Implementing FDM 3D Printing Strategies Using Natural Fibers to Produce Biomass Composite
Abstract
:1. Introduction
2. Article Structure
3. Materials
4. Mechanical Properties
5. Printing Failures and Issues
6. Discussion
7. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- 3D Printing Scales up, The Economist. 5 September 2013. Available online: https://www.economist.com/technology-quarterly/2013/09/05/3d-printing-scales-up (accessed on 8 September 2020).
- Hull, C.W. Apparatus for Production of Three-Dimensional Objects by Stereolithography. U.S. Patent 4575330A, 11 March 1986. Available online: https://patents.google.com/patent/US4575330A/en (accessed on 8 September 2020).
- Learning Course: Additive Manufacturing—Additive Fertigung. Tmg-muenchen.de. Available online: https://www.tmg-muenchen.de/training-course/11/Additive-Manufacturing?flang=en (accessed on 8 September 2020).
- Fu, K.; Yao, Y.; Dai, J.; Hu, L. Progress in 3D Printing of carbon materials for energy-related applications. Adv. Mater. 2017, 29, 1603486. [Google Scholar] [CrossRef] [PubMed]
- Aimar, A.; Palermo, A.; Innocenti, B. The role of 3D printing in medical applications: A state of the art. J. Healthc. Eng. 2019, 2019, 5340616. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gunasekera, D.H.; Kuek, S.; Hasanaj, D.; He, Y.; Tuck, C.; Croft, A.K.; Wildman, R.D. Three dimensional ink-jet Printing of biomaterials using ionic liquids and co-solvents. Faraday Discuss. 2016, 190, 509–523. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jungst, T.; Smolan, W.; Schacht, K.; Scheibel, T.; Groll, J. Strategies and molecular design criteria for 3D printable hydrogels. Chem. Rev. 2016, 116, 1496–1539. [Google Scholar] [CrossRef] [PubMed]
- Murphy, S.V.; Atala, A. 3D bioprinting of tissues and organs. Nat. Biotechnol. 2014, 32, 773–785. [Google Scholar] [CrossRef] [PubMed]
- Melocchi, A.; Parietti, F.; Maroni, A.; Foppoli, A.; Gazzaniga, A.; Zema, L. Hot-melt extruded filaments based on pharmaceutical grade polymers for 3D Printing by fused deposition modelling. Int. J. Pharm. 2016, 509, 255–263. [Google Scholar] [CrossRef]
- Truby, R.L.; Lewis, J.A. Printing soft matter in three dimensions. Nature 2016, 540, 371–378. [Google Scholar] [CrossRef]
- Mazzanti, V.; Malagutti, L.; Mollica, F. FDM 3D printing of polymers containing natural fillers: A review of their mechanical properties. Polymers 2019, 11, 1094. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Henke, K.; Treml, S. Wood based bulk material in 3D printing processes for applications in construction. Eur. J. Wood Prod. 2013, 71, 139–141. [Google Scholar] [CrossRef]
- Guvendiren, M.; Molde, J.; Soares, R.M.D.; Kohn, J. Designing biomaterials for 3D Printing. ACS Biomater. Sci. Eng. 2016, 2, 1679–1693. [Google Scholar] [CrossRef]
- Pitt, K.; Lopez-Botello, O.; Lafferty, A.D.; Todd, I.; Mumtaz, K. Investigation into the material properties of wooden composite structures with in-situ fibre reinforcement using additive manufacturing. Compos. Sci. Technol. 2017, 138, 32–39. [Google Scholar] [CrossRef] [Green Version]
