Fabrication of PEDOT: PSS-PVP Nanofiber-Embedded Sb2Te3 Thermoelectric Films by Multi-Step Coating and Their Improved Thermoelectric Properties
Abstract
:1. Introduction
2. Experimental Section
2.1. Deposition of 100 nm Thick Sb2Te3 Thin Film by Sputtering
2.2. Coating of PEDOT:PSS-PVP Nanofiber Layer by Electrospinning
2.3. Electrodeposition of Sb2Te3(ED) Overlayer to Form the Composite Film
2.4. Characterization
2.5. Electrical and Thermoelectric MeasFurements
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Hatsuta:, N.; Takemori, D.; Takashiri, M. Effect of thermal annealing on the structural and thermoelectric properties of electrodeposited antimony telluride thin films. J. Alloy. Compd. 2016, 685, 147–152. [Google Scholar] [CrossRef] [Green Version]
- Kusagaya, K.; Takashiri, M. Investigation of the effects of compressive and tensile strain on n-type bismuth telluride and p-type antimony telluride nanocrystalline thin films for use in flexible thermoelectric generators. J. Alloy. Compd. 2015, 653, 480–485. [Google Scholar] [CrossRef]
- Jacobs-Gedrim, R.B.; Murphy, M.T.; Yang, F.; Jain, N.; Shanmugam, M.; Song, E.S.; Kandel, Y.; Hesamaddin, P.; Yu, H.Y.; Anantram, M. Reversible phase-change behavior in two-dimensional antimony telluride (Sb2Te3) nanosheets. Appl. Phys. Lett. 2018, 112, 133101. [Google Scholar] [CrossRef]
- Yan, X.; Zheng, W.; Liu, F.; Yang, S.; Wang, Z. Thickness effects for thermoelectric property of antimony telluride nanoplatelets via solvothermal method. Sci. Rep. 2016, 6, 37722. [Google Scholar] [CrossRef] [Green Version]
- Kim, J.; Zhang, M.; Bosze, W.; Park, S.-D.; Lim, J.-H.; Myung, N.V. Maximizing thermoelectric properties by nanoinclusion of γ-SbTe in Sb2Te3 film via solid-state phase transition from amorphous Sb–Te electrodeposits. Nano Energy 2015, 13, 727–734. [Google Scholar] [CrossRef]
- Shi, W.; Zhou, L.; Song, S.; Yang, J.; Zhang, H. Hydrothermal synthesis and thermoelectric transport properties of impurity-free antimony telluride hexagonal nanoplates. Adv. Mater. 2008, 20, 1892–1897. [Google Scholar] [CrossRef]
- Kim, J.; Jung, H.; Lim, J.-H.; Myung, N.V. Facile Control of Interfacial Energy-Barrier Scattering in Antimony Telluride Electrodeposits. J. Electron. Mater. 2017, 46, 2347–2355. [Google Scholar] [CrossRef]
- Yu, Z.; Ferrer-Argemi, L.; Lee, J. Temperature-dependent thermoelectric properties of electrodeposited antimony telluride films upon thermal annealing. In 2018 17th IEEE Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (ITherm); IEEE: Piscataway, NJ, USA, 2018; pp. 227–234. [Google Scholar]
- Park, N.-W.; Lee, W.-Y.; Hong, J.-E.; Park, T.-H.; Yoon, S.-G.; Im, H.; Kim, H.S.; Lee, S.-K. Effect of grain size on thermal transport in post-annealed antimony telluride thin films. Nanoscale Res. Lett. 2015, 10, 20. [Google Scholar] [CrossRef] [Green Version]
