Effect of Ni Doping Content on Phase Transition and Electrochemical Performance of TiO2 Nanofibers Prepared by Electrospinning Applied for Lithium-Ion Battery Anodes
Abstract
:1. Introduction
2. Experimental
2.1. Synthesis of Pristine TiO2 and Ni-doped TiO2 Nanofibers
2.2. Assembly of LIBs
2.3. Characterization
3. Results and Discussion
3.1. Phase and Morphology Characterization of Nanofibers
3.2. Electrochemical Performance of Nanofibers
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Wang, G.X.; Yao, J.; Liu, H.K.; Dou, S.X.; Ahn, J.H. Electrochemical characteristics of tin-coated MCMB graphite as anode in lithium-ion cells. Electrochim. Acta 2004, 50, 517–522. [Google Scholar] [CrossRef]
- Tarascon, J.M.; Armand, M. Issues and challenges facing rechargeable lithium batteries. Nature 2001, 414, 359–367. [Google Scholar] [CrossRef] [PubMed]
- Li, G.; Yin, Z.; Guo, H.; Wang, Z.; Yan, G.; Yang, Z.; Liu, Y.; Ji, X.; Wang, J. Metalorganic Quantum Dots and Their Graphene-Like Derivative Porous Graphitic Carbon for Advanced Lithium-Ion Hybrid Supercapacitor. Adv. Energy Mater. 2019, 9, 1802878. [Google Scholar] [CrossRef]
- Yan, Z.; Yang, Q.-W.; Wang, Q.; Ma, J. Nitrogen doped porous carbon as excellent dual anodes for Li-and Na-ion batteries. Chin. Chem. Lett. 2020, 31, 583–588. [Google Scholar] [CrossRef]
- Hayner, C.M.; Zhao, X.; Kung, H.H. Materials for Rechargeable Lithium-Ion Batteries. Annu. Rev. Chem. Biomol. Eng. 2012, 3, 445–471. [Google Scholar] [CrossRef]
- Yan, J.; Song, H.; Yang, S.; Chen, X. Effect of heat treatment on the morphology and electrochemical performance of TiO2 nanotubes as anode materials for lithium-ion batteries. Mater. Chem. Phys. 2009, 118, 367–370. [Google Scholar] [CrossRef]
- Seh, Z.W.; Li, W.; Cha, J.J.; Zheng, G.; Yang, Y.; McDowell, M.T.; Hsu, P.-C.; Cui, Y. Sulphur–TiO2 yolk–shell nanoarchitecture with internal void space for long-cycle lithium–sulphur batteries. Nat. Commun. 2013, 4, 1331. [Google Scholar] [CrossRef] [Green Version]
- Ren, Y.; Liu, Z.; Pourpoint, F.; Armstrong, A.R.; Grey, C.P.; Bruce, P.G. Nanoparticulate TiO2(B): An Anode for Lithium-Ion Batteries. Angew. Chem. Int. Ed. 2012, 51, 2164–2167. [Google Scholar] [CrossRef]
- Wang, H.; Ma, D.; Huang, X.; Huang, Y.; Zhang, X. General and Controllable Synthesis Strategy of Metal Oxide/TiO2 Hierarchical Heterostructures with Improved Lithium-Ion Battery Performance. Sci. Rep. 2012, 2, 701. [Google Scholar] [CrossRef]
- Zhao, B.; Jiang, S.; Su, C.; Cai, R.; Ran, R.; Tadé, M.O.; Shao, Z. A 3D porous architecture composed of TiO2 nanotubes connected with a carbon nanofiber matrix for fast energy storage. J. Mater. Chem. A 2013, 1, 12310–12320. [Google Scholar] [CrossRef]
- Yoon, S.; Lee, C.; Park, M.; Oh, S.M. Preparation of Nanotube TiO2-Carbon Composite and Its Anode Performance in Lithium-Ion Batteries. ECS Meet. Abstr. 2009, 12, 28. [Google Scholar]
- Li, X.; Chen, Y.; Zhou, L.; Mai, Y.-W.; Huang, H. Exceptional electrochemical performance of porous TiO2–carbon nanofibers for lithium ion battery anodes. J. Mater. Chem. A 2014, 2, 3875–3880. [Google Scholar] [CrossRef]
