Controlled Synthesis of Visible Light Active CuxS Photocatalyst: The Effect of Heat Treatment on Their Adsorption Capacity and Photoactivity
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Synthesis of Cu2S Microparticles
2.3. Calcination of CuxS Microparticles
2.4. Characterization Methods
2.5. Assessment of the Photocatalytic Efficiencies
3. Results and Discussion
3.1. Structural Characterization of CuxS Materials
- with EDTA (CuxSCl_EDTA), the microparticles were plate-shaped, but after the heat treatment (CuxSCl_EDTA_C), microspheres made from plates appeared;
- using PVP as the stabilizing agent, the sample showed spherical morphology (CuxSCl_PVP), which was partially deteriorated after the heat treatment process (CuxSCl_PVP_C).
3.2. Investigation of Photocatalytic Properties of the CuxS Materials
- (1)
- The first approach was to compare materials synthesized from different precursors (without additional heat treatment): starting from copper acetate (CuxSAc_EDTA and CuxSAc_PVP), neither of the semiconductors were active. However, the samples prepared from copper (II) chloride (CuxSCl_EDTA and CuxSCl_PVP) showed significant activity toward the degradation of methyl orange, achieving 78% and 30% conversion values.
- (2)
- As a result of the heat treatment, the activity of all the samples increased. Since the XRD and SEM results do not fully explain the differences in activity, the origin of this performance needed to be verified; therefore, the degree of adsorption was investigated, which might significantly affect the final degradation result. Therefore, it was essential to determine the specific surface area of all the samples.
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Liu, G.; Schulmeyer, T.; Brötz, J.; Klein, A.; Jaegermann, W. Interface properties and band alignment of Cu2S/CdS thin film solar cells. Thin Solid Films 2003, 431–432, 477–482. [Google Scholar] [CrossRef]
- Mane, R.S.; Lokhande, C.D. Chemical deposition method for metal chalcogenide thin films. Mater. Chem. Phys. 2000, 65, 1–31. [Google Scholar] [CrossRef]
- Sagade, A.A.; Sharma, R. Copper sulphide (CuxS) as an ammonia gas sensor working at room temperature. Sens. Actuators B Chem. 2008, 133, 135–143. [Google Scholar] [CrossRef]
- Hsu, S.W.; Bryks, W.; Tao, A.R. Effects of carrier density and shape on the localized surface plasmon resonances of Cu2−xS Nanodisks. Chem. Mater. 2012, 24, 3765–3771. [Google Scholar] [CrossRef]
- Zhao, Y.; Pan, H.; Lou, Y.; Qiu, X.; Zhu, J.; Burda, C. Plasmonic Cu 2-xS nanocrystals: Optical and structural properties of copper-deficient copper(I) sulfides. J. Am. Chem. Soc. 2009, 131, 4253–4261. [Google Scholar] [CrossRef] [PubMed]
- Gupta, V.K.; Pathania, D.; Agarwal, S.; Singh, P. Adsorptional photocatalytic degradation of methylene blue onto pectin-CuS nanocomposite under solar light. J. Hazard. Mater. 2012, 243, 179–186. [Google Scholar] [CrossRef]
- Hierro, L.; Camarena, C.; Díaz, M.C.; De La Vega, A.; Frauca, E.; Muñoz Bartolo, G.; González De Zárate, A.; Bortolotti, F.; Guido, M.; Larrauri, J.; et al. La esteatosis en niños con hepatitis crónica C genotipo 1 tiene relación con el índice de masa corporal. Pediatrika 2007, 27, 20. [Google Scholar]
- Qin, Y.L.; Zhao, W.W.; Sun, Z.; Liu, X.Y.; Shi, G.L.; Liu, Z.Y.; Ni, D.R.; Ma, Z.Y. Photocatalytic and adsorption property of ZnS–TiO2/RGO ternary composites for methylene blue degradation. Adsorpt. Sci. Technol. 2019, 37, 764–776. [Google Scholar] [CrossRef] [Green Version]
- Brelle, M.C.; McNulty, J.C.; Zhang, J.Z.; Torres-Martinez, C.L.; Mehra, R.K. Synthesis and characterization of CuxS nanoparticles. Nature of the infrared band and charge-carrier dynamics. Pure Appl. Chem. 2000, 72, 101–117. [Google Scholar] [CrossRef]
- Tian, Q.; Hu, J.; Zhu, Y.; Zou, R.; Chen, Z.; Yang, S.; Li, R.; Su, Q.; Han, Y.; Liu, X. Sub-10 nm Fe3O4@Cu2−xS Core−Shell Nanoparticles for Dual-Modal Imaging and Photothermal Therapy. J. Am. Chem. Soc. 2013, 135, 8571–8577. [Google Scholar] [CrossRef]
