Cr2P2O7 as a Novel Anode Material for Sodium and Lithium Storage
Abstract
:1. Introduction:
2. Experimental Section
2.1. Synthesis of Cr2P2O7 and Cr2P2O7@C
2.2. Material Characterization
2.3. Electrochemical Measurements
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Dresselhaus, M.S.; Thomas, I.L. Alternative energy technologies. Nature 2001, 414, 332. [Google Scholar] [CrossRef] [PubMed]
- Dunn, B.; Kamath, H.; Tarascon, J.-M. Electrical energy storage for the grid: A battery of choices. Science 2011, 334, 928. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tarascon, J.M.; Armand, M. Issues and challenges facing rechargeable lithium batteries. Nature 2001, 414, 359. [Google Scholar] [CrossRef] [PubMed]
- Slater, M.D.; Kim, D.; Lee, E.; Johnson, C.S. Sodium-ion batteries. Adv. Funct. Mater. 2013, 23, 947. [Google Scholar] [CrossRef]
- Hwang, J.-Y.; Myung, S.-T.; Sun, Y.-K. Sodium-ion batteries: Present and future. Chem. Soc. Rev. 2017, 46, 3529. [Google Scholar] [PubMed] [Green Version]
- Perveen, T.; Siddiq, M.; Shahzad, N.; Ihsan, R.; Ahmad, A.; Shahzad, M.I. Prospects in anode materials for sodium ion batteries–A review. Renew. Sustain. Energy Rev. 2020, 119, 30. [Google Scholar] [CrossRef]
- Xia, J.-L.; Yan, D.; Guo, L.-P.; Dong, X.-L.; Li, W.-C.; Lu, A.-H. Hard carbon nanosheets with uniform ultramicropores and accessible functional groups showing high realistic capacity and superior rate performance for sodium-ion storage. Adv. Mater. 2020, 32, 21. [Google Scholar] [CrossRef]
- Wei, R.C.; Huang, M.; Ma, W.Z.; Xi, B.J.; Feng, Z.Y.; Li, H.B.; Feng, J.K.; Xiong, S.L. N-doped carbon nanotubes formed in a wide range of temperature and ramping rate for fast sodium storage. J. Energy Chem. 2020, 49, 136. [Google Scholar] [CrossRef]
- Zhang, W.C.; Lan, C.W.; Xie, X.H.; Cao, Q.Y.; Zheng, M.T.; Dong, H.W.; Hu, H.; Xiao, Y.; Liu, Y.L.; Liang, Y.R. Facile construction of hollow carbon nanosphere-interconnected network for advanced sodium-ion battery anode. J. Colloid Interface Sci. 2019, 546, 53. [Google Scholar] [CrossRef]
- Yang, K.; Tang, J.; Liu, Y.; Kong, M.; Zhou, B.; Shang, Y.; Zhang, W.-H. Controllable synthesis of peapod-like Sb@C and corn-like C@Sb nanotubes for sodium storage. ACS Nano 2020, 14, 5728. [Google Scholar] [CrossRef]
- Liu, M.Y.; Huang, J.F.; Li, J.L.; Cao, L.Y.; Zhao, Y.X.; Ma, M.; Koji, K. Manipulating the stress of Sn in carbon structure to realize long-life high performance sodium ion battery anode material. J. Alloys Compd. 2020, 834, 9. [Google Scholar] [CrossRef]
- Zheng, W.G.; Wu, M.; Yang, C.; Tang, Z.G.; Hu, H.N. Carbon nanotube linked NaTi2(PO4)3/C composite with three-dimensional conductive network as superior electrode for sodium ion battery. Ionics 2020, 26, 2883. [Google Scholar] [CrossRef]
- Jian, Z.; Sun, Y.; Ji, X. A new low-voltage plateau of Na3V2(PO4)3 as an anode for Na-ion batteries. Chem. Commun. 2015, 51, 6381. [Google Scholar] [CrossRef]
