Effect of Corrosion and Surface Finishing on Fatigue Behavior of Friction Stir Welded EN AW-5754 Aluminum Alloy Using Various Tool Configurations
Abstract
:1. Introduction
2. Experimental Procedure
3. Results and Discussion
3.1. Surface Finishing Process
3.1.1. Fatigue Properties
3.1.2. Hardness Measurements
3.2. Corrosion Tests
3.2.1. Corrosion Characteristics and Morphology
3.2.2. Fatigue Properties
3.3. Fractography
3.4. Outlook
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Lia, S.; Khanb, H.; Hiharaa, L.H.; Lib, J. Marine atmospheric corrosion of Al-Mg joints by friction stir blind riveting. Corros. Sci. 2016, 111, 793–801. [Google Scholar] [CrossRef] [Green Version]
- Gutensohn, M.; Wagner, G.; Walther, F.; Eifler, D. The fatigue behaviour of friction stir welded aluminium joints. Weld. World 2008, 52, 69–74. [Google Scholar] [CrossRef]
- Thomas, W.M.; Nicholas, E.D. Friction stir welding for the transportation industries. Mater. Des. 1997, 18, 269–273. [Google Scholar] [CrossRef]
- Thomas, W.M.; Nicholas, E.D.; Needham, J.C.; Murch, M.G.; Templesmith, P.; Dawes, C.J. Improvements Relating to Friction. Welding. Patent WO 9310935, 10 June 1992. [Google Scholar]
- Gibson, B.T.; Lammlein, D.H.; Prater, T.J.; Longhurst, W.R.; Cox, C.D.; Ballun, M.C.; Dharmaraj, K.J.; Cook, G.E.; Strauss, A.M. Friction stir welding: Process, automation, and control. J. Manuf. Process. 2014, 16, 56–73. [Google Scholar] [CrossRef]
- Shahri, M.M. Fatigue Assessment of Friction Stir Welded Joints in Aluminum Profiles. Ph.D. Thesis, Royal Institute of Technology (KTH), Stockholm, Sweden, 2012. [Google Scholar]
- Harms, A. Konduktiv unterstütztes Rührreibschweißen. Ph.D. Thesis, RWTH Aachen, Aachen, Germany, 2014. [Google Scholar]
- Weigl, M.; Grätzel, M.; Bergmann, J.P. Stationary shoulder tools for long-term loading under industrial conditions. In Proceedings of the International Symposium on Friction Stir Welding, Chicoutimi, QU, Canada, 26–29 June 2018. [Google Scholar]
- Threadgill, P.L.; Leonard, A.J.; Shercliff, H.R.; Withers, P.J. Friction stir welding of aluminium alloys. Int. Mater. Rev. 2009, 54, 49–93. [Google Scholar] [CrossRef]
- Wang, F.F.; Li, W.Y.; Shen, J.; Wen, Q.; Dos Santos, J.F. Improving weld formability by a novel dual-rotation bobbin tool friction stir welding. J. Mater. Sci. Technol. 2018, 34, 135–139. [Google Scholar] [CrossRef]
- Hou, W.; Shen, Y.; Huang, G.; Yan, Y.; Guo, C.; Li, J. Dissimilar friction stir welding of aluminum alloys adopting a novel dual-pin tool: Microstructure evolution and mechanical properties. J. Manuf. Process. 2018, 36, 613–620. [Google Scholar] [CrossRef]
- Walther, F. Microstructure-oriented fatigue assessment of construction materials and joints using short-time load increase procedure. Mater. Test. 2014, 56, 519–527. [Google Scholar] [CrossRef]
- Walther, F.; Eifler, W. Cyclic deformation behavior of steels and light-metal alloys. Mater. Sci. Eng. A 2007, 468, 259–266. [Google Scholar] [CrossRef]
- Gutensohn, M.; Wagner, G.; Walther, F.; Eifler, D. Charakterisierung quasistatischer und zyklischer Eigenschaften rührreibgeschweißter AlMg3Mn-Verbunde. In Tagung Werkstoffprüfung 2007; TU Kaiserslautern: Kaiserslautern, Germany, 2007. [Google Scholar]
- Sinhmar, S.; Dwivedi, D.K. Effect of weld thermal cycle on metallurgical and corrosion behavior of friction stir weld joint of AA2014 aluminium alloy. J. Manuf. Process. 2019, 37, 305–320. [Google Scholar] [CrossRef]
- Bousquet, E.; Poulon-Quintin, A.; Puiggali, M.; Devos, O.; Touzet, M. Relationship between microstructure, microhardness and corrosion sensitivity of an AA 2024-T3 friction stir welded joint. Corros. Sci. 2011, 53, 3026–3034. [Google Scholar] [CrossRef]