- Zhang, C.; Peng, Z.; Li, Z.; Yu, L.; Khor, K.A.; Xiong, Q. Controlled growth of bismuth antimony telluride BixSb2− xTe3 nanoplatelets and their bulk thermoelectric nanocomposites. Nano Energy 2015, 15, 688–696. [Google Scholar] [CrossRef]
- Hwang, J.; Kim, J.; Kim, H.; Kim, S.; Lee, K.H.; Kim, S.W. Effect of dislocation arrays at grain boundaries on electronic transport properties of bismuth antimony telluride: Unified strategy for high thermoelectric performance. Adv. Energy Mater. 2018, 8, 1800065. [Google Scholar] [CrossRef]
- Chiu, W.-T.; Chen, C.-L.; Chen, Y.-Y. A strategy to optimize the thermoelectric performance in a spark plasma sintering process. Sci. Rep. 2016, 6, 23143. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, L.; Zhang, Z.; Geng, L.; Yuan, T.; Liu, Y.; Guo, J.; Fang, L.; Qiu, J.; Wang, S. Solution-printable fullerene/TiS2 organic/inorganic hybrids for high-performance flexible n-type thermoelectrics. Energy Environ. Sci. 2018, 11, 1307–1317. [Google Scholar] [CrossRef]
- Cho, C.; Stevens, B.; Hsu, J.; Bureau, R.; Hagen, D.A.; Regev, O.; Yu, C.; Grunlan, J.C. Completely organic multilayer thin film with thermoelectric power factor rivaling inorganic tellurides. Adv. Mater. 2015, 27, 2996–3001. [Google Scholar] [CrossRef]
- Liang, Z.; Boland, M.J.; Butrouna, K.; Strachan, D.R.; Graham, K.R. Increased power factors of organic–inorganic nanocomposite thermoelectric materials and the role of energy filtering. J. Mater. Chem. A 2017, 5, 15891–15900. [Google Scholar] [CrossRef]
- Shin, S.; Roh, J.W.; Kim, H.-S.; Chen, R. Role of surfactant on thermoelectric behaviors of organic-inorganic composites. J. Appl. Phys. 2018, 123, 205106. [Google Scholar] [CrossRef]
- Xiong, J.; Jiang, F.; Shi, H.; Xu, J.; Liu, C.; Zhou, W.; Jiang, Q.; Zhu, Z.; Hu, Y. Liquid exfoliated graphene as dopant for improving the thermoelectric power factor of conductive PEDOT: PSS nanofilm with hydrazine treatment. ACS Appl. Mater. Interfaces 2015, 7, 14917–14925. [Google Scholar] [CrossRef] [PubMed]
- Song, H.; Cai, K. Preparation and properties of PEDOT: PSS/Te nanorod composite films for flexible thermoelectric power generator. Energy 2017, 125, 519–525. [Google Scholar] [CrossRef]
- Song, H.; Meng, Q.; Lu, Y.; Cai, K. Progress on PEDOT: PSS/Nanocrystal Thermoelectric Composites. Adv. Electron. Mater. 2019, 5, 1800822. [Google Scholar] [CrossRef]
- Wei, Q.; Mukaida, M.; Kirihara, K.; Naitoh, Y.; Ishida, T. Recent progress on PEDOT-based thermoelectric materials. Materials 2015, 8, 732–750. [Google Scholar] [CrossRef]
- Zheng, Y.; Zeng, H.; Qiang, Z.; Xu, J. Recent advances of conducting poly (3, 4-ethylenedioxythiophene) polystyrene sulfonate hybrids for thermoelectric applications. J. Mater. Chem. C 2018, 6, 8858–8873. [Google Scholar] [CrossRef]
- Park, G.O.; Roh, J.W.; Kim, J.; Lee, K.Y.; Jang, B.; Lee, K.H.; Lee, W. Enhanced thermoelectric properties of germanium powder/poly (3, 4-ethylenedioxythiophene): Poly (4-styrenesulfonate) composites. Thin Solid Film. 2014, 566, 14–18. [Google Scholar] [CrossRef]