- Le Duigou, A.; Castro, M.; Bevan, R.; Martin, N. 3D printing of wood fibre biocomposites: From mechanical to actuation functionality. Mater. Des. 2016, 96, 106–114. [Google Scholar] [CrossRef]
- Tarrés, Q.; Melbø, J.K.; Delgado-Aguilar, M.; Espinach, F.X.; Mutjé, P.; Chinga-Carrasco, G. Bio-polyethylene reinforced with thermomechanical pulp fibers: Mechanical and micromechanical characterization and its application in 3D-printing by fused deposition modelling. Compos. Part B 2018, 153, 70–77. [Google Scholar] [CrossRef]
- Ambrosi, A.; Pumera, M. 3D-printing technologies for electrochemical applications. Chem. Soc. Rev. 2016, 45, 2740–2755. [Google Scholar] [CrossRef] [Green Version]
- Gross, B.C.; Erkal, J.L.; Lockwood, S.Y.; Chen, C.; Spence, D.M. Evaluation of 3D Printing and its potential impact on biotechnology and the chemical sciences. Anal. Chem. 2014, 86, 3240–3253. [Google Scholar] [CrossRef]
- Tran, T.S.; Bayer, I.S.; Heredia-Guerrero, J.A.; Frugone, M.; Lagomarsino, M.; Maggio, F.; Athanassiou, A. Cocoa shell waste biofilaments for 3D printing applications. Macromol. Mater. Eng. 2017, 302, 1700219. Available online: https://onlinelibrary.wiley.com/doi/abs/10.1002/mame.201700219 (accessed on 8 September 2020). [CrossRef]
- Zhao, D.; Cai, X.; Shou, G.; Gu, Y.; Wang, P. Study on the preparation of bamboo plastic composite intend for additive manufacturing. Key Eng. Mater. 2016, 667, 250–258. [Google Scholar] [CrossRef]
- Wang, Q.; Sun, J.; Yao, Q.; Ji, C.; Liu, J.; Zhu, Q. 3D printing with cellulose materials. Cellulose 2018, 25, 4275–4301. [Google Scholar] [CrossRef]
- Rejeski, D.; Zhao, D.; Huang, Y. Research needs and recommendations on environmental implications of additive manufacturing. Addit. Manuf. 2018, 19, 21–28. [Google Scholar] [CrossRef] [Green Version]
- Bhatia, S.K.; Ramadurai, K.W. 3D Printing and Bio-Based Materials in Global Health; Springer International Publishing AG: Cham, Switzerland, 2017. [Google Scholar]
- Liu, J.; Korpinen, R.; Mikkonen, K.S.; Willför, S.; Xu, C. Nanofibrillated cellulose originated from birch sawdust after sequential extractions: A promising polymeric material from waste to films. Cellulose 2014, 21, 2587–2598. [Google Scholar] [CrossRef]
- Zhang, L.; Liu, Z.; Cui, C.; Chen, L. Biomass-derived materials for electrochemical energy storages. Prog. Polym. Sci. 2015, 43, 136–164. [Google Scholar] [CrossRef]
- Wang, X.; Jiang, M.; Zhou, Z.; Gou, J.; Hui, D. 3D printing of polymer matrix composites: A review and prospective. Compos. Part B 2017, 110, 442–458. [Google Scholar] [CrossRef]
- Rauwendaal, C.J. Analysis and experimental evaluation of twin screw extruders. Polym. Eng. Sci. 1981, 21, 1092–1100. [Google Scholar] [CrossRef]
- Gu, D.D.; Meiners, W.; Wissenbach, K.; Poprawe, R. Laser additive manufacturing of metallic components: Materials, processes and mechanisms. Int. Mater. Rev. 2012, 57, 133–164. [Google Scholar] [CrossRef]
- Hofmann, M. 3D printing gets a boost and opportunities with polymer materials. ACS Macro Lett. 2014, 3, 382–386. [Google Scholar] [CrossRef]