- Bagul, S.V.; Chavhan, S.D.; Sharma, R. Growth and characterization of CuxS (x ¼ 1.0, 1.76, and 2.0) thin films grown by solution growth technique (SGT). J. Phys. Chem. Solids 2007, 68, 1623–1629. [Google Scholar]
- Pathan, H.M.; Desai, J.D.; Lokhande, C.D. Modified chemical deposition and physico-chemical properties of copper sulphide (Cu 2 S) thin films. Appl. Surf. Sci. 2002, 202, 47–56. [Google Scholar] [CrossRef]
- Reijnen, L.; Meester, B.; Goossens, A.; Schoonman, J. Nanoporous TiO2/Cu1.8S heterojunctions for solar energy conversion. Mater. Sci. Eng. C 2002, 19, 311–314. [Google Scholar] [CrossRef]
- Kalanur, S.S.; Seo, H. Synthesis of CuxS Thin Films with Tunable Localized Surface Plasmon Resonances. ChemistrySelect 2018, 3, 5920–5926. [Google Scholar] [CrossRef]
- Yang, Z.; Zhang, S.; Zheng, X.; Fu, Y.; Zheng, J. Controllable synthesis of copper sulfide for nonenzymatic hydrazine sensing. Sens. Actuators B Chem. 2018, 255, 2643–2651. [Google Scholar] [CrossRef]
- Chen, K.; Xue, D. Chemoaffinity-mediated crystallization of Cu2O: A reaction effect on crystal growth and anode property. CrystEngComm 2013, 15, 1739–1746. [Google Scholar] [CrossRef]
- Cheng, G.; Xie, S.; Lan, B.; Zheng, X.; Ye, F.; Sun, M.; Lu, X.; Yu, L. Phase controllable synthesis of three-dimensional star-like MnO2 hierarchical architectures as highly efficient and stable oxygen reduction electrocatalysts. J. Mater. Chem. A 2016, 4, 16462–16468. [Google Scholar] [CrossRef]
- Wang, Q.; Li, T.; Xie, P.; Ma, J. MgO nanolayering of Cu2O semiconductors enhances photoreactivity: Superoxide radicals boost. J. Environ. Chem. Eng. 2017, 5, 2648–2657. [Google Scholar] [CrossRef]
- Liu, F.; Wu, J.; Chen, K.; Xue, D. Morphology Study by Using Scanning Electron Microscopy. Education 2010, 1781–1792. [Google Scholar]
- Almeida, M.; Alcácer, L. Growth of large single crystals of triethylammonium BIS-tetracyanoquinodimethane - TEA (TCNQ)2. J. Cryst. Growth 1983, 62, 183–188. [Google Scholar] [CrossRef]
- Boey, H.T.; Tan, W.L.; Abu Bakar, N.H.H.; Abu Bakar, M.; Ismail, J. Formation and Morphology of Colloidal Chitosan-Stabilized Copper Sulfides. J. Phys. Sci. 2007, 18, 87–101. [Google Scholar]
- Fisher, A.E.O.; Naughton, D.P. Copper(II) complex of the chelating agent EDTA bis(tyrosine). J. Struct. Chem. 2006, 47, 87–90. [Google Scholar] [CrossRef]
- Lianos, P.; Thomas, J.K. Small CdS particles in inverted micelles. J. Colloid Interface Sci. 1987, 117, 505–512. [Google Scholar] [CrossRef]
- Zhang, Y.C.; Qiao, T.; Hu, X.Y. A simple hydrothermal route to nanocrystalline CuS. J. Cryst. Growth 2004, 268, 64–70. [Google Scholar] [CrossRef]
- Wang, Q.; Xu, Z.; Yin, H.; Nie, Q. Fabrication of transition metal sulfides nanocrystallites via an ethylenediamine-assisted route. Mater. Chem. Phys. 2005, 90, 73–77. [Google Scholar] [CrossRef]
- Shen, G.; Chen, D.; Tang, K.; Liu, X.; Huang, L.; Qian, Y. General synthesis of metal sulfides nanocrystallines via a simple polyol route. J. Solid State Chem. 2003, 173, 232–235. [Google Scholar] [CrossRef]
- Jagminas, A.; Niaura, G.; Judžentien≐, A.; Jušk≐nas, R. Spectroscopic evidence of a novel array ac fabrication within the alumina template pores from acidic Cu(II)-thiourea solution. Appl. Surf. Sci. 2004, 239, 72–78. [Google Scholar] [CrossRef]
- Patel, T.A.; Balasubramanian, C.; Panda, E. Role of reducing agent and self-sacrificed copper-thiourea complex in the synthesis of precisely controlled Cu2−xS microtubes. J. Cryst. Growth 2019, 505, 26–32. [Google Scholar] [CrossRef]
- Suja, R.; Geetha, D.; Ramesh, P. Preparation and characterization of CuS Nanomaterials by solvothermal method. Int. J. Sci. Eng. Res. 2013, 4, 1–3. [Google Scholar]
- Hmurcik, L.; Serway, R.A. Heat-treatment studies on thin-film CdS/CuxS solar cells. J. Appl. Phys. 1982, 53, 9073–9079. [Google Scholar] [CrossRef]
