An Algorithm to Optimize the Micro-Geometrical Dimensions of Scaffolds with Spherical Pores
Abstract
:1. Introduction
2. Materials and Methods
2.1. Unit Cell Geometry
2.2. Scaffold Model and Applied Boundary and Loading Conditions
2.3. A Brief Outline of the Mechano-Regulation Model Implemented to Determine the Scaffold Optimal Geometry
1 < S < 3 → Chondrocytes (Cartilage)
0.53 < S < 1 → Osteoblasts (Immature bone)
0.01 < S < 0.53 → Osteoblasts (Mature bone)
0 < S < 0.01 → Bone resorption
2.4. Optimization Algorithm
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Ghassemi, T.; Shahroodi, A.; Ebrahimzadeh, M.H.; Mousavian, A.; Movaffagh, J.; Moradi, A. Current concepts in scaffolding for bone tissue engineering. Arch. Bone Jt. Surg. 2018, 6, 90–99. [Google Scholar] [PubMed]
- Castro, A.P.G.; Lacroix, D. Micromechanical study of the load transfer in a polycaprolactone–collagen hybrid scaffold when subjected to unconfined and confined compression. Biomech. Model. Mechanobiol. 2018, 17, 531–541. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Castro, A.P.G.; Pires, T.; Santos, J.E.; Gouveia, B.P.; Fernandes, P.R. Permeability versus design in TPMS scaffolds. Materials 2019, 12, 1313. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gleadall, A.; Visscher, D.; Yang, J.; Thomas, D.; Segal, J. Review of additive manufactured tissue engineering scaffolds: Relationship between geometry and performance. Burn. Trauma 2018, 6. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abbasi, N.; Ivanovski, S.; Gulati, K.; Love, R.M.; Hamlet, S. Role of offset and gradient architectures of 3-D melt electrowritten scaffold on differentiation and mineralization of osteoblasts. Biomater. Res. 2020, 24, 2. [Google Scholar] [CrossRef] [PubMed]
- Kundu, J.; Pati, F.; Shim, J.H.; Cho, D.W. Rapid Prototyping Technology for Bone Regeneration; Woodhead Publishing Limited: Cambridge, UK, 2014; ISBN 9780857095992. [Google Scholar]
- Zadpoor, A.A. Bone tissue regeneration: The role of scaffold geometry. Biomater. Sci. 2015, 3, 231–245. [Google Scholar] [CrossRef]
- Kelly, C.N.; Miller, A.T.; Hollister, S.J.; Guldberg, R.E.; Gall, K. Design and Structure–Function Characterization of 3D Printed Synthetic Porous Biomaterials for Tissue Engineering. Adv. Healthc. Mater. 2018, 7, 1–16. [Google Scholar] [CrossRef]
- Sanz-Herrera, J.A.; Doblaré, M.; García-Aznar, J.M. Scaffold microarchitecture determines internal bone directional growth structure: A numerical study. J. Biomech. 2010, 43, 2480–2486. [Google Scholar] [CrossRef]
- Ly, H.B.; Le Droumaguet, B.; Monchiet, V.; Grande, D. Designing and modeling doubly porous polymeric materials. Eur. Phys. J. Spec. Top. 2015, 224, 1689–1706. [Google Scholar] [CrossRef]
- Soro, N.; Attar, H.; Wu, X.; Dargusch, M.S. Investigation of the structure and mechanical properties of additively manufactured Ti-6Al-4V biomedical scaffolds designed with a Schwartz primitive unit-cell. Mater. Sci. Eng. A 2019, 745, 195–202. [Google Scholar] [CrossRef]
- Ambu, R.; Morabito, A.E. Porous scaffold design based on minimal surfaces: Development and assessment of variable architectures. Symmetry 2018, 10, 361. [Google Scholar] [CrossRef] [Green Version]
- Ambu, R.; Morabito, A.E. Modeling, assessment, and design of porous cells based on schwartz primitive surface for bone scaffolds. Sci. World J. 2019, 2019, 7060847. [Google Scholar] [CrossRef] [PubMed]