- Roy, P.; Srivastava, S.K. Nanostructured anode materials for lithium ion batteries. J. Mater. Chem. A 2015, 3, 2454–2484. [Google Scholar] [CrossRef]
- Shenouda, A.; Liu, H.-K. Studies on electrochemical behaviour of zinc-doped LiFePO4 for lithium battery positive electrode. J. Alloy. Compd. 2009, 477, 498–503. [Google Scholar] [CrossRef]
- Zhang, J.C.; Li, Q.; Cao, W.L. Photocatalytic Properties of TiO2-SnO2-SiO2 Nano-composite Photocatalyst Prepared by Supercritical Fluid Drying. Chin. J. Inoganic Chem. 2004, 20, 725–730. [Google Scholar]
- Wei, Z.; Ding, B.; Dou, H.; Gascon, J.; Kong, X.-J.; Xiong, Y.; Cai, B.; Zhang, R.; Zhou, Y.; Long, M.; et al. 2020 roadmap on pore materials for energy and environmental applications. Chin. Chem. Lett. 2019, 30, 2110–2122. [Google Scholar] [CrossRef]
- Wu, D.X.; Wang, C.Y.; Wu, M.G.; He, Y.F.C.B.; Ma, J.M. Porous bowl-shaped VS2 nanosheets/graphene composite for high-rate lithium-ion storage. J. Energy Chem. 2020, 43, 24–32. [Google Scholar] [CrossRef] [Green Version]
- Zheng, Y.; Yuan, Y.; Tong, Z.; Yin, H.; Yin, S.; Guo, S. Watermelon-like TiO2 nanoparticles (P25)@microporous amorphous carbon sphere with excellent rate capability and cycling performance for lithium ion batteries. Nanotechnol 2020. [Google Scholar] [CrossRef]
- Ren, H.; Yu, R.; Qi, J.; Zhang, L.; Jin, Q.; Wang, D. Hollow Multishelled Heterostructured Anatase/TiO2 (B) with Superior Rate Capability and Cycling Performance. Adv. Mater. 2019, 31, 1805754. [Google Scholar] [CrossRef]
- Fan, X.D.; Wang, X.Q.; Yin, M.Y.; Wang, D.C.; Bo, W. Study on TiO2/G Composite as Cathode Material for Lithium-ion Battery. New Chem. Mater. 2018, 46, 107–110. [Google Scholar]
- Kasuga, T.; Hiramatsu, M.; Hoson, A.; Sekino, T.; Niihara, K. Formation of Titanium Oxide Nanotube. Langmuir 1998, 14, 3160–3163. [Google Scholar] [CrossRef]
- Wang, Y.; Hu, G.; Duan, X.; Sun, H.; Xue, Q. Microstructure and formation mechanism of titanium dioxide nanotubes. Chem. Phys. Lett. 2002, 365, 427–431. [Google Scholar] [CrossRef]
- Yuan, Z.-Y.; Colomer, J.-F.; Su, B.-L. Titanium oxide nanoribbons. Chem. Phys. Lett. 2002, 363, 362–366. [Google Scholar] [CrossRef]
- Zhang, X.; Yao, B.; Zhao, L.; Liang, C.; Zhang, L.; Mao, Y. Electrochemical Fabrication of Single-Crystalline Anatase TiO[sub 2] Nanowire Arrays. J. Electrochem. Soc. 2001, 148, G398–G400. [Google Scholar] [CrossRef]
- Wu, M.; Xu, B.; Zhang, Y.; Qi, S.; Ni, W.; Hu, J.; Ma, J. Perspectives in emerging bismuth electrochemistry. Chem. Eng. J. 2020, 381, 122558. [Google Scholar] [CrossRef]
- Peng, L.; Zhang, H.J.; Bai, Y.J.; Feng, Y.Y.; Wang, Y. A designed TiO2/carbon nanocomposite as a high-efficiency lithium-Ion battery anode and photocatalyst. Chem. Eur. J. 2015, 21, 14871–14878. [Google Scholar] [CrossRef]
- Panda, S.K.; Yoon, Y.; Jung, H.S.; Yoon, W.-S.; Shin, H. Nanoscale size effect of titania (anatase) nanotubes with uniform wall thickness as high performance anode for lithium-ion secondary battery. J. Power Sources 2012, 204, 162–167. [Google Scholar] [CrossRef]