- Osman, M.A.; Atia, M.R.A. Investigation of ABS-rice straw composite feedstock filament for FDM. Rapid Prototyp. J. 2018, 24, 1067–1075. [Google Scholar] [CrossRef]
- Girdis, J.; Gaudion, L.; Proust, G.; Löschke, S.; Dong, A. Rethinking timber: Investigation into the use of waste macadamia nut shells for additive manufacturing. JOM 2017, 69, 575–579. [Google Scholar] [CrossRef]
- Ahmad, M.N.; Wahid, M.K.; Maidin, N.A.; Ab Rahman, M.A.H.; Osman, M.H.; Alis, I.F. Mechanical characteristics of oil palm fiber reinforced thermoplastics as filament for fused deposition modeling (FDM). Adv. Manuf. 2020, 8, 72–81. [Google Scholar] [CrossRef]
- Xie, G.; Zhang, Y.; Lin, R. Plasticizer combinations and performance of wood flour–poly (lactic acid) 3D printing filaments. BioResources 2017, 12, 6736–6748. [Google Scholar] [CrossRef] [Green Version]
- Nguyen, N.A.; Barnes, S.H.; Bowland, C.C.; Meek, K.M.; Littrell, K.C.; Keum, J.K.; Naskar, A.K. A path for lignin valorization via additive manufacturing of high-performance sustainable composites with enhanced 3D printability. Sci. Adv. 2015, 4, eaat4967. [Google Scholar] [CrossRef] [Green Version]
- Yang, C.; Tian, X.; Liu, T.; Cao, Y.; Li, D. 3D printing for continuous fiber reinforced thermoplastic composites: Mechanism and performance. Rapid Prototyp. J. 2017, 23, 209–215. [Google Scholar] [CrossRef]
- Ning, F.; Cong, W.; Qiu, J.; Wei, J.; Wang, S. Additive manufacturing of carbon fiber reinforced thermoplastic composites using fused deposition modelling. Compos. B Eng. 2015, 80, 369–378. [Google Scholar] [CrossRef]
- Šafka, J.; Ackermann, M.; Bobek, J.; Seidl, M.; Habr, J.; Bĕhálek, L. Use of composite materials for FDM 3D print technology. Trans. Tech. Publ. Ltd. Mater. Sci. Forum 2016, 862, 174–181. [Google Scholar] [CrossRef]
- Kariz, M.; Sernek, M.; Obućina, M.; Kuzman, M.K. Effect of wood content in FDM filament on properties of 3D printed parts, Mater. Today Commun. 2018, 14, 135–140. [Google Scholar] [CrossRef]
- Le Duigou, A.; Barbé, A.; Guillou, E.; Castro, M. 3D printing of continuous flax fibre reinforced biocomposites for structural applications. Mater. Des. 2019, 180, 107884. [Google Scholar] [CrossRef]
- Liu, H.; He, H.; Peng, X.; Huang, B.; Li, J. Three-dimensional printing of poly (lactic acid) bio-based composites with sugarcane bagasse fiber: Effect of printing orientation on tensile performance. Polym. Adv. Technol. 2019, 30, 910–922. [Google Scholar] [CrossRef]
- Gkartzou, E.; Koumoulos, E.P.; Charitidis, C.A. Production and 3D printing processing of bio-based thermoplastic filament. Manuf. Rev. 2017, 4, 1. [Google Scholar] [CrossRef]
- Tanase-Opedal, M.; Espinosa, E.; Rodríguez, A.; Chinga-Carrasco, G. Lignin: A biopolymer from forestry biomass for biocomposites and 3D printing. Materials 2019, 12, 3006. [Google Scholar] [CrossRef] [Green Version]
- Tao, Y.; Wang, H.; Li, Z.; Li, P.; Shi, S.Q. Development and application of wood flour-filled polylactic acid composite filament for 3D Printing. Materials 2017, 10, 339. [Google Scholar] [CrossRef] [Green Version]
