Mechanical Properties of Monolayer MoS2 with Randomly Distributed Defects
Abstract
:1. Introduction
2. Materials and Methods
2.1. Methodology of Molecular Simulations
2.2. Crystal Structure
2.3. Elastic Constants of Monolayer MoS2 Using Molecular Statics (MS)
3. Results and Discussion
3.1. MoS2 Sheet with Pristine and Random Vacancy Defects
3.2. MoS2 Sheet with Randomly Diffusing Sulfur to Molybdenum (S→Mo)
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Novoselov, K.S.; Geim, A.K.; Morozov, S.V.; Jiang, D.; Zhang, Y.; Dubonos, S.V.; Grigorieva, I.V.; Firsov, A.A. Electric field effect in atomically thin carbon films. Science 2004, 306, 666–669. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kang, M.A.; Kim, S.J.; Song, W.; Chang, S.J.; Park, C.Y.; Myung, S.; Lim, J.; Lee, S.S.; An, K.S. Fabrication of flexible optoelectronic devices based on MoS2/graphene hybrid patterns by a soft lithographic patterning method. Carbon 2017, 116, 167–173. [Google Scholar] [CrossRef]
- Zhou, R.; Wang, J.G.; Liu, H.Z.; Liu, H.Y.; Jin, D.D.; Liu, X.R.; Shen, C.; Xie, K.; Wei, B.Q. Coaxial MoS2@carbonhybrid fibers: A low-cost anode material for high-performance Li-ion batteries. Materials 2017, 10, 174. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.H.; Kalantar-Zadeh, K.; Kis, A.; Coleman, J.N.; Strano, M.S. Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nat. Nanotechnol. 2012, 7, 699. [Google Scholar] [CrossRef] [PubMed]
- Bertolazzi, S.; Brivio, J.; Kis, A. Stretching and breaking of ultrathin MoS2. ACS Nano 2011, 5, 9703. [Google Scholar] [CrossRef] [PubMed]
- Castellanos-Gomez, A.; Poot, M.; Steele, G.A.; van der Zant, H.S.J.; Agrait, N.; Rubio-Bollinger, G. Elastic properties of freely suspended MoS2 nanosheets. Adv. Mater. 2012, 24, 772. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mrozek, A. Basic mechanical properties of 2H and 1T MoS2 polymorphs. A short comparison of various atomic potentials. Int. J. Multiscale Comput. Eng. 2019, 17, 339–359. [Google Scholar] [CrossRef]
- Brumme, T.; Calandra, M.; Mauri, F. First-principles theory of field-effect doping in transition-metal dichalcogenides: Structural properties, electronic structure, Hall coefficient, and electrical conductivity. Phys. Rev. B 2015, 91, 123–128. [Google Scholar] [CrossRef] [Green Version]
- Akinwande, D.; Brennan, C.J.; Bunch, J.S.; Egberts, P.; Felts, J.R.; Gao, H.; Liechti, K.M. AmeriMech Symposium on A Review on Mechanics and Mechanical Properties of 2D Materials–Graphene and Beyond. Extrem. Mech. Lett. 2017, 13, 42–77. [Google Scholar] [CrossRef] [Green Version]
- Kai, L.; Junqiao, W. Mechanical properties of two-dimensional materials and heterostructures. J. Mater. Res. 2016, 31, 7. [Google Scholar]
- Cooper, R.C.; Lee, C.; Marianetti, C.A.; Wei, X.; Hone, J.; Kysar, J.W. Nonlinear elastic behavior of two-dimensional molybdenum disulfide. Phys. Rev. B 2013, 87, 35423. [Google Scholar] [CrossRef] [Green Version]
- Santosh, K.C.; Longo, R.C.; Addou, R.; Wallace, R.M.; Cho, K. Impact of intrinsic atomic defects on the electronic structure of MoS2 monolayers. Nanotechnology 2014, 25, 375703. [Google Scholar]
- Wang, M.; Edmonds, K.W.; Gallagher, B.L.; Rushforth, A.W.; Makarovsky, O.; Patanè, A.; Campion, R.P.; Foxon, C.T.; Novak, V.; Jungwirth, T. High Curie temperatures at low compensation in the ferromagnetic semiconductor (Ga, Mn) As. Phys. Rev. B 2013, 87, 121301. [Google Scholar] [CrossRef] [Green Version]