- Armstrong, A.R.; Armstrong, G.; Canales-Vázquez, J.; Garcia, R.; Bruce, P.G. Lithium-Ion Intercalation into TiO2-B Nanowires. Adv. Mater. 2005, 17, 862–865. [Google Scholar] [CrossRef]
- Reddy, M.V.; Yu, T.; Sow, C.H.; Shen, Z.X.; Lim, C.T.; Rao, G.V.S.; Chowdari, B.V.R. α-Fe2O3 Nanoflakes as an Anode Material for Li-Ion Batteries. Adv. Funct. Mater. 2007, 17, 2792–2799. [Google Scholar] [CrossRef]
- Yan, J.; Song, H.; Yang, S.; Yan, J.; Chen, X. Preparation and electrochemical properties of composites of carbon nanotubes loaded with Ag and TiO2 nanoparticle for use as anode material in lithium-ion batteries. Electrochimica Acta 2008, 53, 6351–6355. [Google Scholar] [CrossRef]
- Ma, Y.; Li, Y.; Li, D.; Liu, Y.-S.; Zhang, J. Uniformly distributed TiO2 nanorods on reduced graphene oxide composites as anode material for high rate lithium ion batteries. J. Alloy. Compd. 2019, 771, 885–891. [Google Scholar] [CrossRef]
- Luo, Y.; Luo, J.; Jiang, J.; Zhou, W.; Yang, H.; Qi, X.; Zhang, H.; Fan, H.J.; Yu, D.Y.W.; Li, C.M.; et al. Seed-assisted synthesis of highly ordered TiO2@α-Fe2O3 core/shell arrays on carbon textiles for lithium-ion battery applications. Energy Environ. Sci. 2012, 5, 6559–6566. [Google Scholar] [CrossRef]
- Li, Y.; Tan, B.; Wu, Y. Mesoporous CO3O4Nanowire Arrays for Lithium Ion Batteries with High Capacity and Rate Capability. Nano Lett. 2008, 8, 265–270. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Li, J.; Li, W.; Kang, D. Synthesis of One-Dimensional Mesoporous Ag Nanoparticles-Modified TiO2 Nanofibers by Electrospinning for Lithium Ion Batteries. Mater 2019, 12, 2630. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, L.; Zhang, J.; Zou, Y.; Jiang, W.; Lei, W.; Ma, Z. High-rate and long-term cycle stability of lithium-ion batteries enabled by boron-doping TiO2 nanofiber anodes. J. Electroanal. Chem. 2019, 833, 573–579. [Google Scholar] [CrossRef]
- Poizot, P.; Laruelle, S.; Grugeon, S.; Dupont, L.; Tarascon, J.M. Nano-sized transition-metaloxides as negative-electrode materials for lithium-ion batteries. Nature 2000, 407, 496–499. [Google Scholar] [CrossRef]
- Fehse, M.; Cavaliere, S.; Lippens, P.E.; Savych, I.; Iadecola, A.; Monconduit, L.; Jones, D.; Rozière, J.; Fischer, F.; Tessier, C.; et al. Nb-Doped TiO2Nanofibers for Lithium Ion Batteries. J. Phys. Chem. C 2013, 117, 13827–13835. [Google Scholar] [CrossRef] [Green Version]
- Opra, D.P.; Gnedenkov, S.V.; Sinebryukhov, S.; Voit, E.; Sokolov, A.; Modin, E.; Podgorbunsky, A.; Sushkov, Y.V.; Zheleznov, V.V. Characterization and Electrochemical Properties of Nanostructured Zr-Doped Anatase TiO2 Tubes Synthesized by Sol–Gel Template Route. J. Mater. Sci. Technol. 2017, 33, 527–534. [Google Scholar] [CrossRef]
- Tran, T.; McCormac, K.; Li, J.; Bi, Z.; Wu, J. Electrospun SnO2 and TiO2 Composite Nanofibers for Lithium Ion Batteries. Electrochim. Acta 2014, 117, 68–75. [Google Scholar] [CrossRef]