- Sang, L.; Han, S.; Li, Z.; Yang, X.; Hou, W. Development of short basalt fiber reinforced polylactide composites and their feasible evaluation for 3D printing applications. Compos. B Eng. 2019, 164, 629–639. [Google Scholar] [CrossRef]
- Ma, S.; Kou, L.; Zhang, X.; Tan, T. Energy grass/polylactic acid composites and pretreatments for additive manufacturing. Cellulose 2020, 27, 2669–2683. [Google Scholar] [CrossRef]
- Le Guen, M.J.; Hill, S.; Smith, D.; Theobald, B.; Gaugler, E.; Barakat, A.; Mayer-Laigle, C. Influence of rice husk and wood biomass on the manufacture of filaments for Fused Deposition Modelling. Front. Chem. 2019, 7, 735. [Google Scholar] [CrossRef] [PubMed]
- Xiao, X.; Chevali, V.S.; Song, P.; He, D.; Wang, H. Polylactide/hemp Hurd biocomposites as sustainable 3D printing feedstock. Compos. Sci. Technol. 2019, 184, 107887. [Google Scholar] [CrossRef]
- Daver, F.; Lee, K.P.M.; Brandt, M.; Shanks, R. Cork–PLA composite filaments for fused deposition modelling. Compos. Sci. Technol. 2018, 168, 230–237. [Google Scholar] [CrossRef]
- Liu, Z.; Lei, Q.; Xing, S. Mechanical characteristics of wood, ceramic, metal and carbon fiber-based PLA composites fabricated by FDM. J. Mater. Res. Technol. 2019, 8, 3741–3751. [Google Scholar] [CrossRef]
- Hinchcliffe, S.A.; Hess, K.M.; Srubar, W.V., III. Experimental and theoretical investigation of prestressed natural fiber-reinforced polylactic acid (PLA) composite materials. Compos. B Eng. 2016, 95, 346–354. [Google Scholar] [CrossRef] [Green Version]
- Song, X.; He, W.; Qin, H.; Yang, S.; Wen, S. Fused Deposition Modeling of poly (lactic acid)/Macadamia Composites—Thermal, Mechanical Properties and Scaffolds. Materials 2020, 13, 258. [Google Scholar] [CrossRef] [Green Version]
- Depuydt, D.; Balthazar, M.; Hendrickx, K.; Six, W.; Ferraris, E.; Desplentere, F.; Ivens, J.; Van Vuure, A.W. Production and characterization of bamboo and flax fiber reinforced polylactic acid filaments for fused deposition modeling (FDM). Polym. Compos. 2019, 40, 1951–1963. [Google Scholar] [CrossRef]
- Kearns, A.J. Cotton Cellulose Fibers in 3D Print Material. Master’s Thesis, North Carolina State University, Raleigh, NC, USA, 2017. [Google Scholar]
- Chansoda, K.; Suwanjamrat, C.; Chookaew, W. Study on processability and mechanical properties of parawood-powder filled PLA for 3D printing material. MSE 2020, 773, 012053. [Google Scholar] [CrossRef]
- Wan, M.; Jiang, X.; Nie, J.; Cao, Q.; Zheng, W.; Dong, X.; Fan, Z.H.; Zhou, W. Phosphor powders-incorporated polylactic acid polymeric composite used as 3D printing filaments with green luminescence properties. J. Appl. Polym. Sci. 2020, 137, 48644. [Google Scholar] [CrossRef]
- Zhang, H.; Liu, D.; Huang, T.; Hu, Q.; Lammer, H. 3D Printing Method of Spatial Curved Surface by Continuous Natural Fiber Reinforced Composite. MSE 2020, 782, 022059. [Google Scholar] [CrossRef]
- Bi, H.; Ren, Z.; Guo, R.; Xu, M.; Song, Y. Fabrication of flexible wood flour/thermoplastic polyurethane elastomer composites using fused deposition molding. Ind. Crops Prod. 2018, 122, 76–84. [Google Scholar] [CrossRef]