- Wang, W.; Li, L.; Yang, C.; Soler-Crespo, R.A.; Meng, Z.; Li, M.; Zhang, X.; Keten, S.; Espinosa, H.D. Plasticity resulted from phase transformation for monolayer molybdenum disulfide film during nanoindentation simulations. Nanotechnology 2017, 28, 164005. [Google Scholar] [CrossRef] [PubMed]
- Defo, R.K.; Fang, S.; Shirodkar, S.N.; Tritsaris, G.A.; Dimoulas, A.; Kaxiras, E. Strain dependence of band gaps and exciton energies in pure and mixed transition-metal dichalcogenides. Phys. Rev. B 2016, 94, 155310. [Google Scholar] [CrossRef] [Green Version]
- Li, M.; Wan, Y.; Tu, L.; Yang, Y.; Lou, J. The effect of VMoS3 point defect on the elastic properties of monolayer MoS2 with REBO potentials. Nanoscale Res. Lett. 2016, 11, 155. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Spirko, J.A.; Neiman, M.L.; Oelker, A.M.; Klier, K. Electronic structure and reactivity of defect MoS2 II. Bonding and activation of hydrogen on surface defect sites and clusters. Surf. Sci. 2004, 572, 191–205. [Google Scholar] [CrossRef]
- Wang, W.; Yang, C.; Bai, L.; Li, M.; Li, W. First-Principles Study on the Structural and Electronic Properties of Monolayer MoS2 with S-Vacancy under Uniaxial Tensile Strain. Nanomaterials 2018, 8, 74. [Google Scholar] [CrossRef] [Green Version]
- Nasiri, S.; Zaiser, M. Rupture of graphene sheets with randomly distributed defects. Aims Mater. Sci. 2016, 3, 1340–1349. [Google Scholar] [CrossRef]
- Chu, L.; Shi, J.; Ben, S. Buckling Analysis of Vacancy-Defected Graphene Sheets by the Stochastic Finite Element Method. Materials 2018, 11, 1545. [Google Scholar] [CrossRef] [Green Version]
- Wang, S.; Robertson, A.; Warner, J.H. Atomic structure of defects and dopants in 2D layered transition metal dichalcogenides Chem. Soc. Rev. 2018, 47, 6764. [Google Scholar] [CrossRef] [PubMed]
- Stewart, J.A.; Spearot, D.E. Atomistic simulations of nanoindentation on the basal plane of crystalline molybdenum disulfide (MoS2). Modelling Simul. Mater. Sci. Eng. 2013, 21, 45003. [Google Scholar] [CrossRef]
- Wei, L.; Jun-fang, C.; Qinyu, H.; Teng, W. Electronic and Elastic Properties of MoS2. Phys. B Condensed matter 2010, 405, 2498–2502. [Google Scholar] [CrossRef]
- Chen, Y.; Huang, S.; Ji, X.; Adepalli, K.; Yin, K.; Ling, X.; Wang, X.; Xue, J.; Dresselhaus, M.; Kong, J.; et al. Tuning Electronic Structure of Single-Layer MoS2 through Defect and Interface Engineering. ACS Nano 2018, 12, 2569–2579. [Google Scholar] [CrossRef] [Green Version]
- Hung, N.T.; Nugraha, A.R.; Saito, R. Two-dimensional MoS2 electromechanical actuators. J. Phys. D Appl. Phys. 2018, 51, 75306. [Google Scholar] [CrossRef] [Green Version]
- Hong, J.; Hu, Z.; Probert, M.; Li, K.; Lv, D.; Yang, X.; Zhang, J. Exploring atomic defects in molybdenum disulfide monolayers. Nat. Commun. 2015, 6, 6293. [Google Scholar] [CrossRef] [Green Version]
- Giannazzo, F.; Bosi, M.; Fabbri, F.; Schilirò, E.; Greco, G.; Roccaforte, F. Direct Probing of Grain Boundary Resistance in Chemical Vapor Deposition-Grown Monolayer MoS2 by Conductive Atomic Force Microscopy. Phys. Status Solidi RRL 2020, 14, 1900393. [Google Scholar] [CrossRef]
- Plimpton, S. Fast parallel algorithms for short-range molecular dynamics. J. Comput. Phys. 1995, 117, 1–19. [Google Scholar] [CrossRef] [Green Version]
- LAMMPS 2019. Available online: http://www.cs.sandia.gov/sjplimp/lammps.html (accessed on 7 August 2019).