- Gnedenkov, S.V.; Sinebryukhov, S.; Zheleznov, V.V.; Opra, D.P.; Voit, E.I.; Modin, E.; Sokolov, A.; Ustinov, A.; Sergienko, V.I. Effect of Hf-doping on electrochemical performance of anatase TiO2 as an anode material for lithium storage. R. Soc. Open Sci. 2018, 5, 171811. [Google Scholar] [CrossRef] [Green Version]
- Liu, J.; Qian, D.; Feng, H.; Li, J.; Jiang, J.; Peng, S.; Liu, Y. Designed synthesis of TiO2-modified iron oxides on/among carbon nanotubes as a superior lithium-ion storage material. J. Mater. Chem. A 2014, 2, 11372. [Google Scholar] [CrossRef]
- Huang, B.; Li, X.-H.; Pei, Y.; Li, S.; Cao, X.; Massé, R.; Cao, G. Novel Carbon-Encapsulated Porous SnO2Anode for Lithium-Ion Batteries with Much Improved Cyclic Stability. Small 2016, 12, 1945–1955. [Google Scholar] [CrossRef] [PubMed]
- Kyeremateng, N.A.; Lebouin, C.; Knauth, P.; Djenizian, T. The electrochemical behaviour of TiO2 nanotubes with CO3O4 or NiO submicron particles: Composite anode materials for Li-ion micro batteries. Electrochim. Acta 2013, 88, 814–820. [Google Scholar] [CrossRef]
- Li, G.; Hu, H.; Zhu, Q.; Yu, Y. Interconnected mesoporous NiO sheets deposited onto TiO2nanosheet arrays as binder-free anode materials with enhanced performance for lithium ion batteries. RSC Adv. 2015, 5, 101247–101256. [Google Scholar] [CrossRef]
- Zhang, J.; Zhang, J.; Jin, Z.; Wu, Z.; Zhang, Z. Electrochemical lithium storage capacity of nickel mono-oxide loaded anatase titanium dioxide nanotubes. Ionics 2012, 18, 861–866. [Google Scholar] [CrossRef]
- Chen, Z.; Gao, Y.; Zhang, Q.; Li, L.; Ma, P.; Xing, B.; Cao, J.; Sun, G.; Bala, H.; Zhang, C.; et al. TiO2/NiO/reduced graphene oxide nanocomposites as anode materials for high-performance lithium ion batteries. J. Alloys Compd. 2019, 774, 873–878. [Google Scholar] [CrossRef]
- Dorset, D.L. X-ray Diffraction: A Practical Approach. Microsc. Microanal. 1998, 4, 513–515. [Google Scholar] [CrossRef]
- Hanaor, D.; Sorrell, C.C. Review of the anatase to rutile phase transformation. J. Mater. Sci. 2010, 46, 855–874. [Google Scholar] [CrossRef] [Green Version]
- Hou, H.; Shang, M.; Gao, F.; Wang, L.; Liu, Q.; Zheng, J.; Yang, Z.; Yang, W. Highly Efficient Photocatalytic Hydrogen Evolution in Ternary Hybrid TiO2/CuO/Cu Thoroughly Mesoporous Nanofibers. ACS Appl. Mater. Inter. 2016, 8, 20128–20137. [Google Scholar] [CrossRef]
- Lee, S.; Eom, W.; Park, H.; Han, T.H. High-Temperature Stable Anatase Titanium Oxide Nanofibers for Lithium-Ion Battery Anodes. ACS Appl. Mater. Interfaces 2017, 9, 25332–25338. [Google Scholar] [CrossRef]
- Xu, Z.; Wang, S.; Ma, C.; Luo, K.; Fang, F. Effect of Nickel Doping on Phase Transformation of TiO2 Nanotube Arrays. Phys. Status solidi (a) 2019, 216, 1800836. [Google Scholar] [CrossRef]
- Barborini, E.; Conti, A.M.; Kholmanov, I.; Piseri, P.; Podesta, A.; Milani, P.; Cepek, C.; Sakho, O.; Macovez, R.; Sancrotti, M. Effect of Hf-doping on electrochemical performance of anatase TiO2 as an anode material for lithium storage. Adv. Mater. 2005, 17, 1842. [Google Scholar] [CrossRef]
- Kim, J.-H.; Zhu, K.; Kim, J.Y.; Frank, A.J. Tailoring oriented TiO2 nanotube morphology for improved Li storage kinetics. Electrochimica Acta 2013, 88, 123–128. [Google Scholar] [CrossRef]