- Thibaut, C.; Denneulin, A.; Rolland du Roscoat, S.R.; Beneventi, D.; Orgéas, L.; Chaussy, D. A fibrous cellulose paste formulation to manufacture structural parts using 3D Printing by extrusion. Carbohydr. Polym. 2019, 212, 119–128. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Palmer, J.; Tajvidi, M.; Gardner, D.J.; Han, Y. Thermal properties of spray-dried cellulose nanofibril-reinforced polypropylene composites from extrusion-based additive manufacturing. J. Therm. Anal. Calorim. 2019, 136, 1069–1077. [Google Scholar] [CrossRef]
- Grigsby, W.J.; Scott, S.M.; Plowman-Holmes, M.I.; Middlewood, P.G.; Recabar, K. Combination and processing keratin with lignin as biocomposite materials for additive manufacturing technology. Acta Biomater. 2020, 104, 95–103. [Google Scholar] [CrossRef]
- Selvaraj, D.K.; Silva, F.J.G.; Campilho, R.D.S.G.; Baptista, A.; Pinto, G.F.L. Influence of the natural additive on natural fiber reinforced thermoplastic composite. Procedia Manuf. 2019, 38, 1121–1129. [Google Scholar] [CrossRef]
- Koo, J.M.; Kang, J.; Shin, S.H.; Jegal, J.; Cha, H.G.; Choy, S.; Hakkarainen, S.; Park, J.; Oh, D.X.; Hwang, S.Y. Biobased thermoplastic elastomer with seamless 3D-Printability and superior mechanical properties empowered by in-situ polymerization in the presence of nanocellulose. Compos. Sci. Technol. 2020, 185, 107885. [Google Scholar] [CrossRef]
- Milosevic, M.; Stoof, D.; Pickering, K.L. Characterizing the mechanical properties of fused deposition modelling natural fiber recycled polypropylene composites. J. Compos. Sci. 2017, 1, 7. [Google Scholar] [CrossRef] [Green Version]
- Cataldi, A.; Rigotti, D.; Nguyen, V.D.H.; Pegoretti, A. Polyvinyl alcohol reinforced with crystalline nanocellulose for 3D printing application. Mater. Today Commun. 2018, 15, 236–244. [Google Scholar] [CrossRef]
- Chai, X.; Chai, H.; Wang, X.; Yang, J.; Li, J.; Zhao, Y.; Cai, W.; Tao, T.; Xiang, X. Fused deposition modeling (FDM) 3D printed tablets for intragastric floating delivery of domperidone. Sci. Rep. 2017, 7, 2829. [Google Scholar] [CrossRef] [Green Version]
- Yu, S.; Hwang, J.Y.; Hong, S.H. 3D microstructural characterization and mechanical properties determination of short basalt fiber-reinforced polyamide 6, 6 composites. Compos. Part B Eng. 2020, 187, 107839. [Google Scholar] [CrossRef]
- Rocha-Hoyos, J.C.; Llanes-Cedeño, E.A.; Peralta-Zurita, D.; Pucha-Tambo, M. Mechanical Flexural Characterization of Composite Materials with Photopolymer Matrix Reinforced with Abaca and Cabuya Fibers Using 3D Printing. Ingenius 2019, 22, 100. [Google Scholar] [CrossRef]
- Huang, L.; Du, X.; Fan, S.; Yang, G.; Shao, H.; Li, D.; Cao, C.; Zhu, Y.; Zhu, M.; Zhan, Y. Bacterial cellulose nanofibers promote stress and fidelity of 3D-printed silk based hydrogel scaffold with hierarchical pores. Carbohydr. Polym. 2019, 221, 146–156. [Google Scholar] [CrossRef] [PubMed]
- Zander, N.E.; Park, J.H.; Boelter, Z.R.; Gillan, M.A. Recycled cellulose polypropylene composite feedstocks for Material Extrusion Additive Manufacturing. ACS Omega 2019, 4, 13879–13888. [Google Scholar] [CrossRef] [Green Version]