- Li, S. Marine atmospheric corrosion initiation and corrosion products characterization. In Mechanical Engineering; University of Hawai’I at Manoa: Honolulu, HI, USA, 2010; p. 205. [Google Scholar]
- Li, S.; Hihara, L.H. Aerosol salt particle deposition on metals exposed to marine environments: A study related to marine atmospheric corrosion. J. Electrochem. Soc. 2014, 161, 268–275. [Google Scholar] [CrossRef]
- Haghshenas, M.; Abdel-Gwad, A.; Omran, A.M.; Gökçe, B.; Sahraeinejad, S.; Gerlich, A.P. Friction stir weld assisted diffusion bonding of 5754 aluminum alloy to coated high strength steels. Mater. Des. 2014, 55, 442–449. [Google Scholar] [CrossRef]
- Mindivan, F.; Kaya, H.; Özer, M.; Uçar, M.; Samur, R. Investigation of corrosion behavior of the AA5754 aluminum alloy joined using friction stir welding method. CBU J. Sci. 2015, 11, 413–422. [Google Scholar] [CrossRef]
- Badarinarayan, H.; Shi, Y.; Li, X.; Okamoto, K. Effect of tool geometry on hook formation and static strength of friction stir spot welded aluminum 5754-O sheets. Int. J. Mach. Tools Manuf. 2009, 49, 814–823. [Google Scholar] [CrossRef]
- Halambek, J.; Berković, K.; Vorkapić-Furač, J.; Laurus Nobilis, L. Oil as green corrosion inhibitor for aluminium and AA5754 aluminium alloy in 3% NaCl solution. Mater. Chem. Phys. 2013, 137, 788–795. [Google Scholar] [CrossRef]
- Zaid, B.; Saidi, D.; Benzaid, A.; Hadji, S. Effects of pH and chloride concentration on pitting corrosion of AA6061 aluminum alloy. Corros. Sci. 2008, 50, 1841–1847. [Google Scholar] [CrossRef]
- Gutensohn, M.; Wagner, G.; Walther, F.; Eifler, D. Cyclic deformation behavior of friction stir welded (FSW) aluminum joints. In Proceedings of the 11th International Conference on Aluminium Alloys, Aachen, Germany, 22–26 September 2008. [Google Scholar]
- Rohlin, S.I.; Kim, J.Y.; Nagy, H.; Zoofan, B. Effect of pitting corrosion on fatigue crack initiation and fatigue life. Eng. Fract. Mech. 1999, 62, 425–444. [Google Scholar] [CrossRef]
- Chlistovsky, R.M.; Heffeman, P.J.; Duquesnay, D.L. Corrosion-fatigue behaviour of 7075-T651 aluminum alloy subjected to periodic overloads. Int. J. Fatigue 2007, 29, 1941–1949. [Google Scholar] [CrossRef]
- Crawford, B.R.; Loader, C.; Liu, Q.; Harrison, T.J.; Sharp, P.K. Can pitting corrosion change the location of fatigue failures in aircraft. Int. J. Fatigue 2014, 61, 304–314. [Google Scholar] [CrossRef]
- Hall, M.M., Jr. Effect of cyclic crack opening displacement rate on corrosion fatigue crack velocity and fracture mode transitions for Al−Zn−Mg−Cu alloys. Corros. Sci. 2014, 81, 132–143. [Google Scholar] [CrossRef]
- Chemin, A.E.A.; Saconi, F.; Filho, W.W.B.; Spinelli, D.; Ruchert, C.O.F.T. Effect of saline corrosion environment on fatigue crack growth of 7475-T7351 aluminum alloy under TWIST flight loading. Eng. Fract. Mech. 2015, 141, 274–290. [Google Scholar] [CrossRef]
- Genel, K. Environmental effect on the fatigue performance of bare and oxide coated 7075-T6 alloy. Eng. Fail. Anal. 2013, 32, 248–260. [Google Scholar] [CrossRef]
- Lei, W.; Li, H.; Song, Z.; Liang, X.; Bo, H. Effect of corrosive environment on fatigue property and crack propagation behavior of Al 2024 friction stir weld. Met. Soc. China 2016, 26, 2830–2837. [Google Scholar]
- Pedemonte, M.; Gambaro, C.; Lertora, C.; Mandolfino, C. Fatigue assessment of AA 8090 friction stir butt welds after surface finishing treatment. Aerosp. Sci. Technol. 2013, 27, 188–192. [Google Scholar] [CrossRef]
- Koch, A.; Henkel, T.; Walther, F. Characterization of the anisotropy of extruded profiles based on recycled AW6060 aluminum. In Proceedings of the 3rd International Conference on Structural Integrity and Durability, Dubrovnik, Croatia, 4–7 June 2019. [Google Scholar]