- Prendergast, P.J.; Huiskes, R.; Søballe, K. Biophysical stimuli on cells during tissue differentiation at implant interfaces. J. Biomech. 1997, 30, 539–548. [Google Scholar] [CrossRef] [Green Version]
- Boccaccio, A.; Fiorentino, M.; Uva, A.E.; Laghetti, L.N.; Monno, G. Rhombicuboctahedron unit cell based scaffolds for bone regeneration: Geometry optimization with a mechanobiology–driven algorithm. Mater. Sci. Eng. C 2018, 83, 51–66. [Google Scholar] [CrossRef] [PubMed]
- Rodríguez-Montaño, Ó.L.; Cortés-Rodríguez, C.J.; Naddeo, F.; Uva, A.E.; Fiorentino, M.; Naddeo, A.; Cappetti, N.; Gattullo, M.; Monno, G.; Boccaccio, A. Irregular Load Adapted Scaffold Optimization: A Computational Framework Based on Mechanobiological Criteria. ACS Biomater. Sci. Eng. 2019, 5, 5392–5411. [Google Scholar] [CrossRef]
- Percoco, G.; Uva, A.E.; Fiorentino, M.; Gattullo, M.; Manghisi, V.M.; Boccaccio, A. Mechanobiological approach to design and optimize bone tissue scaffolds 3D printed with fused deposition modeling: A feasibility study. Materials 2020, 13, 648. [Google Scholar] [CrossRef] [Green Version]
- Rodríguez-Montaño, Ó.L.; Cortés-Rodríguez, C.J.; Uva, A.E.; Fiorentino, M.; Gattullo, M.; Monno, G.; Boccaccio, A. Comparison of the mechanobiological performance of bone tissue scaffolds based on different unit cell geometries. J. Mech. Behav. Biomed. Mater. 2018, 83, 28–45. [Google Scholar] [CrossRef]
- Byrne, D.P.; Lacroix, D.; Planell, J.A.; Kelly, D.J.; Prendergast, P.J. Simulation of tissue differentiation in a scaffold as a function of porosity, Young’s modulus and dissolution rate: Application of mechanobiological models in tissue engineering. Biomaterials 2007, 28, 5544–5554. [Google Scholar] [CrossRef]
- Boccaccio, A.; Uva, A.E.; Fiorentino, M.; Lamberti, L.; Monno, G. A mechanobiology-based algorithm to optimize the microstructure geometry of bone tissue scaffolds. Int. J. Biol. Sci. 2016, 12, 1–17. [Google Scholar] [CrossRef] [Green Version]
- Boccaccio, A.; Uva, A.E.; Fiorentino, M.; Mori, G.; Monno, G. Geometry design optimization of functionally graded scaffolds for bone tissue engineering: A mechanobiological approach. PLoS ONE 2016, 11, e0146935. [Google Scholar] [CrossRef]
- Tanaka, M.; Matsugaki, A.; Ishimoto, T.; Nakano, T. Evaluation of crystallographic orientation of biological apatite in vertebral cortical bone in ovariectomized cynomolgus monkeys treated with minodronic acid and alendronate. J. Bone Miner. Metab. 2016, 34, 234–241. [Google Scholar] [CrossRef] [PubMed]
- Noyama, Y.; Nakano, T.; Ishimoto, T.; Sakai, T.; Yoshikawa, H. Design and optimization of the oriented groove on the hip implant surface to promote bone microstructure integrity. Bone 2013, 52, 659–667. [Google Scholar] [CrossRef] [PubMed]
- Liebi, M.; Georgiadis, M.; Menzel, A.; Schneider, P.; Kohlbrecher, J.; Bunk, O.; Guizar-Sicairos, M. Nanostructure surveys of macroscopic specimens by small-angle scattering tensor tomography. Nature 2015, 527, 349–352. [Google Scholar] [CrossRef] [PubMed]
- Melchels, F.P.W.; Feijen, J.; Grijpma, D.W. A review on stereolithography and its applications in biomedical engineering. Biomaterials 2010, 31, 6121–6130. [Google Scholar] [CrossRef] [Green Version]
- Li, J.; Chen, M.; Fan, X.; Zhou, H. Recent advances in bioprinting techniques: Approaches, applications and future prospects. J. Transl. Med. 2016, 14, 271. [Google Scholar] [CrossRef] [Green Version]