- Zhang, B.; Han, Y.-D.; Zheng, J.-C.; Zhang, J.-F.; Shen, C.; Ming, L.; Yuan, X.-B.; Li, H. VOPO4 nanosheets as anode materials for lithium-ion batteries. Chem. Commun. 2014, 50, 11132. [Google Scholar] [CrossRef]
- Zheng, J.-C.; Han, Y.-D.; Zhang, B.; Shen, C.; Ming, L.; Ou, X.; Zhang, J.-F. Electrochemical properties of VPO4/C nanosheets and microspheres as anode materials for lithium-ion batteries. ACS Appl. Mater. Interfaces 2014, 6, 6223. [Google Scholar] [CrossRef]
- Nan, X.; Liu, C.; Zhang, C.; Ma, W.; Wang, K.; Li, Z.; Cao, G. A new anode material for high performance lithium-ion batteries: V2(PO4)O/C. J. Mater. Chem. A 2016, 4, 9789. [Google Scholar] [CrossRef]
- Yang, Y.; Wang, B.; Zhu, J.; Zhou, J.; Xu, Z.; Fan, L.; Zhu, J.; Podila, R.; Rao, A.M.; Lu, B. Bacteria absorption-based Mn2P2O7–carbon@reduced graphene oxides for high-performance lithium-ion battery anodes. ACS Nano 2016, 10, 5516. [Google Scholar] [CrossRef]
- Wen, Y.; Chen, L.; Pang, Y.; Guo, Z.; Bin, D.; Wang, Y.-G.; Wang, C.; Xia, Y. TiP2O7 and expanded graphite nanocomposite as anode material for aqueous lithium-ion batteries. ACS Appl. Mater. Interfaces 2017, 9, 8075. [Google Scholar] [CrossRef] [PubMed]
- Zhao, D.; Meng, T.; Qin, J.W.; Wang, W.; Yin, Z.G.; Cao, M.H. Rational construction of multivoids-assembled hybrid nanospheres based on VPO4 encapsulated in porous carbon with superior lithium storage performance. ACS Appl. Mater. Interfaces 2017, 9, 1437. [Google Scholar] [CrossRef] [PubMed]
- Liao, C.Y.; Wen, Y.W.; Xia, Z.G.; Qin, R.H.; Liu, X.; Yu, Y.; Shan, B.; Zhai, T.Y.; Li, H.Q. Si-doping mediated phase control from beta- to gamma-form Li3VO4 toward smoothing Li insertion/extraction. Adv. Energy Mater. 2018, 8, 8. [Google Scholar] [CrossRef]
- Wang, D.; Liu, Q.; Chen, C.; Li, M.; Meng, X.; Bie, X.; Wei, Y.; Huang, Y.; Du, F.; Wang, C.; et al. NASICON-structured NaTi2(PO4)3@C nanocomposite as the low operation-voltage anode material for high-performance sodium-ion batteries. ACS Appl. Mater. Interfaces 2016, 8, 2238. [Google Scholar] [CrossRef] [PubMed]
- Hu, Q.; Liang, J.-Y.; Liao, J.-Y.; Tang, Z.-F.; Ding, X.; Chen, C.-H. A comparative study on nanocrystalline layered and crystalline cubic TiP2O7 for rechargeable Li/Na/K alkali metal batteries. J. Mater. Chem. A 2018, 6, 15230. [Google Scholar] [CrossRef]
- Fedotov, S.S.; Samarin, A.S.; Nikitina, V.A.; Stevenson, K.J.; Abakumov, A.M.; Antipov, E.V. α-VPO4: A Novel Many Monovalent Ion Intercalation Anode Material for Metal-Ion Batteries. ACS Appl. Mater. Interfaces 2019, 11, 12431. [Google Scholar] [CrossRef] [PubMed]
- Tang, Y.K.; Liu, L.; Zhang, Y.; Zhao, H.Y.; Kong, L.B.; Gao, S.S. Confined formation of monoclinic Na4Ti5O12 nanoparticles embedded into porous CNTs: Towards enhanced electrochemical performances for sodium ion batteries. New J. Chem. 2018, 42, 19340. [Google Scholar] [CrossRef]
