Metallurgical Characterization of Penetration Shape Change in Workpiece Vibration-Assisted Tandem-Pulsed Gas Metal Arc Welding
Abstract
:1. Introduction
2. Experimental Procedure
3. Results and Discussion
3.1. Vibration-Assisted Penetration Shape Change
3.2. Variation in Penetration Shape with Welding and Sine Vibration Parameters
3.3. Vibration Mode Dependence on Penetration Shape Change
3.4. Workpiece Vibration-Assisted Change in the Interaction between Two Molten Liquid Groups
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Jose, M.J.; Kumar, S.S.; Sharma, A. Vibration assisted welding processes and their influence on quality of welds. Sci. Technol. Weld. Join. 2016, 21, 243–258. [Google Scholar] [CrossRef]
- Xu, M.G.; Zhang, J.H.; Li, Y.; Zhang, Q.H.; Ren, S.F. Material removal mechanisms of cemented carbides machined by ultrasonic vibration assisted EDM in gas medium. J. Mater. Process. Technol. 2009, 209, 1742–1746. [Google Scholar] [CrossRef]
- Prihandana, G.S.; Mahardika, M.; Hamdi, M.; Wong, Y.S.; Mitsui, K. Effect of micro-powder suspension and ultrasonic vibration of dielectric fluid in micro-EDM processes-Taguchi approach. Int. J. Mach. Tools Manuf. 2009, 49, 1035–1041. [Google Scholar] [CrossRef]
- Shi, L.; Wu, C.S.; Sun, Z. An integrated model for analysing the effects of ultrasonic vibration on tool torque and thermal processes in friction stir welding. Sci. Technol. Weld. Join. 2018, 23, 65–379. [Google Scholar] [CrossRef]
- Zhang, C.; Wu, C.S.; Tian, S. Effect of ultrasonic vibration on current density and keyholing capability of plasma arc. Sci. Technol. Weld. Join. 2020, 25, 422–430. [Google Scholar] [CrossRef]
- Chen, C.; Lin, S.; Fan, C.; Yang, C.; Zhou, L. Feasibility analysis of pulsed ultrasonic for controlling the GMAW process and weld appearance. Int. J. Adv. Manuf. Technol. 2018, 97, 3619–3624. [Google Scholar] [CrossRef]
- T., H.; Nguyen, D.T.; Banh, T.L.; Tong, V.C. Experimental study on the chip morphology, tool–chip contact length, workpiece vibration, and surface roughness during high-speed face milling of A6061 aluminum alloy. Proc. Inst. Mech. Eng. B J. Eng. Manuf. 2020, 234, 610–620. [Google Scholar] [CrossRef]
- Rao, K.V.; Vidhu, K.P.; Kumar, T.A.; Rao, N.N.; Murthy, P.B.G.S.N.; Balaji, M. An artificial neural network approach to investigate surface roughness and vibration of workpiece in boring of AISI1040 steels. Int. J. Adv. Manuf. 2016, 83, 919–927. [Google Scholar] [CrossRef]
- Ingram, E.; Golan, O.; Haj-Ali, R.; Eliaz, N. The Effect of Localized Vibration during Welding on the Microstructure and Mechanical Behavior of Steel Welds. Materials (Basel) 2019, 12, 2553. [Google Scholar] [CrossRef] [Green Version]
- Li, X.; Bai, D.; Wang, Y.; Liu, F.; Zhang, H.; Liu, S. High-nitrogen steel laser-arc hybrid welding in vibration condition. Mater. Sci. Technol. 2020, 36, 434–442. [Google Scholar] [CrossRef]
- Maruo, H.; Hirata, Y. Study on pulsed TIG arc welding. Technol. Rep. Osaka Univ. 1987, 37, 51–63. [Google Scholar]
- Xiao, Y.H.; den Ouden, G.; Den Ouden, G. A Study of GTA Weld Pool Oscillation. Weld. J. 1990, 289-s–293-s. [Google Scholar]
- Xiao, Y.; Ouden, G. Den Weld Pool Oscillation during GTA Welding of Mild Steel. Weld. J. 1993, 428s–434s. [Google Scholar]
- Hermans, M.J.M.; Yudodibroto, B.Y.B.; Hirata, Y.; den Ouden, G.; Richardson, I.M. The Oscillation Behaviour of Liquid Metal in Arc Welding. Mater. Sci. Forum 2007, 539–543, 3877–3882. [Google Scholar] [CrossRef]
- Renwick, R.J.; Richardson, R.W. Experimental investigation of GTA weld pool oscillations. Weld. Res. Suppl. Weld. J. 1983, 62, 29s–35s. [Google Scholar]
- Hu, J.; Guo, H.; Tsai, H.L. Weld pool dynamics and the formation of ripples in 3D gas metal arc welding. Int. J. Heat Mass Transf. 2008, 51, 2537–2552. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.M.; Liguo, E.; Kovacevic, R. Active Metal Transfer Control by Monitoring Excited Droplet Oscillation. Weld. J. 1998, 388–395. [Google Scholar]
- Yudodibroto, B.Y.B. Liquid Metal Oscillation and Arc Behaviour during Welding. Ph.D. Thesis, Delft University of Technology, Delft, The Netherlands, 2010. [Google Scholar]
- Fan, H.G.; Kovacevic, R. Droplet formation, detachment, and impingement on the molten pool in gas metal arc welding. Metall. Mater. Trans. B Process Metall. Mater. Process. Sci. 1999, 30, 791–801. [Google Scholar] [CrossRef]