- He, M.; Ge, J.; Lin, Z.; Feng, X.; Wang, X.; Lu, H.; Yang, Y.; Qiu, F. Thermopower enhancement in conducting polymer nanocomposites via carrier energy scattering at the organic–inorganic semiconductor interface. Energy Environ. Sci. 2012, 5, 8351–8358. [Google Scholar] [CrossRef]
- Chen, J.; Wang, L.; Ren, D.; Chu, Y.; Wu, Y.; Meng, K.; Miao, J.; Xu, X.; Jiang, Y. Revealing the anisotropy in thermoelectric transport performances in CNT/PANI composites. Synth. Met. 2018, 239, 13–21. [Google Scholar] [CrossRef]
- Bae, E.J.; Kang, Y.H.; Jang, K.-S.; Cho, S.Y. Enhancement of thermoelectric properties of PEDOT: PSS and tellurium-PEDOT: PSS hybrid composites by simple chemical treatment. Sci. Rep. 2016, 6, 18805. [Google Scholar] [PubMed] [Green Version]
- Jiang, F.; Xiong, J.; Zhou, W.; Liu, C.; Wang, L.; Zhao, F.; Liu, H.; Xu, J. Use of organic solvent-assisted exfoliated MoS 2 for optimizing the thermoelectric performance of flexible PEDOT: PSS thin films. J. Mater. Chem. A 2016, 4, 5265–5273. [Google Scholar] [CrossRef]
- Du, F.-P.; Cao, N.-N.; Zhang, Y.-F.; Fu, P.; Wu, Y.-G.; Lin, Z.-D.; Shi, R.; Amini, A.; Cheng, C. PEDOT: PSS/graphene quantum dots films with enhanced thermoelectric properties via strong interfacial interaction and phase separation. Sci. Rep. 2018, 8, 6441. [Google Scholar] [CrossRef] [Green Version]
- Ju, H.; Kim, J. Chemically exfoliated SnSe nanosheets and their SnSe/poly (3, 4-ethylenedioxythiophene): Poly (styrenesulfonate) composite films for polymer based thermoelectric applications. ACS Nano 2016, 10, 5730–5739. [Google Scholar] [CrossRef]
- Son, W.; Lee, S.H.; Park, H.; Choi, H.H.; Kim, J.H. Thermoelectric Behavior of Conducting Polymers Hybridized with Inorganic Nanoparticles. J. Electron. Mater. 2016, 45, 2935–2942. [Google Scholar] [CrossRef]
- Cheng, X.; Wang, L.; Wang, X.; Chen, G. Flexible films of poly (3, 4-ethylenedioxythiophene): Poly (styrenesulfonate)/SnS nanobelt thermoelectric composites. Compos. Sci. Technol. 2018, 155, 247–251. [Google Scholar] [CrossRef]
- Mao, J.; Liu, Z.; Ren, Z. Size effect in thermoelectric materials. Npj Quantum Mater. 2016, 1, 16028. [Google Scholar] [CrossRef]
- Petraki, F.; Kennou, S.; Nespurek, S. A spectroscopic study of the interface of nickel phthalocyanine with a PEDOT: PSS film. J. Nanostruct. Polym. Nanocompos. 2017, 3, 136–143. [Google Scholar]
- Liu, Y.; Zhao, Y.; Xu, S.; Cao, S. Enhanced electroluminescent efficiency with ionic liquid doped into PEDOT: PSS hole-injecting layer. Polymer 2015, 77, 42–47. [Google Scholar] [CrossRef]
- Suhaimi, H.; Khir, M.; Leo, C.; Ahmad, A. Preparation and characterization of polysulfone mixed-matrix membrane incorporated with palladium nanoparticles dispersed in polyvinylpyrrolidone for hydrogen separation. J. Polym. Res. 2014, 21, 428. [Google Scholar] [CrossRef]
- Wang, X.; Ge, M.; Feng, G. The effects of DMSO on structure and properties of PVA/PEDOT: PSS blended fiber. Fibers Polym. 2015, 16, 2578–2585. [Google Scholar] [CrossRef]