- Kandemir, A.; Yapicioglu, H.; Kinaci, A.; CaÇin, T.; Sevik, C. Thermal transport properties of MoS2 and MoSe2 monolayers. Nanotechnology 2015, 27, 55703. [Google Scholar] [CrossRef] [Green Version]
- Wen, M.; Shirodkar, S.N.; Plech, P.; Kaxiras, E.; Elliott, R.S.; Tadmor1, E.B. A force-matching Stillinger-Weber potential for MoS2: Parameterization and Fisher information theory based sensitivity analysis. J. Appl. Phys. 2017, 122, 244301. [Google Scholar] [CrossRef]
- Xu, K.; Gabourie, A.J.; Hashemi, A.; Fan, Z.; Wei, N.; Farimani, A.B.; Ala-Nissila, T. Thermal transport in MoS2 from molecular dynamics using different empirical potentials. Phys. Rev. B 2019, 99, 54303. [Google Scholar] [CrossRef] [Green Version]
- Thomas, S.; Ajith, K.M.; Valsakumar, M.C. Directional anisotropy, finite size effect and elastic properties of hexagonal boron nitride. J. Phys. Condens. Matter 2016, 28, 295302. [Google Scholar] [CrossRef] [PubMed]
- Thomas, S.; Ajith, K.M.; Uck Lee, S.; Valsakumar, M.C. Assessment of the mechanical properties of monolayer graphene using the energy and strain fluctuation methods. RSC Adv. 2018, 8, 27283–27292. [Google Scholar] [CrossRef] [Green Version]
- Mouhat, F.; Coudert, F.X. Necessary and sufficient elastic stability conditions in various crystal systems Phys. Rev. B Condens. Matter Mater. Phys. 2014, 90, 224104. [Google Scholar] [CrossRef] [Green Version]
- Zhou, J.; Huang, R. Internal lattice relaxation of single-layer graphene under in-plane deformation. J. Mech. Phys. Solids 2008, 56, 1609–1623. [Google Scholar] [CrossRef]
- Stukowski, A. Visualization and analysis of atomistic simulation data with OVITO-the Open Visualization Tool. Model. Simul. Mater. Sci. Eng. 2010, 18, 15012. [Google Scholar] [CrossRef]
CODE | C11 [N/m] | C22 [N/m] | C12 [N/m] |
---|---|---|---|
This work | 149.42 | 149.42 | 52.29 |
Bertolazzi et al. [8] | 180 ± 60 | 180 ± 60 | – |
Li. M. et al. [19] | 148.4 | 148.4 | 42.9 |
Nguyen T.H. et al. [28] | 130.4 | 130.4 | 26.5 |
% of Defects | C11 [N/m] | SD S(σC11) | C22 [N/m] | SD (σC22) | C12 [N/m] | SD (σC12) |
---|---|---|---|---|---|---|
Pristine MoS2 | 149.42 | 149.42 | 52.29 | |||
Only 1-atom defect | 149.11 | 0.1070 | 149.04 | 0.1075 | 52.23 | 0.0460 |
1% | 149.01 | 0.4758 | 148.85 | 0.4935 | 52.15 | 0.2185 |
2% | 140.70 | 0.7898 | 141.51 | 0.7638 | 48.52 | 0.3836 |
5% | 128.89 | 1.0179 | 128.89 | 1.1328 | 43.25 | 0.5485 |
10% | 108.30 | 1.5842 | 107.94 | 1.7279 | 33.70 | 1.0182 |
15% | 94.21 | 2.2419 | 93.47 | 2.2325 | 28.75 | 1.4486 |
20% | 80.99 | 3.5597 | 78.46 | 3.2201 | 23.16 | 2.4461 |
25% | 61.15 | 3.2207 | 51.52 | 3.2868 | 10.67 | 2.2325 |
% of Diffusion | C11 [N/m] | SD (σC11) | C22 [N/m] | SD (σC22) | C12 [N/m] | SD (σC12) |
---|---|---|---|---|---|---|
0% w/o diffusion | 149.42 | 149.42 | 52.14 | |||
0.1% S→Mo | 147.03 | 0.0996 | 147.77 | 0.2300 | 51.29 | 0.0658 |
1% S→Mo | 145.82 | 0.3224 | 146.60 | 0.5541 | 50.77 | 0.1621 |
2% S→Mo | 143.98 | 0.4166 | 145.24 | 0.5991 | 50.38 | 0.1886 |
5% S→Mo | 139.69 | 0.6203 | 140.10 | 0.6698 | 48.39 | 0.2296 |
10% S→Mo | 133.91 | 0.8259 | 136.61 | 0.9077 | 46.04 | 0.2725 |
15% S→Mo | 127.40 | 0.9695 | 128.76 | 0.9829 | 41.25 | 0.3107 |
20% S→Mo | 118.75 | 0.9553 | 121.41 | 0.9556 | 36.62 | 0.3009 |
25% S→Mo | 61.15 | 1.016 | 51.52 | 0.9981 | 10.67 | 0.3607 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Akhter, M.J.; Kuś, W.; Mrozek, A.; Burczyński, T. Mechanical Properties of Monolayer MoS2 with Randomly Distributed Defects. Materials 2020, 13, 1307. https://doi.org/10.3390/ma13061307
Akhter MJ, Kuś W, Mrozek A, Burczyński T. Mechanical Properties of Monolayer MoS2 with Randomly Distributed Defects. Materials. 2020; 13(6):1307. https://doi.org/10.3390/ma13061307
Chicago/Turabian StyleAkhter, Mohammed Javeed, Wacław Kuś, Adam Mrozek, and Tadeusz Burczyński. 2020. "Mechanical Properties of Monolayer MoS2 with Randomly Distributed Defects" Materials 13, no. 6: 1307. https://doi.org/10.3390/ma13061307
APA StyleAkhter, M. J., Kuś, W., Mrozek, A., & Burczyński, T. (2020). Mechanical Properties of Monolayer MoS2 with Randomly Distributed Defects. Materials, 13(6), 1307. https://doi.org/10.3390/ma13061307