Synthesis and Characterization of LSX Zeolite/AC Composite from Elutrilithe
Abstract
:1. Introduction
2. Experimental
2.1. Materials
2.2. Preparation
- Gel formation: temperature (T1) 55–75 °C, time (t1) 6–48 h
- Aging: temperature (T2) 20 °C, time (t2) 0–48 h
- Crystallization: temperature (T3) 40–80 °C, time (t3) 0–96 h
- R1 ((Na2O + K2O)/Al2O3 Ratio): 6.1–8.4
- R2 (K2O/(K2O + Na2O) Ratio): 0.25–0.32
2.3. Characterization
2.4. Adsorption Isotherms of Gases
2.5. Phenol Adsorption Isotherms
3. Results and Discussion
3.1. Preparation of LSX/AC Composite
3.1.1. Gel Formation
3.1.2. Aging
3.1.3. Crystallization
3.2. The Alkali Levels
3.2.1. R1 ((Na2O + K2O)/Al2O3 Ratio)
3.2.2. R2 (K2O/(K2O + Na2O) Ratio)
3.3. Characterization
3.4. Gas Separation
3.5. Wastewater Treatment
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Wen, T.; Wang, J.; Yu, S.; Chen, Z.; Hayat, T.; Wang, X. Magnetic porous carbonaceous material produced from tea waste for efficient removal of As(V), Cr(VI), humic acid, and dyes. ACS Sustain. Chem. Eng. 2017, 5, 4371–4380. [Google Scholar] [CrossRef]
- Maciaagullo, J.A.; Moore, B.C.; Cazorlaamoros, D.; Linaressolano, A. Activation of coal tar pitch carbon fibres: Physical activation vs. chemical activation. Carbon 2004, 42, 1367–1370. [Google Scholar] [CrossRef]
- Li, Y.; Zhang, D.; He, J.; Wang, Y.; Zhang, X.; Zhang, Y.; Liu, X.; Wang, K.; Wang, Y. Hierarchical porous carbon nanosheet derived from waste engine oil for high-performance supercapacitor application. Sustain. Energy Fuels 2019, 3, 499–507. [Google Scholar] [CrossRef]
- Yang, L.; Qian, X.; Yuan, P.; Bai, H.; Miki, T.; Men, F.; Li, H.; Nagasaka, T. Green synthesis of zeolite 4A using fly ash fused with synergism of NaOH and Na2CO3. J. Clean. Prod. 2019, 212, 250–260. [Google Scholar] [CrossRef]
- Cardoso, A.M.; Horn, M.B.; Ferret, L.S.; Azevedo, C.M.N.; Pires, M. Integrated synthesis of zeolites 4A and Na-P1 using coal fly ash for application in the formulation of detergents and swine wastewater treatment. J. Hazard. Mater. 2015, 287, 69–77. [Google Scholar] [CrossRef]
- Kuroki, S.; Hashishin, T.; Morikawa, T.; Yamashita, K.; Matsuda, M. Selective synthesis of zeolites A and X from two industrial wastes: Crushed stone powder and aluminum ash. J. Environ. Manag. 2019, 231, 749–756. [Google Scholar] [CrossRef]
- Ma, J.; Sun, H.; Su, S.; Cheng, W.; Li, R. A novel double-function porous material: Zeolite-activated carbon extrudates from elutrilithe. J. Porous Mater. 2008, 15, 289–294. [Google Scholar] [CrossRef]
- Ma, J.; Tan, J.; Du, X.; Li, R. Effects of preparation parameters on the textural features of a granular zeolite/activated carbon composite material synthesized from elutrilithe and pitch. Micropor. Mesopor. Mater. 2010, 132, 458–463. [Google Scholar] [CrossRef]
- Li, Z.; Cui, X.; Ma, J.; Chen, W.; Gao, W.; Li, R. Preparation of granular X-type zeolite/activated carbon composite from elutrilithe by adding pitch and solid SiO2. Mater. Chem. Phys. 2014, 147, 1003–1008. [Google Scholar] [CrossRef]
- Russell, F.; Howe, A.C. The transformation of kaolin to low-silica X zeolite. Zeolites 1997, 19, 359–365. [Google Scholar]