- Liao, W.; Xu, L.; Wangrao, K.; Du, Y.; Xiong, Q.; Yao, Y. Three-dimensional printing with biomaterials in craniofacial and dental tissue engineering. PeerJ 2019, 2019, e727. [Google Scholar] [CrossRef] [Green Version]
- Singh, J.P.; Pandey, P.M. Fitment study of porous polyamide scaffolds fabricated from selective laser sintering. Procedia Eng. 2013, 59, 59–71. [Google Scholar] [CrossRef] [Green Version]
- Pircher, N.; Fischhuber, D.; Carbajal, L.; Strauß, C.; Nedelec, J.M.; Kasper, C.; Rosenau, T.; Liebner, F. Preparation and Reinforcement of Dual-Porous Biocompatible Cellulose Scaffolds for Tissue Engineering. Macromol. Mater. Eng. 2015, 300, 911–924. [Google Scholar] [CrossRef] [Green Version]
- Diego, R.B.; Olmedilla, M.P.; Aroca, A.S.; Ribelles, J.L.G.; Pradas, M.M.; Ferrer, G.G.; Sanchez, M.S. Acrylic scaffolds with interconnected spherical pores and controlled hydrophilicity for tissue engineering. J. Mater. Sci. 2005, 40, 4881–4887. [Google Scholar] [CrossRef]
- Chevalier, Y.; Pahr, D.; Allmer, H.; Charlebois, M.; Zysset, P. Validation of a voxel-based FE method for prediction of the uniaxial apparent modulus of human trabecular bone using macroscopic mechanical tests and nanoindentation. J. Biomech. 2007, 40, 3333–3340. [Google Scholar] [CrossRef]
- Zysset, P.K.; Edward Guo, X.; Edward Hoffler, C.; Moore, K.E.; Goldstein, S.A. Elastic modulus and hardness of cortical and trabecular bone lamellae measured by nanoindentation in the human femur. J. Biomech. 1999, 32, 1005–1012. [Google Scholar] [CrossRef]
- Snyder, B.; Hayes, W. Multiaxial Structure-Property Relations in Trabecular Bone. In Biomechanics of Diarthrodial Joints; Springer: New York, NY, USA, 1990; Volume 2, pp. 31–59. ISBN 978-1-4612-8016-3. [Google Scholar]
Constraint Equation for Ds | Topology | Constraint Equation for Dc |
---|---|---|
if 0 < Ds ≤ Luc → | Small topology (S) → | 0 < Dc ≤ Ds/ |
if Luc < Ds ≤ Luc × → | Large topology (L) → | < Dc ≤ Ds/ |
Material Property | Granulation Tissue | Scaffold |
---|---|---|
Young’s modulus [MPa] | 0.2 | 1000 |
Poisson’s ratio | 0.167 | 0.3 |
Permeability [m4/(Ns)] | 1 × 10−14 | 1 × 10−14 |
Porosity | 0.8 | 0.5 |
Bulk modulus grain [MPa] | 2300 | 13,920 |
Bulk modulus fluid [MPa] | 2300 | 2300 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rodríguez-Montaño, Ó.L.; Cortés-Rodríguez, C.J.; Uva, A.E.; Fiorentino, M.; Gattullo, M.; Manghisi, V.M.; Boccaccio, A. An Algorithm to Optimize the Micro-Geometrical Dimensions of Scaffolds with Spherical Pores. Materials 2020, 13, 4062. https://doi.org/10.3390/ma13184062
Rodríguez-Montaño ÓL, Cortés-Rodríguez CJ, Uva AE, Fiorentino M, Gattullo M, Manghisi VM, Boccaccio A. An Algorithm to Optimize the Micro-Geometrical Dimensions of Scaffolds with Spherical Pores. Materials. 2020; 13(18):4062. https://doi.org/10.3390/ma13184062
Chicago/Turabian StyleRodríguez-Montaño, Óscar Libardo, Carlos Julio Cortés-Rodríguez, Antonio Emmanuele Uva, Michele Fiorentino, Michele Gattullo, Vito Modesto Manghisi, and Antonio Boccaccio. 2020. "An Algorithm to Optimize the Micro-Geometrical Dimensions of Scaffolds with Spherical Pores" Materials 13, no. 18: 4062. https://doi.org/10.3390/ma13184062
APA StyleRodríguez-Montaño, Ó. L., Cortés-Rodríguez, C. J., Uva, A. E., Fiorentino, M., Gattullo, M., Manghisi, V. M., & Boccaccio, A. (2020). An Algorithm to Optimize the Micro-Geometrical Dimensions of Scaffolds with Spherical Pores. Materials, 13(18), 4062. https://doi.org/10.3390/ma13184062