- Gentili, V.; Brutti, S.; Hardwick, L.J.; Armstrong, A.; Panero, S.; Bruce, P. Lithium Insertion into Anatase Nanotubes. Chem. Mater. 2012, 24, 4468–4476. [Google Scholar] [CrossRef]
- Tang, Y.; Wang, S.; Ding, J.; Hou, G.; Zheng, G. Preparation and properties of TiO2(B)/graphene nanocomposites as anode materials for lithium-ion batteries. Mater. Res. Appl. 2014, 875, 183–186. [Google Scholar]
- Hu, Q.; Li, W.; Zhang, B.; Sun, W.; Lin, R.; Jiang, H.; He, G. Uniform NiO nanoparticles used as anodes in Li-ion batteries. IOP Conf. Series: Mater. Sci. Eng. 2019, 490, 022063. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.X.; Zhang, X.L.; Zheng, H.H. Research progress in TiO2 for Li-ion battery anode material. Battery Bimon. 2009, 39, 106–109. [Google Scholar]
- Jiang, C.; Wei, M.; Qi, Z.; Kudo, T.; Honma, I.; Zhou, H. Particle size dependence of the lithium storage capability and high rate performance of nanocrystalline anatase TiO2 electrode. J. Power Sources 2007, 166, 239–243. [Google Scholar] [CrossRef]
- Baudrin, E.; Cassaignon, S.; Koelsch, M.; Jolivet, J.; Dupont, L.; Tarascon, J. Structural evolution during the reaction of Li with nano-sized rutile type TiO2 at room temperature. Electrochem. Commun. 2007, 9, 337–342. [Google Scholar] [CrossRef]
- Aravindan, V.; Kumar, P.S.; Sundaramurthy, J.; Ling, W.C.; Ramakrishna, S.; Madhavi, S. Electrospun NiO nanofibers as high performance anode material for Li-ion batteries. J. Power Sources 2013, 227, 284–290. [Google Scholar] [CrossRef]
- Sun, X.; Yan, C.; Chen, Y.; Si, W.; Deng, J.; Oswald, S.; Liu, L.; Schmidt, O.G. Three-Dimensionally “Curved” NiO Nanomembranes as Ultrahigh Rate Capability Anodes for Li-Ion Batteries with Long Cycle Lifetimes. Adv. Energy Mater. 2013, 4, 1300912. [Google Scholar] [CrossRef]
- Nam, S.H.; Shim, H.-S.; Kim, Y.-S.; Dar, M.A.; Kim, J.G.; Kim, W.B. Ag or Au Nanoparticle-Embedded One-Dimensional Composite TiO2 Nanofibers Prepared via Electrospinning for Use in Lithium-Ion Batteries. ACS Appl. Mater. Interfaces 2010, 2, 2046–2052. [Google Scholar] [CrossRef]
- Opra, D.P.; Gnedenkov, S.V.; Sinebryukhov, S.L.; Vojt, E.I.; Sokolov, A.A.; Ustinov, A.Y.; Zheleznov, V.V. Zr4+/F− co-doped TiO2 (anatase) as high performance anode material for lithium-ion battery. Prog. Nat. Sci-Mater. 2018, 28, 542–547. [Google Scholar] [CrossRef]
- Xu, J.; Wang, Y.; Li, Z.; Zhang, W. Preparation and electrochemical properties of carbon-doped TiO2 nanotubes as an anode material for lithium-ion batteries. J. Power Sources 2008, 175, 903–908. [Google Scholar] [CrossRef]
- Mao, M.; Yan, F.; Cui, C.; Ma, J.; Zhang, M.; Wang, T.; Wang, C. Pipe-Wire TiO2–Sn@Carbon Nanofibers Paper Anodes for Lithium and Sodium Ion Batteries. Nano Lett. 2017, 17, 3830–3836. [Google Scholar] [CrossRef]
Rutile | Anatase | |||||||
---|---|---|---|---|---|---|---|---|
Sample | a/Å | b/Å | c/Å | v/Å3 | a/Å | b/Å | c/Å | v/Å3 |
0 wt.% Ni-doped TiO2 | 4.5839 | 4.5839 | 2.9492 | 61.97 | 3.7950 | 3.7950 | 9.4568 | 136.20 |