- Zhao, Y.; Wei, Z.; Pang, Q.; Wei, Y.; Cai, Y.; Fu, Q.; Du, F.; Sarapulova, A.; Ehrenberg, H.; Liu, B.; et al. NASICON-type Mg0.5Ti2(PO4)3 negative electrode material exhibits different electrochemical energy storage mechanisms in Na-ion and Li-Ion batteries. ACS Appl. Mater. Interfaces 2017, 9, 4709. [Google Scholar] [CrossRef]
- Yao, Z.R.; Zhu, K.J.; Li, X.; Wang, J.; Yan, K.; Liu, J.S. Interlayer-expanded MoS2 nanosheets/nitrogen-doped carbon as a high-performance anode for sodium -ion batteries. J. Alloys Compd. 2020, 838, 9. [Google Scholar] [CrossRef]
- Blanc, N.A.; Williams, Q.; El Bali, B.; Essehli, R. A vibrational study of phase transitions in Fe2P2O7 and Cr2P2O7 under high-pressures. J. Am. Ceram. Soc. 2018, 101, 5257. [Google Scholar] [CrossRef]
- Liang, X.; Ou, X.; Dai, H.; Zheng, F.; Pan, Q.; Liu, P.; Xiong, X.; Liu, M.; Yang, C. Exploration of VPO4 as a new anode material for sodium-ion batteries. Chem. Commun. 2017, 53, 12696. [Google Scholar] [CrossRef]
- Kim, H.; Lim, H.; Kim, H.-S.; Kim, K.J.; Byun, D.; Choi, W. Polydopamine-derived N-doped carbon-wrapped Na3V2(PO4)3 cathode with superior rate capability and cycling stability for sodium-ion batteries. Nano Res. 2019, 12, 397. [Google Scholar] [CrossRef]
- Mizuno, Y.; Kotobuki, M.; Munakata, H.; Kanamura, K. Effect of carbon source on electrochemical performance of carbon coated LiMnPO4 cathode. J. Ceram. Soc. Jpn. 2009, 117, 1225. [Google Scholar] [CrossRef] [Green Version]
- Huo, H.; Lin, Z.Y.; Wu, D.; Zhong, G.M.; Shao, J.Y.; Xu, X.; Xie, B.X.; Ma, Y.L.; Dai, C.S.; Du, C.Y.; et al. Investigating the structure of an active material-carbon interface in the monoclinic Li3V2(PO4)3/C composite cathode. ACS Appl. Energy Mater. 2019, 2, 3692. [Google Scholar] [CrossRef]
- Kim, H.J.; Bae, G.H.; Lee, S.M.; Ahn, J.H.; Kim, J.K. Properties of lithium iron phosphate prepared by biomass-derived carbon coating for flexible lithium ion batteries. Electrochim. Acta 2019, 300, 18. [Google Scholar] [CrossRef]
- Galceran, M.; Guerfi, A.; Armand, M.; Zaghib, K.; Casas-Cabanas, M. The critical role of carbon in the chemical delithiation kinetics of LiFePO4. J. Electrochem. Soc. 2020, 167, 3. [Google Scholar] [CrossRef]
- Wang, Q.; Luo, Y.; Gu, F.; Shui, M.; Shu, J. The preparation, characterization, electro-chemical performance and transporting mechanism of Na1.25Cr0.25Ti1.75(PO4)3/C as anode material for SIBs. Solid State Ionics 2020, 352, 115368. [Google Scholar] [CrossRef]
- Alfaruqi, M.H.; Islam, S.; Song, J.; Kim, S.; Pham, D.T.; Jo, J.; Kim, S.; Baboo, J.P.; Putro, D.Y.; Mathew, V.; et al. Carbon-coated rhombohedral Li2NaV2(PO4)3 nanoflake cathode for Li-ion battery with excellent cycleability and rate capability. Chem. Phys. Lett. 2017, 681, 44. [Google Scholar] [CrossRef]
- Song, J.; Park, S.; Kim, S.; Mathew, V.; Alfaruqi, M.H.; Jo, J.; Kim, J. Uniform Carbon Coated Na3V2(PO4)2O2xF3−2x Nanoparticles for Sodium Ion Batteries as Cathode. ACS Sustain. Chem. Eng. 2019, 7, 18826. [Google Scholar] [CrossRef]