- Dai, X.; Han, Z.; Waterhouse, G.I.N.; Fan, H.; Ai, S. Ordered graphitic carbon nitride tubular bundles with efficient electron-hole separation and enhanced photocatalytic performance for hydrogen generation. Appl. Catal. A Gen. 2018, 566, 200–206. [Google Scholar] [CrossRef]
- Ingham, B.; Toney, M.F. X-ray diffraction for characterizing metallic films. In Metallic Films for Electronic, Optical and Magnetic Applications; Barmark, K., Coffey, K., Eds.; Woodhead Publishing: Sawston, UK, 2014; pp. 3–38. [Google Scholar]
- Díaz, E.; Valenciano, R.B.; Katime, I.A. Study of complexes of poly(vinyl pyrrolidone) with copper and cobalt on solid state. J. Appl. Polym. Sci. 2004, 93, 1512–1518. [Google Scholar] [CrossRef]
- Li, S.; Yu, K.; Wang, Y.; Zhang, Z.; Song, C.; Yin, H.; Ren, Q.; Zhu, Z. Cu2S@ZnO hetero-nanostructures: Facile synthesis, morphology-evolution and enhanced photocatalysis and field emission properties. CrystEngComm 2013, 15, 1753–1761. [Google Scholar] [CrossRef]
- Chen, K.; Xue, D. Crystallisation of cuprous oxide. Int. J. Nanotechnol. 2013, 10, 4. [Google Scholar]
- Ishii, M.; Shibata, K.; Nozaki, H. Anion Distributions and Phase Transitions in CuS1−x)Sex(x = 0 − 1) Studied by Raman Spectroscopy. J. Solid State Chem. 1993, 105, 504–511. [Google Scholar] [CrossRef]
- Hurma, T.; Kose, S. XRD Raman analysis and optical properties of CuS nanostructured film. Optik (Stuttg). 2016, 127, 6000–6006. [Google Scholar] [CrossRef]
- Pascariu, P.; Homocianu, M.; Cojocaru, C.; Samoila, P.; Airinei, A.; Suchea, M. Preparation of La doped ZnO ceramic nanostructures by electrospinning–calcination method: Effect of La3+ doping on optical and photocatalytic properties. Appl. Surf. Sci. 2019, 476, 16–27. [Google Scholar] [CrossRef]
- Inturi, S.N.R.; Boningari, T.; Suidan, M.; Smirniotis, P.G. Visible-light-induced photodegradation of gas phase acetonitrile using aerosol-made transition metal (V, Cr, Fe, Co, Mn, Mo, Ni, Cu, Y, Ce, and Zr) doped TiO2. Appl. Catal. B Environ. 2014, 144, 333–342. [Google Scholar] [CrossRef]
- Wan, Z.; Hu, M.; Hu, B.; Yan, T.; Wang, K.; Wang, X. Vacancy induced photocatalytic activity of la doped In(OH)3 for CO2 reduction with water vapor. Catal. Sci. Technol. 2020, 10, 2893–2904. [Google Scholar] [CrossRef]
- Herrmann, J.M. Photocatalysis fundamentals revisited to avoid several misconceptions. Appl. Catal. B Environ. 2010, 99, 461–468. [Google Scholar] [CrossRef]
- Malato, S.; Fernández-Ibáñez, P.; Maldonado, M.I.; Blanco, J.; Gernjak, W. Decontamination and disinfection of water by solar photocatalysis: Recent overview and trends. Catal. Today 2009, 147, 1–59. [Google Scholar] [CrossRef]
Sample | Precursor | Stabilizing Agent | Calcination |
---|---|---|---|
CuxSAc_EDTA | Cu(Ac)2·H2O | EDTA | ø |
CuxSAc_EDTA_C | 250 °C, 3 h | ||
CuxSAc_PVP | PVP | ø | |
CuxSAc_PVP_C | 250 °C, 3 h | ||
CuxSCl_EDTA | CuCl2·H2O | EDTA | ø |
CuxSCl_EDTA_C | 250 °C, 3 h | ||
CuxSCl_PVP | PVP | ø | |
CuxSCl_PVP_C | 250 °C, 3 h |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fodor, S.; Baia, L.; Hernádi, K.; Pap, Z. Controlled Synthesis of Visible Light Active CuxS Photocatalyst: The Effect of Heat Treatment on Their Adsorption Capacity and Photoactivity. Materials 2020, 13, 3665. https://doi.org/10.3390/ma13173665
Fodor S, Baia L, Hernádi K, Pap Z. Controlled Synthesis of Visible Light Active CuxS Photocatalyst: The Effect of Heat Treatment on Their Adsorption Capacity and Photoactivity. Materials. 2020; 13(17):3665. https://doi.org/10.3390/ma13173665
Chicago/Turabian StyleFodor, Szilvia, Lucian Baia, Klára Hernádi, and Zsolt Pap. 2020. "Controlled Synthesis of Visible Light Active CuxS Photocatalyst: The Effect of Heat Treatment on Their Adsorption Capacity and Photoactivity" Materials 13, no. 17: 3665. https://doi.org/10.3390/ma13173665
APA StyleFodor, S., Baia, L., Hernádi, K., & Pap, Z. (2020). Controlled Synthesis of Visible Light Active CuxS Photocatalyst: The Effect of Heat Treatment on Their Adsorption Capacity and Photoactivity. Materials, 13(17), 3665. https://doi.org/10.3390/ma13173665