- Caballero, I.; Colina, F.G.; Costa, J. Synthesis of X-type zeolite from dealuminated kaolin by reaction with sulfuric acid at high temperature. Ind. Eng. Chem. Res. 2007, 46, 1029–1038. [Google Scholar] [CrossRef]
- Günter, H.K. Crystallization of low-solica faujasite (SiO2/Al2O3 = 2.0). Zeolites 1987, 7, 451–457. [Google Scholar]
- Iwama, M.; Suzuki, Y.; Plévert, J.; Itabashi, K.; Ogura, M.; Okubo, T. Location of alkali ions and their relevance to crystallization of low silica X zeolite. Cryst. Growth Des. 2010, 10, 3471–3479. [Google Scholar] [CrossRef]
- Ballmoos, R.V.; Higgins, J.B. Collection of simulated XRD powder patterns for zeolites. Zeolites 2001, 10, 313. [Google Scholar]
- Kodasma, R.; Fermoso, J.; Sanna, A. Li-LSX-zeolite evaluation for post-combustion CO2 capture. Chem. Eng. J. 2019, 358, 1351–1362. [Google Scholar] [CrossRef]
- Hong, S.T.; Lee, J.W.; Hong, H.P.; Yoo, S.; Lin, J.S.; Yoo, K.P.; Park, H.S. Synthesis of LSX zeolite and characterization for nitrogen adsorption. Korean Chem. Eng. Res. 2007, 45, 161–165. [Google Scholar]
- Treacy, M.M.J.; Higgins, J.B. Collection of simulated XRD powder patterns for zeolites fifth revised edition. Appl. Catal. 2007, 21, 388–389. [Google Scholar]
- Breck, D.W.; Flanigen, E.M. Molecular Sieves. Sci. Am. 1973, 200, 85–94. [Google Scholar] [CrossRef]
- Garcia, G.; Cabrera, S.; Hedlund, J.; Mouzon, J. Selective synthesis of FAU-type zeolites. J. Cryst. Growth 2018, 489, 36–41. [Google Scholar] [CrossRef]
- Huyen, P.T.; Trinh, V.D.; Portilla, M.T.; Martínez, C. Influence of boron promotion on the physico-chemical properties and catalytic behavior of Zn/ZSM-5 in the aromatization of n-hexane. Catal. Today 2020. [Google Scholar] [CrossRef]
- De, L.A.; Uguina, M.A.; Covian, I.; Rodriguez, L. Synthesis of 13X zeolite from calcined kaolins and sodium silicate for use in detergents. Ind. Eng. Chem. Res. 1992, 31, 2134–2140. [Google Scholar]
- Colina, F.G.; Llorens, J. Study of the dissolution of dealuminated kaolin in sodium–potassium hydroxide during the gel formation step in zeolite X synthesis. Micropor. Mesopor. Mater. 2007, 100, 302–311. [Google Scholar] [CrossRef]
- El-Naggar, M.R.; El-Kamash, A.M.; El-Dessouky, M.I.; Ghonaim, A.K. Two-step method for preparation of NaA-X zeolite blend from fly ash for removal of cesium ions. J. Hazard. Mater. 2008, 154, 963–972. [Google Scholar] [CrossRef] [PubMed]
- Purnomo, C.W.; Salim, C.; Hinode, H. Synthesis of pure Na-X and Na-A zeolite from bagasse fly ash. Micropor. Mesopor. Mater. 2012, 162, 6–13. [Google Scholar] [CrossRef]
- Dalai, A.K.; Rao, M.S.; Gokhale, K.V.G.K. Synthesis of NaX zeolite using silica from rice husk ash. Ind. Eng. Chem. Res. 1985, 24, 465–468. [Google Scholar] [CrossRef]
- Chang, H.L.; Shih, W.H. Synthesis of Zeolites A and X from Fly Ashes and Their Ion-Exchange Behavior with Cobalt Ions. Ind. Eng. Chem. Res. 2000, 39, 4185–4191. [Google Scholar] [CrossRef]
- Daems, I.; Leflaive, P.; Méthivier, A.; Baron, G.V.; Denayer, J.F.M. Influence of Si:Al-ratio of faujasites on the adsorption of alkanes, alkenes and aromatics. Micropor. Mesopor. Mater. 2006, 96, 149–156. [Google Scholar] [CrossRef]