1 wt.% Ni-doped TiO2 | 4.5885 | 4.5885 | 2.9585 | 62.29 | 3.7958 | 3.7958 | 9.4576 | 136.27 |
3 wt.% Ni-doped TiO2 | 4.5953 | 4.5953 | 2.9608 | 62.52 | 3.7910 | 3.7910 | 9.4920 | 136.42 |
3.5 wt.% Ni-doped TiO2 | 4.5953 | 4.5953 | 2.9607 | 62.52 | 3.7776 | 3.7776 | 9.5371 | 136.10 |
4 wt.% Ni-doped TiO2 | 4.5908 | 4.5908 | 2.9595 | 62.37 | 3.7845 | 3.7845 | 9.5015 | 136.08 |
6 wt.% Ni-doped TiO2 | 4.5896 | 4.5896 | 2.9576 | 62.30 | 3.7887 | 3.7887 | 9.4668 | 135.89 |
10 wt.% Ni-doped TiO2 | 4.5730 | 4.5730 | 2.9666 | 62.04 | 3.7810 | 3.7810 | 9.4681 | 135.36 |
Doping | Phase Composition/wt.% | Ratio of | |
---|---|---|---|
Concentration/wt.% | Anatase | Rutile | A to R |
0 | 11.5 | 88.5 | 0.1299 |
1 | 40.0 | 60.0 | 0.6667 |
3 | 61.9 | 38.1 | 1.6247 |
3.5 | 51.5 | 48.5 | 1.0619 |
4 | 48.5 | 51.5 | 0.9398 |
6 | 21.8 | 78.2 | 0.2788 |
10 | 21.7 | 78.3 | 0.2771 |
Ref. | Materials | Discharge/Charge Capacity | Cycle Performance |
---|---|---|---|
Our work | 3 wt.% Ni-doped TiO2 nanofibers | 576/264 mAh·g−1 at 100 mA·g−1 | 124 mAh·g−1/100 cycles at 100 mA·g−1 |
[27] | Three dimensional TiO2 nanotube arrays | 118.1/96 mAh·g−1 at 70 uA·cm−2 | 63 mAh·g−1/50 cycles at 100 mA·g−1 |
[37] | Nb@TiO2 nanofibers | 252/115 mAh·g−1 at 16.8 mA·g−1 | - |
[38] | Zr-doped TiO2 nanotubes | 255/150 mAh·g−1 at 0.1C | 136 mAh·g−1/ 35 cycles at 0.1C |
[40] | Hf-doped TiO2 nanofibers | 321/162 mAh·g−1 at 33.5 mA·g−1 | 170 mAh·g−1/35 cycles at 33.5 mA·g−1 |
[43] | NiO doped onto TiO2 nanotubes | 152/94 uA·cm−2 at 70 uA·cm−2 | 85 uA·cm−2/25 cycles at 70 uA·cm−2 |
[43] | Co3O4 doped onto TiO2 nanotubes | 200.1/103 uA·cm−2 at 70 uA·cm−2 | 100 uA·cm−2/25 cycles at 70 uA·cm−2 |
[62] | Au@TiO2 nanofibers | 180/120 mAh·g−1 at 66 mA·g−1 | 150 mAh·g−1/50 cycles at 66 mA·g−1 |
[63] | Zr4+/F- co-doped TiO2 nanotubes | 250/175 mAh·g−1 at 335 mA·g−1 | 175 mAh·g−1/35 cycles at 1C |
[50] | 10 mol% Al doped-TiO2 nanofibers | 200/152 mAh·g−1 at 40 mA·g−1 | 148 mAh·g−1/100 cycles at 40 mA·g−1 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kang, D.; Li, J.; Zhang, Y. Effect of Ni Doping Content on Phase Transition and Electrochemical Performance of TiO2 Nanofibers Prepared by Electrospinning Applied for Lithium-Ion Battery Anodes. Materials 2020, 13, 1302. https://doi.org/10.3390/ma13061302
Kang D, Li J, Zhang Y. Effect of Ni Doping Content on Phase Transition and Electrochemical Performance of TiO2 Nanofibers Prepared by Electrospinning Applied for Lithium-Ion Battery Anodes. Materials. 2020; 13(6):1302. https://doi.org/10.3390/ma13061302
Chicago/Turabian StyleKang, Danning, Jun Li, and Yuyao Zhang. 2020. "Effect of Ni Doping Content on Phase Transition and Electrochemical Performance of TiO2 Nanofibers Prepared by Electrospinning Applied for Lithium-Ion Battery Anodes" Materials 13, no. 6: 1302. https://doi.org/10.3390/ma13061302
APA StyleKang, D., Li, J., & Zhang, Y. (2020). Effect of Ni Doping Content on Phase Transition and Electrochemical Performance of TiO2 Nanofibers Prepared by Electrospinning Applied for Lithium-Ion Battery Anodes. Materials, 13(6), 1302. https://doi.org/10.3390/ma13061302