- Kumar, P.R.; Yahia, H.B.; Belharouak, I.; Sougrati, M.T.; Passerini, S.; Amin, R.; Essehli, R. Electrochemical investigations of high-voltage Na4Ni3(PO4)2P2O7 cathode for sodium-ion batteries. J. Solid State Electrochem. 2020, 24, 17. [Google Scholar] [CrossRef]
- Kumar, P.R.; Essehli, R.; Yahia, H.B.; Amin, R.; Belharouak, I. Electrochemical studies of a high voltage Na4Co3(PO4)2P2O7-MWCNT composite through a selected stable electrolyte. RSC Adv. 2020, 10, 15983. [Google Scholar] [CrossRef] [Green Version]
- Criado, A.; Lavela, P.; Ortiz, G.; Tirado, J.L.; Perez-Vicente, C.; Bahrou, N.; Edfouf, Z. Highly dispersed oleic-induced nanometric C@Na3V2(PO4)2F3 composites for efficient Na-ion batteries. Electrochim. Acta 2020, 332, 8. [Google Scholar] [CrossRef]
- Kumar, P.R.; Kheireddine, A.; Nisar, U.; Shakoor, R.A.; Essehli, R.; Amin, R.; Belharouak, I. Na4MnV(PO4)3-rGO as Advanced cathode for aqueous and non-aqueous sodium ion batteries. J. Power Sources 2019, 429, 149. [Google Scholar] [CrossRef]
Anode Material | Raw Material | Raw Cost * (¥ kg−1) | Cycle Capability (mA h g−1) | Capacity (mA h g−1) | Ref. |
---|---|---|---|---|---|
Cr2P2O7@C | Cr(NO3)3·9H2O and Diammonium hydrogen phosphate | 385 | 194 (300 cycles) | 230 (100 mA g−1) | This work |
Na4Ti5O12/C | Sodium carbonate and Tetrabutyl titanate | 680 | 81 (300 cycles) | 92 (100 mA g−1) | [24] |
Mg0.5Ti2(PO4)3@C | Magnesium acetate, Diammonium hydrogen phosphate and Titanium isopropoxide | 520 | 130 (300 cycles) | 200 (100 mA g−1) | [25] |
NaTi2(PO4)3/C | Sodium acetate, Tetrabutyl titanate and Phosphoric acid | 609 | 170 (500 cycles) | 208 (100 mA g−1) | [21] |
MoS2/C | Sodium molybdate dehydrate and Thiourea | 758 | 352 (200 cycles) | 400 (100 mA g−1) | [26] |
Samples | Rs, Ω | Rct, Ω | σw, Ω s−1 | , cm2 s−1 |
---|---|---|---|---|
Cr2P2O7 | 10.5 | 466.2 | 436.4 | 5.1 × 10−14 |
Cr2P2O7@C | 5.7 | 131.6 | 59.6 | 2.7 × 10−12 |
Samples | Rs, Ω | Rct, Ω | σw, Ω s−1 | , cm2 s−1 |
---|---|---|---|---|
Cr2P2O7 | 8.6 | 303.7 | 562.4 | 3.0 × 10−14 |
Cr2P2O7@C | 5.3 | 159.2 | 64.6 | 2.3 × 10−12 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, S.; Zhu, T.; Chen, F.; Ding, X.; Hu, Q.; Liao, J.; He, X.; Chen, C. Cr2P2O7 as a Novel Anode Material for Sodium and Lithium Storage. Materials 2020, 13, 3139. https://doi.org/10.3390/ma13143139
Wang S, Zhu T, Chen F, Ding X, Hu Q, Liao J, He X, Chen C. Cr2P2O7 as a Novel Anode Material for Sodium and Lithium Storage. Materials. 2020; 13(14):3139. https://doi.org/10.3390/ma13143139
Chicago/Turabian StyleWang, Shuo, Tianyuan Zhu, Fei Chen, Xiang Ding, Qiao Hu, Jiaying Liao, Xiaodong He, and Chunhua Chen. 2020. "Cr2P2O7 as a Novel Anode Material for Sodium and Lithium Storage" Materials 13, no. 14: 3139. https://doi.org/10.3390/ma13143139
APA StyleWang, S., Zhu, T., Chen, F., Ding, X., Hu, Q., Liao, J., He, X., & Chen, C. (2020). Cr2P2O7 as a Novel Anode Material for Sodium and Lithium Storage. Materials, 13(14), 3139. https://doi.org/10.3390/ma13143139