- Ladhe, R.; Gurav, K.; Pawar, S.; Kim, J.; Sankapal, B. p-PEDOT: PSS as a heterojunction partner with n-ZnO for detection of LPG at room temperature. J. Alloy. Compd. 2012, 515, 80–85. [Google Scholar] [CrossRef]
- Shi, D.; Wang, R.; Wang, G.; Li, C.; Shen, X.; Nie, Q. Enhanced thermoelectric properties in Cu-doped Sb2Te3 films. Vacuum 2017, 145, 347–350. [Google Scholar] [CrossRef]
- Sabarinathan, M.; Omprakash, M.; Harish, S.; Navaneethan, M.; Archana, J.; Ponnusamy, S.; Ikeda, H.; Takeuchi, T.; Muthamizhchelvan, C.; Hayakawa, Y. Enhancement of power factor by energy filtering effect in hierarchical BiSbTe3 nanostructures for thermoelectric applications. Appl. Surf. Sci. 2017, 418, 246–251. [Google Scholar] [CrossRef]
- Morikawa, S.; Inamoto, T.; Takashiri, M. Thermoelectric properties of nanocrystalline Sb2Te3 thin films: Experimental evaluation and first-principles calculation, addressing effect of crystal grain size. Nanotechnology 2018, 29, 075701. [Google Scholar] [CrossRef] [PubMed]
- Klein, A.; Körber, C.; Wachau, A.; Säuberlich, F.; Gassenbauer, Y.; Harvey, S.P.; Proffit, D.E.; Mason, T.O. Transparent conducting oxides for photovoltaics: Manipulation of fermi level, work function and energy band alignment. Materials 2010, 3, 4892–4914. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, Z.; Zhang, H.; Wu, Y.; Zeng, Z.; Hu, Z. Optimization of the thermopower of antimony telluride thin film by introducing tellurium nanoparticles. Appl. Phys. A 2015, 118, 1043–1051. [Google Scholar] [CrossRef]
Reference Sb2Te3/Sb2Te3(ED) | Sb2Te3/PEDOT:PSS-PVP/Sb2Te3(ED) | |||||
---|---|---|---|---|---|---|
w/o Annealing | Annealed at 373 K | Annealed at 473 K | w/o Annealing | Annealed at 373 K | Annealed at 473 K | |
σ (S/cm) | 18.7 | 82.7 | 186 | 21.3 | 135 | 318 |
S (μV/K) | 160 | 134 | 128 | 164 | 121 | 114 |
Power factor (μW/mK2) | 47.6 | 149 | 304 | 57.1 | 198 | 410 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, S.-i.; Lee, K.Y.; Lim, J.-H. Fabrication of PEDOT: PSS-PVP Nanofiber-Embedded Sb2Te3 Thermoelectric Films by Multi-Step Coating and Their Improved Thermoelectric Properties. Materials 2020, 13, 2835. https://doi.org/10.3390/ma13122835
Kim S-i, Lee KY, Lim J-H. Fabrication of PEDOT: PSS-PVP Nanofiber-Embedded Sb2Te3 Thermoelectric Films by Multi-Step Coating and Their Improved Thermoelectric Properties. Materials. 2020; 13(12):2835. https://doi.org/10.3390/ma13122835
Chicago/Turabian StyleKim, Sang-il, Kang Yeol Lee, and Jae-Hong Lim. 2020. "Fabrication of PEDOT: PSS-PVP Nanofiber-Embedded Sb2Te3 Thermoelectric Films by Multi-Step Coating and Their Improved Thermoelectric Properties" Materials 13, no. 12: 2835. https://doi.org/10.3390/ma13122835
APA StyleKim, S. -i., Lee, K. Y., & Lim, J. -H. (2020). Fabrication of PEDOT: PSS-PVP Nanofiber-Embedded Sb2Te3 Thermoelectric Films by Multi-Step Coating and Their Improved Thermoelectric Properties. Materials, 13(12), 2835. https://doi.org/10.3390/ma13122835