Asphalt–Aggregate Mixtures. Transp. Res. Rec. J. Transp. Res. Board 2010, 2181, 98–108. [Google Scholar] [CrossRef]
- Underwood, B.S.; Kim, Y.R. Experimental investigation into the multiscale behaviour of asphalt concrete. Int. J. Pavement Eng. 2011, 12, 357–370. [Google Scholar] [CrossRef]
- Anderson, D.A.; Goetz, W.H. Mechanical Behavior and Reinforcement of Mineral Filler-Asphalt Mixtures; FHWA/IN/JHRP-73/05; Joint Highway Research Project, Indiana Department of Transportation and Purdue University: West Lafayette, IN, USA, 1973. [Google Scholar]
- Fan, L.; Zhang, Y.Z.; Wang, L. Study on Glass Transition and Interface Adhesive Ability of Asphalt Mortar. Appl. Mech. Mater. 2011, 99–100, 728–732. [Google Scholar] [CrossRef]
- Zhang, J.; Liu, G.; Hu, Z.; Zhu, C.; Pei, J.; Jin, L. Effects of temperature and loading frequency on asphalt and filler interaction ability. Constr. Build. Mater. 2016, 124, 1028–1037. [Google Scholar] [CrossRef]
- Zhang, J.; Li, X.; Liu, G.; Pei, J. Effects of material characteristics on asphalt and filler interaction ability. Int. J. Pavement Eng. 2017, 20, 928–937. [Google Scholar] [CrossRef]
- Antunes, V.; Freire, A.C.; Quaresma, L.; Micaelo, R. Evaluation of waste materials as alternative sources of filler in asphalt mixtures. Mater. Struct. 2017, 50, 254. [Google Scholar] [CrossRef]
- Guo, M.; Tan, Y.Q.; Zhang, L. Effect of Filler on Glass Transition of Asphalt Mastics. Adv. Eng. Forum 2012, 5, 376–381. [Google Scholar] [CrossRef] [Green Version]
- Peng, R.; Tian, H.; Liao, L. Effect of Mineral Powder on Performance of Unaged and Aged Asphalt Mortar. Adv. Mater. Res. 2014, 1065–1069, 1761–1765. [Google Scholar] [CrossRef]
- Faheem, A.F.; Bahia, H.U. Conceptual phenomenological model for interaction of asphalt binders with mineral fillers. Asph. Paving Technol. 2009, 78, 679–719. [Google Scholar]
- Tan, Y.; Guo, M. Interfacial thickness and interaction between asphalt and mineral fillers. Mater. Struct. 2013, 47, 605–614. [Google Scholar] [CrossRef]
- Romeo, E.; Ghizzardi, V.; Rastelli, S.; Montepara, A. Influence of Mineral Fillers and Their Fractional Voids on Mastic Rheological and Mechanical Properties. In Proceedings of 8th RILEM International Symposium on Testing and Characterization of Sustainable and Innovative Bituminous Materials; Springer: Dordrecht, The Netherlands, 2016; pp. 681–692. [Google Scholar]
- Moraes, R.; Bahia, H.U. Effect of mineral filler on changes in molecular size distribution of asphalts during oxidative ageing. Road Mater. Pavement Des. 2015, 16, 55–72. [Google Scholar] [CrossRef]
- Tan, Y.; Li, X.; Wu, J. Evaluation indices of interaction ability of asphalt and aggregate based on rheological characteristics. J. Wuhan Univ. Technol. - Mater. Sci. Ed. 2012, 27, 979–985. [Google Scholar] [CrossRef]
- Meng, G. Interfacial Behavior of Asphalt Mastics and Its Mechanism. Master’s Thesis, Harbin Institute of Technology, Harbin, China, July 2012. [Google Scholar]
- Tan, Y.; Wu, J.; Li, X.; Ji, L. Evaluation indexes for interaction capability of asphalt and aggregate. J. Harbin Inst. Technol. 2009, 41, 81–84. [Google Scholar] [CrossRef] [Green Version]