- Xue, C.; Hao, W.; Cheng, W.; Ma, J.; Li, R. CO adsorption performance of CuCl/activated carbon by simultaneous reduction–dispersion of mixed Cu(II) salts. Materials 2019, 12, 1605. [Google Scholar] [CrossRef] [Green Version]
- Kim, A.; Yoon, T.U.; Kim, S.I.; Cho, K.; Han, S.S.; Bae, Y.S. Creating high CO/CO2 selectivity and large CO working capacity through facile loading of Cu(I) species into an iron-based mesoporous metal-organic framework. Chem. Eng. J. 2018, 348, 135–142. [Google Scholar] [CrossRef]
- Cavenati, S.; Grande, C.A.; Rodrigues, A.E. Adsorption equilibrium of methane, carbon dioxide, and nitrogen on zeolite 13X at high pressures. J. Chem. Eng. Data 2004, 49, 1095–1101. [Google Scholar] [CrossRef]
- Choudhary, V.R.; Mayadevi, S.; Singh, A.P. Sorption isotherms of methane, ethane, ethene and carbon dioxide on NaX, NaY and Na-mordenite zeolites. Phys. Chem. Chem. Phys. 1995, 91, 2935. [Google Scholar] [CrossRef]
- Shao, W.; Zhang, L.; Li, L.; Lee, R. Adsorption of CO2 and N2 on synthesized NaY zeolite at high temperatures. Adsorption 2009, 15, 497–505. [Google Scholar] [CrossRef]
- Saha, D.; Bao, Z.; Jia, F.; Deng, S. Adsorption of CO2, CH4, N2O, and N2 on MOF-5, MOF-177, and zeolite 5A. Environ. Sci. Technol. 2010, 44, 1820–1826. [Google Scholar] [CrossRef] [PubMed]
- Leonova, A.A.; Melgunov, M.S. Alteration of adsorption selectivity of LSX Zeolite in Li+ and H+ forms towards CO2 and N2O. Catal. Sustain. Energy 2017, 4, 31–35. [Google Scholar] [CrossRef]
- Cheng, W.; Gao, W.; Cui, X.; Ma, J.H.; Li, R.F. Phenol adsorption equilibrium and kinetics on zeolite X/activated carbon composite. J. Taiwan Inst. Chem. Eng. 2016, 62, 192–198. [Google Scholar] [CrossRef]
Samples | SBET (m2/g) | Smic (m2/g) | Sext (m2/g) | Vmic (cm3/g) | Vtotal (cm3/g) | Si/Al |
---|---|---|---|---|---|---|
LSX/AC | 465 | 340 | 125 | 0.174 | 0.407 | 1.06 |
LSX | 532 | 507 | 25 | 0.265 | 0.300 | 1 |
Adsorbent | Adsorption Capacity (cm3·g−1) | ISF at 100 kPa | Working Capacity (cm3·g−1) | References | |||
---|---|---|---|---|---|---|---|
CO2 | CH4 | N2 | CO2/CH4 | CO2/N2 | |||
13X a | 110.0 | 15.9 | 6.1 | 6.9 | 18.0 | 34.1 | [30] |
NaY a | 97.8 | 11.2 | 6.5 | 7.3 | 18.4 | 35.6 | [31,32] |
5A b | 115.6 | 20.6 | 13.5 | 5.6 | 8.5 | 32.8 | [33] |
LSX c | 99.3 | - | - | - | - | 30.5 | [34] |
LSX/AC b | 62.4 | 8.6 | 3.4 | 7.3 | 18.3 | 38.4 | This work |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xue, C.; Wei, X.; Zhang, Z.; Bai, Y.; Li, M.; Chen, Y. Synthesis and Characterization of LSX Zeolite/AC Composite from Elutrilithe. Materials 2020, 13, 3469. https://doi.org/10.3390/ma13163469
Xue C, Wei X, Zhang Z, Bai Y, Li M, Chen Y. Synthesis and Characterization of LSX Zeolite/AC Composite from Elutrilithe. Materials. 2020; 13(16):3469. https://doi.org/10.3390/ma13163469
Chicago/Turabian StyleXue, Cailong, Xiaoqin Wei, Zhengwei Zhang, Yang Bai, Mengxue Li, and Yongqiang Chen. 2020. "Synthesis and Characterization of LSX Zeolite/AC Composite from Elutrilithe" Materials 13, no. 16: 3469. https://doi.org/10.3390/ma13163469
APA StyleXue, C., Wei, X., Zhang, Z., Bai, Y., Li, M., & Chen, Y. (2020). Synthesis and Characterization of LSX Zeolite/AC Composite from Elutrilithe. Materials, 13(16), 3469. https://doi.org/10.3390/ma13163469