- Sun, T.; Roy, M.J.; Strong, D.; Withers, P.J.; Prangnell, P.B. Comparison of residual stress distributions in conventional and stationary shoulder high-strength aluminum alloy friction stir welds. J. Mater. Process. Technol. 2017, 242, 92–100. [Google Scholar] [CrossRef] [Green Version]
- Ni, D.R.; Chen, D.L.; Xiao, B.L.; Wang, D.; Ma, Z.Y. Residual stresses and high cycle fatigue properties of friction stir welded SiCp/AA2009 composites. Int. J. Fatigue 2013, 55, 64–73. [Google Scholar] [CrossRef]
- Bussu, G.; Irving, P.E. The role of residual stress and heat affected zone properties on fatigue crack propagation in friction stir welded 2024-T351 aluminium joints. Int. J. Fatigue 2003, 25, 77–88. [Google Scholar] [CrossRef]
- Salih, O.S.; Ou, H.; Sun, W.; McCartney, D.G. A review of friction stir welding of aluminium matrix composites. Mater. Des. 2015, 86, 61–71. [Google Scholar] [CrossRef]
- Ren, D.; Zeng, F.; Liu, Y.; Liu, L.; He, Z. Friction stir welding of 5754 aluminum alloy with cover sheet. Materials 2019, 12, 1765. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.; Sun, D.; Gong, W. Effect of tool rotational speed on the microstructure and mechanical properties of bobbin tool friction stir welded 6082-T6 aluminum alloy. Metals 2019, 9, 894. [Google Scholar] [CrossRef] [Green Version]
- Chowdhury, S.H.; Chen, D.L.; Bhole, S.D.; Cao, X.; Wanjara, P. Lap shear strength and fatigue life of friction stir spot welded AZ31 magnesium and 5754 aluminum alloys. Mater. Sci. Eng. A 2012, 556, 500–509. [Google Scholar] [CrossRef]
- Costa, M.I.; Verdera, D.; Leitão, C.; Rodrigues, D.M. Dissimilar friction stir lap welding of AA 5754-H22/AA 6082-T6 aluminium alloys: Influence of material properties and tool geometry on weld strength. Mater. Des. 2015, 87, 721–731. [Google Scholar] [CrossRef]
Element | Si | Fe | Cu | Mn | Mg | Cr | Zn | Ti | Al |
---|---|---|---|---|---|---|---|---|---|
in % | 0.4 | 0.4 | 0.1 | 0.5 | 2.6–3.6 | 0.3 | 0.2 | 0.15 | Bal. |
Step | Duration h | Temperature °C | Condition |
---|---|---|---|
1 | 24 | 35 ± 2 | Salt spray |
2 | 8 | 40 ± 2 | 100% relative air humidity |
3 | 16 | 23 ± 2 | 50% ± 20% relative air humidity |
4 | 8 | 40 ± 2 | 100% relative air humidity |
5 | 16 | 23 ± 2 | 50% ± 20% relative air humidity |
6 | 8 | 40 ± 2 | 100% relative air humidity |
7 | 16 | 23 ± 2 | 50% ± 20% relative air humidity |
8 | 8 | 40 ± 2 | 100% relative air humidity |
9 | 16 | 23 ± 2 | 50% ± 20% relative air humidity |
10 | 48 | 23 ± 2 | 50% ± 20% relative air humidity |
Corrosion Test | Av. Initial Weight g | Av. Final Weight g | Weight Loss % |
---|---|---|---|
Cyclic climate change test | 25.07 | 25.01 | 0.25 |
Salt spray test | 25.09 | 24.99 | 0.41 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Baqerzadeh Chehreh, A.; Grätzel, M.; Bergmann, J.P.; Walther, F. Effect of Corrosion and Surface Finishing on Fatigue Behavior of Friction Stir Welded EN AW-5754 Aluminum Alloy Using Various Tool Configurations. Materials 2020, 13, 3121. https://doi.org/10.3390/ma13143121
Baqerzadeh Chehreh A, Grätzel M, Bergmann JP, Walther F. Effect of Corrosion and Surface Finishing on Fatigue Behavior of Friction Stir Welded EN AW-5754 Aluminum Alloy Using Various Tool Configurations. Materials. 2020; 13(14):3121. https://doi.org/10.3390/ma13143121
Chicago/Turabian StyleBaqerzadeh Chehreh, Abootorab, Michael Grätzel, Jean Pierre Bergmann, and Frank Walther. 2020. "Effect of Corrosion and Surface Finishing on Fatigue Behavior of Friction Stir Welded EN AW-5754 Aluminum Alloy Using Various Tool Configurations" Materials 13, no. 14: 3121. https://doi.org/10.3390/ma13143121
APA StyleBaqerzadeh Chehreh, A., Grätzel, M., Bergmann, J. P., & Walther, F. (2020). Effect of Corrosion and Surface Finishing on Fatigue Behavior of Friction Stir Welded EN AW-5754 Aluminum Alloy Using Various Tool Configurations. Materials, 13(14), 3121. https://doi.org/10.3390/ma13143121