- Lewis, T.B.; Nielsen, L.E. Dynamic mechanical properties of particulate-filled composite. J. Appl. Polym. Sci. 1970, 14, 1449–1471. [Google Scholar] [CrossRef]
- Zhang, J.; Pei, J.; Li, Y. Research on Interaction between Asphalt and Filler Based on DSR Test. Adv. Mater. Res. 2013, 723, 480–487. [Google Scholar] [CrossRef]
- Ziegel, K.D.; Romanov, A. Modulus reinforcement in elastomer composites. II. Polymeric fillers. J. Appl. Polym. Sci. 1973, 17, 1133–1142. [Google Scholar] [CrossRef]
- Ziegel, K.D.; Romanov, A. Modulus reinforcement in elastomer composites. I. Inorganic fillers. J. Appl. Polym. Sci. 1973, 17, 1119–1131. [Google Scholar] [CrossRef]
- Kubát, J.; Rigdahl, M.; Welander, M. Characterization of Interfacial Interactions in High Density Polyethylene Filled with Glass Spheres Using Dynamic-Mechanical Analysis. J. Appl. Polym. Sci. 1990, 39, 1527–1539. [Google Scholar] [CrossRef]
- Zhang, J.; Liu, G.; Zhu, C.; Pei, J. Evaluation indices of asphalt–filler interaction ability and the filler critical volume fraction based on the complex modulus. Road Mater. Pavement Des. 2016, 18, 1338–1352. [Google Scholar] [CrossRef]
- Tan, Y.; Li, X.; Wu, J. Internal Influence Factors of Asphalt-Aggregate Filler Interactions Based on Rheological Characteristics. J. Mater. Civ. Eng. 2012, 24, 1520–1528. [Google Scholar] [CrossRef]
- Liu, G.; Zhao, Y.; Zhou, J.; Li, J.; Yang, T.; Zhang, J. Applicability of evaluation indices for asphalt and filler interaction ability. Constr. Build. Mater. 2017, 148, 599–609. [Google Scholar] [CrossRef]
- Liu, G.; Jia, Y.; Pan, Y.; Yang, T.; Zhao, Y.; Zhang, J. Quantitative comparison of evaluation indices for asphalt–filler interaction ability within filler critical volume fraction. Road Mater. Pavement Des. 2018, 1–21. [Google Scholar] [CrossRef]
- Loeber, L.; Sutton, O.; Morel, J.; Valleton, J.-M.; Muller, G. New direct observations of asphalts and asphalt binders by scanning electron microscopy and atomic force microscopy. J. Microsc. 2003, 182, 32–39. [Google Scholar] [CrossRef]
- Tan, Y.; Guo, M. Micro-and Nano-Characteration of Interaction Between Asphalt and Filler. J. Test. Eval. 2014, 42, 20130253. [Google Scholar] [CrossRef]
- López-Moro, F.J.; Moro, M.C.; Hernández-Olivares, F.; Witoszek-Schultz, B.; Alonso-Fernández, M. Microscopic analysis of the interaction between crumb rubber and bitumen in asphalt mixtures using the dry process. Constr. Build. Mater. 2013, 48, 691–699. [Google Scholar] [CrossRef]
- Fischer, H.R.; Dillingh, E.C.; Hermse, C.G.M. On the interfacial interaction between bituminous binders and mineral surfaces as present in asphalt mixtures. Appl. Surf. Sci. 2013, 265, 495–499. [Google Scholar] [CrossRef]
- Nazzal, M.D.; Kaya, S.; Gunay, T.; Ahmedzade, P. Fundamental Characterization of Asphalt Clay Nanocomposites. J. Nanomechanics Micromechanics 2013, 3, 1–8. [Google Scholar] [CrossRef]
- Davis, C.; Castorena, C. Implications of physico–chemical interactions in asphalt mastics on asphalt microstructure. Constr. Build. Mater. 2015, 94, 83–89. [Google Scholar] [CrossRef]