- Tsai, H.L.; Wang, P.C. A comprehensive model on the transport phenomena during gas metal arc welding process. Prog. Comput. Fluid Dyn. Int. J. 2004. [Google Scholar] [CrossRef]
- Sorensen, C.D.; Eagar, T.W. Modeling of Oscillations in Partially Penetrated Weld Pools. J. Dyn. Syst. Meas. Control 1990, 112, 469. [Google Scholar] [CrossRef]
- Maruo, H.; Hirata, Y. Natural frequency and oscillation modes of weld pools. 1st report: Weld pool oscillation in full penetration welding of thin plate. Weld. Int. 1993, 7, 614–619. [Google Scholar] [CrossRef]
- Choong, B.; Yoo, D.; Richardson, W. Modeling of Weld using Energy Method. Q. J. Jpn. Weld. Soc. 1994, 12, 30–38. [Google Scholar]
- Andersen, K.; Cook, G.E. Synchronous weld pool oscillation for monitoring and control. IEEE Trans. Ind. Appl. 1997, 33, 464–471. [Google Scholar] [CrossRef]
- Matsui, H.; Chiba, T.; Yamazaki, K. Detection and amplification of the molten pool natural oscillation in consumable electrode arc welding. Weld. Int. 2013, 28, 5–12. [Google Scholar] [CrossRef]
- Moinuddin, S.Q.; Sharma, A. Melting Efficiency in Anti-Phase Synchronized Twin-wire Gas Metal Arc Welding. In Proceedings of the 10th International Conference on Trends in Welding Research and 9th International Symposium Japan Welding Society (JWS), Tokyo, Japan, 11–14 October 2016; pp. 562–565. [Google Scholar]
- Moinuddin, S.Q.; Sharma, A. Arc stability and its impact on weld properties and microstructure in anti-phase synchronised synergic-pulsed twin-wire gas metal arc welding. Mater. Des. 2015, 67, 293–302. [Google Scholar] [CrossRef]
- Moinuddin, S.Q.; Kapil, A.; Kohama, K.; Sharma, A.; Ito, K.; Tanaka, M. On process–structure–property interconnection in anti-phase synchronised twin-wire GMAW of low carbon steel. Sci. Technol. Weld. Join. 2016, 21, 452–459. [Google Scholar] [CrossRef]
- Sharma, A.; Arora, N.; Gupta, S.R. Investigation into Arc Behavior during Twin-Wire Submerged Arc Welding. Mater. Manuf. Process. 2010, 25, 873–879. [Google Scholar] [CrossRef]
- Mohanty, U.K.; Abe, Y.; Fujimoto, T.; Nakatani, M.; Kitagawa, A.; Tanaka, M.; Suga, T.; Sharma, A. Performance Evaluation of Alternating Current Square Waveform Submerged Arc Welding as a Candidate for Fabrication of Thick Welds in 2.25Cr-1Mo Heat-Resistant Steel. J. Press. Vessel Technol. 2020, 142. [Google Scholar] [CrossRef]
- Zargari, H.H.; Ito, K.; Mikami, Y.; Sharma, A. A unique CEL numerical method on material flow in a molten pool of workpiece vibration assisted welding. Q. J. Jpn. Weld. Soc. 2020, 54–58. [Google Scholar]
- Kiuchi, M.; Kopp, R. Mushy/semi-solid metal forming technology—Present and future. Cirp Ann. Manuf. Technol. 2002, 51, 653–670. [Google Scholar] [CrossRef]
- Rassili, A.; Atkinson, H.V. A review on steel thixoforming. Trans. Nonferrous Met. Soc. Chinaenglish Ed. 2010, 20, s1048–s1054. [Google Scholar] [CrossRef] [Green Version]
C | Si | Mn | P | S | Fe | |
---|---|---|---|---|---|---|
IS2062-2011 | 0.211 | 0.206 | 0.71 | 0.015 | 0.018 | Bal. |
ER70S-6 | 0.07–0.15 | 0.80–1.15 | <1.85 | <0.025 | <0.035 | Bal. |
Sample | S (m/min) | F (Hz) | G (m/s2) | T (s) |
---|---|---|---|---|
a | 1.2 | 250 | 1.2 | 0 * |
b | 2.0 | 30 | ||
c | 450 | 1.2 | ||
d | 0.8 | 250 | ||
e | 1.2 | |||
f | 1.6 | |||
g | 1.2 | 50 | ||
h | 250 | 0.4 | ||
i | 1.2 | 60 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hamed Zargari, H.; Ito, K.; Miwa, T.; Parchuri, P.K.; Yamamoto, H.; Sharma, A. Metallurgical Characterization of Penetration Shape Change in Workpiece Vibration-Assisted Tandem-Pulsed Gas Metal Arc Welding. Materials 2020, 13, 3096. https://doi.org/10.3390/ma13143096
Hamed Zargari H, Ito K, Miwa T, Parchuri PK, Yamamoto H, Sharma A. Metallurgical Characterization of Penetration Shape Change in Workpiece Vibration-Assisted Tandem-Pulsed Gas Metal Arc Welding. Materials. 2020; 13(14):3096. https://doi.org/10.3390/ma13143096
Chicago/Turabian StyleHamed Zargari, Habib, Kazuhiro Ito, Tsuyoshi Miwa, Pradeep Kumar Parchuri, Hajime Yamamoto, and Abhay Sharma. 2020. "Metallurgical Characterization of Penetration Shape Change in Workpiece Vibration-Assisted Tandem-Pulsed Gas Metal Arc Welding" Materials 13, no. 14: 3096. https://doi.org/10.3390/ma13143096
APA StyleHamed Zargari, H., Ito, K., Miwa, T., Parchuri, P. K., Yamamoto, H., & Sharma, A. (2020). Metallurgical Characterization of Penetration Shape Change in Workpiece Vibration-Assisted Tandem-Pulsed Gas Metal Arc Welding. Materials, 13(14), 3096. https://doi.org/10.3390/ma13143096