- Stoof, D.; Pickering, K. Sustainable composite fused deposition modelling filament using recycled pre-consumer polypropylene. Compos. B Eng. 2018, 135, 110–118. [Google Scholar] [CrossRef]
- Long, H.; Wu, Z.; Dong, Q.; Shen, Y.; Zhou, W.; Luo, Y.; Zhang, C.; Dong, X. Mechanical and thermal properties of bamboo fiber reinforced polypropylene/polylactic acid composites for 3D Printing. Polym. Eng. Sci. 2019, 59, E247–E260. [Google Scholar] [CrossRef]
- Guessasma, S.; Belhabib, S.; Nouri, H. Microstructure and mechanical performance of 3D printed wood-PLA/PHA using fused deposition modelling: Effect of printing temperature. Polymers 2019, 11, 1778. [Google Scholar] [CrossRef] [Green Version]
- Agnoli, E.; Ciapponi, R.; Levi, M.; Turri, S. Additive manufacturing of geopolymers modified with microalgal biomass biofiller from wastewater treatment plants. Materials 2019, 12, 1004. [Google Scholar] [CrossRef] [Green Version]
- Al Jassmi, H.; Alnajjar, F.S.; Ahmed, W.K. Qatar University, Compound Nozzle for Cement 3D Printer to Produce Thermally Insulated Composite Cement. U.S. Patent 10399247, 3 September 2019. [Google Scholar]
- Liu, S.; Li, Y.; Li, N. A novel free-hanging 3D printing method for continuous carbon fiber reinforced thermoplastic lattice truss core structures. Mater. Des. 2018, 137, 235–244. [Google Scholar] [CrossRef]
- Skorski, M.R.; Esenther, J.M.; Ahmed, Z.; Miller, A.E.; Hartings, M.R. The chemical, mechanical, and physical properties of 3D printed materials composed of TiO2-ABS nanocomposites. Sci. Technol. Adv. Mater. 2016, 17, 89–97. [Google Scholar] [CrossRef] [Green Version]
- Zhang, H.; Mao, X.; Du, Z.; Jiang, W.; Han, X.; Zhao, D.; Han, D.; Li, Q. Three dimensional printed macroporous polylactic acid/hydroxyapatite composite scaffolds for promoting bone formation in a critical-size rat calvarial defect model. Sci. Technol. Adv. Mater. 2016, 17, 136–148. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shirazi, S.F.S.; Gharehkhani, S.; Mehrali, M.; Yarmand, H.; Metselaar, H.S.C.; Kadri, N.A.; Osman, N.A.A. A review on powder-based additive manufacturing for tissue engineering: Selective laser sintering and inkjet 3D printing. Sci. Technol. Adv. Mater. 2015, 16, 033502. [Google Scholar] [CrossRef] [PubMed]
- El-Hassan, H.; Alnajjar, F.; Al Jassmi, H.; Ahmed, W. Fresh and Hardened Properties of 3D-Printed Concrete Made with Dune Sand. In RILEM International Conference on Concrete and Digital Fabrication; Springer: Cham, Switzerland, 2020; pp. 225–234. [Google Scholar]
- Al Khawaja, H.; Alabdouli, H.; Alqaydi, H.; Mansour, A.; Ahmed, W.; Al Jassmi, H. Investigating the Mechanical Properties of 3D Printed Components. In Proceedings of the 2020 Advances in Science and Engineering Technology International Conferences (ASET), Dubai, UAE, 4 February–9 April 2020; pp. 1–7. [Google Scholar] [CrossRef]
- Ahmed, W.; Alabdouli, H.; Alqaydi, H.; Mansour, A.; Al, K.H.; Al, J.H. Open source 3d printer: A case study. In Proceedings of the International Conference on Industrial Engineering and Operations Management, 10th Annual International IEOM Conference, Dubai, UAE, 10–12 March 2020; pp. 2995–3004. [Google Scholar]