- Li, Y.; Yang, J.; Tan, T. Study on adhesion between asphalt binders and aggregate minerals under ambient conditions using particle-modified atomic force microscope probes. Constr. Build. Mater. 2015, 101, 159–165. [Google Scholar] [CrossRef]
- Guo, M.; Tan, Y.; Yu, J.; Hou, Y.; Wang, L. A direct characterization of interfacial interaction between asphalt binder and mineral fillers by atomic force microscopy. Mater. Struct. 2017, 50. [Google Scholar] [CrossRef]
- Saha, R.; Malloy, K.; Bautista, E.; Sobolev, K. The investigation of fly ash based asphalt binders using atomic force microscope. Front. Struct. Civ. Eng. 2017, 11, 380–387. [Google Scholar] [CrossRef]
- Lv, X.; Fan, W.; Wang, J.; Liang, M.; Qian, C.; Luo, H.; Nan, G.; Yao, B.; Zhao, P. Study on adhesion of asphalt using AFM tip modified with mineral particles. Constr. Build. Mater. 2019, 207, 422–430. [Google Scholar] [CrossRef]
- Odler, I. The BET-specific surface area of hydrated Portland cement and related materials. Cem. Concr. Res. 2003, 33, 2049–2056. [Google Scholar] [CrossRef]
- Hall, C.A., Jr. Introduction to the Geology of Southern California and its Native Plants; University of California Press: Berkeley, CA, USA, 2007; p. 512. [Google Scholar]
- Allen, R.G.; Little, D.N.; Bhasin, A. Structural Characterization of Micromechanical Properties in Asphalt Using Atomic Force Microscopy. J. Mater. Civ. Eng. 2012, 24, 1317–1327. [Google Scholar] [CrossRef]
- Qiu, X.; Xiao, S.; Yang, Q.; Wang, Y.; Wang, F. Meso-scale analysis on shear failure characteristics of asphalt–aggregate interface. Mater. Struct. 2017, 50. [Google Scholar] [CrossRef]
- Cheng, Y.; Tao, J.; Jiao, Y.; Tan, G.; Guo, Q.; Wang, S.; Ni, P. Influence of the properties of filler on high and medium temperature performances of asphalt mastic. Constr. Build. Mater. 2016, 118, 268–275. [Google Scholar] [CrossRef]
- Vijayan, S.; Raju, R.; Rao, S.R.K. Multiobjective Optimization of Friction Stir Welding Process Parameters on Aluminum Alloy AA 5083 Using Taguchi-Based Grey Relation Analysis. Mater. Manuf. Process. 2010, 25, 1206–1212. [Google Scholar] [CrossRef]
- Lackner, R.; Spiegl, M.; Blab, R.; Eberhardsteiner, J. Is Low-Temperature Creep of Asphalt Mastic Independent of Filler Shape and Mineralogy—Arguments from Multiscale Analysis. J. Mater. Civ. Eng. 2005, 17, 485–491. [Google Scholar] [CrossRef] [Green Version]
- Lesueur, D.; Petit, J.; Ritter, H.-J. The mechanisms of hydrated lime modification of asphalt mixtures: A state-of-the-art review. Road Mater. Pavement Des. 2012, 14, 1–16. [Google Scholar] [CrossRef]
- Lesueur, D.; Lázaro Blázquez, M.; Andaluz Garcia, D.; Ruiz Rubio, A. On the impact of the filler on the complex modulus of asphalt mixtures. Road Mater. Pavement Des. 2017, 19, 1057–1071. [Google Scholar] [CrossRef]
- Zhou, S.; Liu, S.; Xiang, Y. Effects of Filler Characteristics on the Performance of Asphalt Mastic: A Statistical Analysis of the Laboratory Testing Results. Int. J. Civ. Eng. 2017, 16, 1175–1183. [Google Scholar] [CrossRef]
- Mazzoni, G.; Stimilli, A.; Canestrari, F. Self-healing capability and thixotropy of bituminous mastics. Int. J. Fatigue 2016, 92, 8–17. [Google Scholar] [CrossRef]
- Aburkaba, E.; Muniandy, R. Experimental Study of High Temperature Properties and Rheological Behavior of Ceramic Modified Asphalt. Aust. J. Basic Appl. Sci. 2016, 10, 150–161. [Google Scholar]
- Tan, Y.; Guo, M. Using surface free energy method to study the cohesion and adhesion of asphalt mastic. Constr. Build. Mater. 2013, 47, 254–260. [Google Scholar] [CrossRef]
- Masson, J.-F.; Polomark, G.M.; Collins, P. Time-Dependent Microstructure of Bitumen and Its Fractions by Modulated Differential Scanning Calorimetry. Energy Fuels 2002, 16, 470–476. [Google Scholar] [CrossRef] [Green Version]
- Allen, R.G.; Little, D.N.; Bhasin, A.; Lytton, R.L. Identification of the Composite Relaxation Modulus of Asphalt Binder Using AFM Nanoindentation. J. Mater. Civ. Eng. 2013, 25, 530–539. [Google Scholar] [CrossRef]
- Wu, S.; Pang, L.; Mo, L.; Chen, Y.; Zhu, G. Influence of aging on the evolution of structure, morphology and rheology of base and SBS modified bitumen. Constr. Build. Mater. 2009, 23, 1005–1010. [Google Scholar] [CrossRef]
- Pauli, A.T.; Grimes, R.W.; Beemer, A.G.; Turner, T.F.; Branthaver, J.F. Morphology of asphalts, asphalt fractions and model wax-doped asphalts studied by atomic force microscopy. Int. J. Pavement Eng. 2011, 12, 291–309. [Google Scholar] [CrossRef]
- Nahar, S.N.; Schmets, A.J.M.; Scarpas, A.; Schitter, G. Temperature and thermal history dependence of the microstructure in bituminous materials. Eur. Polym. J. 2013, 49, 1964–1974. [Google Scholar] [CrossRef]
- Yu, X.; Burnham, N.; Mallick, R.; Tao, M. A systematic AFM-based method to measure adhesion differences between micron-sized domains in asphalt binders. Fuel 2013, 113, 443–447. [Google Scholar] [CrossRef]
- Gong, M.; Yang, J.; Wei, J.; Pauli, T.; Yu, H. Quantitative characterisation of asphalt’s composition–microstructure relationship based on atomic force microscopy, differential scanning calorimetry, and Fourier transform infrared spectroscopy tests. Road Mater. Pavement Des. 2016, 18, 507–532. [Google Scholar] [CrossRef]
- Clopotel, C. Filler Reinforcement Mechanisms in Asphalt Mastics. Ph.D. Thesis, University of Wisconsin Madison, Madison, WI, USA, August 2012. [Google Scholar]
- Bhasin, A.; Little, D.N. Characterization of Aggregate Surface Energy Using the Universal Sorption Device. J. Mater. Civ. Eng. 2007, 19, 634–641. [Google Scholar] [CrossRef]
- Gong, M.; Yao, Z.; Xiong, Z.; Yang, J.; Hong, J. Investigation on the influences of moisture on asphalts’ micro properties by using atomic force microscopy and Fourier transform infrared spectroscopy. Constr. Build. Mater. 2018, 183, 171–179. [Google Scholar] [CrossRef]
- Li, R.; Wang, P.; Xue, B.; Pei, J. Experimental study on aging properties and modification mechanism of Trinidad lake asphalt modified bitumen. Constr. Build. Mater. 2015, 101, 878–883. [Google Scholar] [CrossRef]
- Kriz, P.; Stastna, J.; Zanzotto, L. Glass Transition and Phase Stability in Asphalt Binders. Road Mater. Pavement Des. 2008, 9, 37–65. [Google Scholar] [CrossRef]
Property | Unit | Result | Test Method |
---|---|---|---|
Penetration (100 g, 5 s, 25 °C) | 0.1 mm | 65.2 | ASTM D 5 |
Softening point | °C | 47.5 | ASTM D 36 |
Ductility (5 cm/min, 15 °C) | cm | 145.0 | ASTM D 113 |
Viscosity (135 °C) | Pa·s | 0.593 | ASTM D 4402 |
Property | Unit | Limestone | Diabase | Granite | Test Method |
---|---|---|---|---|---|
Apparent density | g/cm3 | 2.73 | 2.88 | 2.76 | T0352-2005 |
SiO2 mass fraction | % | 33.58 | 54.77 | 65.81 | - |
Specific surface area (SSA) | m2/g | 8.27 | 6.39 | 1.65 | T19587-2004 |
Mastic | F/A | Filler Volume Fraction (%) | Softening Point (°C) | Penetration at 25 °C (0.1 mm) | Ductility at 15 °C (cm) | Viscosity at 135 °C (Pa·s) |
---|---|---|---|---|---|---|
LAM | 0.8 | 23.2 | 56.2 | 34.4 | 6.9 | 1.54 |
1.0 | 27.4 | 57.8 | 32.9 | 5.1 | 2.03 | |
1.2 | 31.2 | 59.1 | 29.2 | 4.1 | 5.37 | |
DAM | 0.8 | 22.3 | 55.7 | 33.9 | 6.6 | 1.45 |
1.0 | 26.4 | 57.7 | 32.1 | 4.8 | 1.89 | |
1.2 | 30.0 | 60.1 | 29.8 | 4.0 | 2.88 | |
GAM | 0.8 | 23.0 | 55.3 | 32.8 | 13.6 | 1.24 |
1.0 | 27.2 | 57.5 | 30.5 | 5.9 | 1.31 | |
1.2 | 30.9 | 60.0 | 26.6 | 4.2 | 1.81 |
Mastic | Reference Sequences | Comparative Sequences | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
Rq (nm) | Height (nm) | Area | G* (MPa) | δ (°) | SiO2 (%) | F/A | SSA (m2/g) | |||
0.8 GAM | 3.64 | 39.8 | 1123 | 0.09 | 0.04 | 6.22 | 65.66 | 65.81 | 0.8 | 1.649 |
1.0 GAM | 2.57 | 27.8 | 987 | 0.20 | 0.10 | 6.47 | 64.62 | 65.81 | 1.0 | 1.649 |
1.2 GAM | 2.11 | 14.8 | 707 | 0.33 | 0.52 | 9.05 | 63.10 | 65.81 | 1.2 | 1.649 |
0.8 DAM | 4.96 | 47.2 | 1212 | 0.22 | 0.35 | 7.39 | 64.74 | 54.77 | 0.8 | 6.393 |
1.0 DAM | 2.70 | 35.1 | 1186 | 0.26 | 0.38 | 7.76 | 64.22 | 54.77 | 1.0 | 6.393 |
1.2 DAM | 2.30 | 24.4 | 778 | 0.54 | 0.68 | 10.01 | 61.30 | 54.77 | 1.2 | 6.393 |
0.8 LAM | 6.12 | 51.5 | 1425 | 0.47 | 0.56 | 8.39 | 62.93 | 33.58 | 0.8 | 8.274 |
1.0 LAM | 3.12 | 41.7 | 1280 | 0.68 | 0.71 | 9.64 | 60.99 | 33.58 | 1.0 | 8.274 |
1.2 LAM | 2.43 | 31.5 | 857 | 1.05 | 0.74 | 10.70 | 56.68 | 33.58 | 1.2 | 8.274 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, W.; Qiu, X.; Xiao, S.; Hong, H.; Wang, F.; Yuan, J. Characteristics and Mechanisms of Asphalt–Filler Interactions from a Multi-Scale Perspective. Materials 2020, 13, 2744. https://doi.org/10.3390/ma13122744
Xu W, Qiu X, Xiao S, Hong H, Wang F, Yuan J. Characteristics and Mechanisms of Asphalt–Filler Interactions from a Multi-Scale Perspective. Materials. 2020; 13(12):2744. https://doi.org/10.3390/ma13122744
Chicago/Turabian StyleXu, Wenyi, Xin Qiu, Shanglin Xiao, Haojue Hong, Feng Wang, and Jie Yuan. 2020. "Characteristics and Mechanisms of Asphalt–Filler Interactions from a Multi-Scale Perspective" Materials 13, no. 12: 2744. https://doi.org/10.3390/ma13122744
APA StyleXu, W., Qiu, X., Xiao, S., Hong, H., Wang, F., & Yuan, J. (2020). Characteristics and Mechanisms of Asphalt–Filler Interactions from a Multi-Scale Perspective. Materials, 13(12), 2744. https://doi.org/10.3390/ma13122744