- Mansour, A.; Alabdouli, H.; Alqaydi, H.; Al, K.H.; Ahmed, W.; Al, J.H. Evaluating the 3d printing capabilities. In Proceedings of the International Conference on Industrial Engineering and Operations Management, 10th Annual International IEOM Conference, Dubai, UAE, 10–12 March 2020; pp. 2618–2629. [Google Scholar]
- Ahmed, W.K.; Al-Douri, Y. Three-dimensional printing of ceramic powder technology. Met. Oxide Powder Technol. 2020, 351–383. [Google Scholar] [CrossRef]
Polymer Type | Polymer Name | References |
---|---|---|
Virgin | PCL | [19] |
ABS | [30,31,32,33,34,35,36,37] | |
PLA | [38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56] | |
TPU | [57] | |
CMC | [58] | |
PPco | [59] | |
Keratin | [60] | |
Resin | [61] | |
Biobased TPE | [62] | |
PP | [63] | |
PVA | [64] | |
Domperidone | [65] | |
Polyamide 6,6 | [66] | |
Photopolymer | [67] | |
Recycled | Silk fibroin (SF)/gelatin composite hydrogel scaffolds | [68] |
Recycled PP using cellulose waste materials | [69] | |
Recycled PP | [70] | |
Hybrid | PLA + PP | [71] |
PLA + PHA | [72] | |
Metakaolin, bentonite, and distilled water | [73] |
Polymer Name | Biomass Name | Biomass Type | Biomass Size | Biomass % | Chemical Agent | Nozzle Diameter (mm) | Filament Diameter (mm) | Printing Temperature (°C) | Filament Process | Tests | Ref. |
---|---|---|---|---|---|---|---|---|---|---|---|
PCL | Cocoa shell waste | Ground | 50 mm | 0–50 wt% | - | 0.5–0.9 | 100 200 | - | LDM extruder | FT | [19] |
ABS | Rice straw | Grounded | 0.149 mm, 0.105 mm | 0, 5, 10, 15, and 20 wt% | - | 0.5 | 1.75 | 230 | Single-screw extruder | T, F, A, | [30] |
ABS | Macadamia nutshell | Grounded | Macrosize (MSZ) | 19–29 wt% | - | 1 | 0.3, 1.75, 6 | 250 | Single-screw extruder | T, F, WFT | [31] |
ABS | Oil palm fiber | Fibers | MSZ | 5 wt% | - | 0.5 | 2.5 | 210 | Single shot extruder | T | [32] |
PLA | Poplar wood flour | Powder form | MSZ | - | 4% glycerol 2& glycerol 2% 4-tert-Butylcatechol | - | 1.75 | 170 | Twin-screw extruder | T, MI | [33] |
ABS | Lignin and carbon fibers | Hot-pressed | MSZ | 40–60 wt. % lignin 4–16 wt% carbon fibers | - | 0.4 | 1.75 | 190 | Twin-screw extruder | MP, MicTP | [34] |
ABS | Carbon fiber | Fiber | Diameter of 7.2 mm | 3, 5, 7.5, 10, 15 wt% | - | 0.35 | - | 230 | - | T, F | [35] |
PLA | Poplar wood flour | Powder form | MSZ | glycerol tributyl citrate | 0.4 | 1.75 | 220 | Single-screw extruder | MP, MI | [36] | |
ABS | Coir fibers | Powder | MSZ | 15 wt% | - | 0.4 | 1.75 | 230–245 | - | T | [37] |
PLA | Wood | Powder form | 0.237 mm | 0–50 wt% | - | 2 | 1.75 | 80–100 | Single-screw extruder | T, ST | [38] |
PLA | Continuous flax fiber | Yarn form | MSZ | - | - | - | 1.75 | 140–165 | Double screw extruder | T, SM | [39] |
PLA | Sugarcane | Cellulose fiber | MSZ | 3–15 wt% | - | 0.2–0.4 | 1.75 | 80–100 | Single-screw extruder | T | [40] |
PLA | Pine lignin | Powder form | MSZ | 5–20 wt% | - | 0.4 | 1.75 | 200–210 | Screw extruder | T, SM | [41] |
PLA | Lignin | Liquid form | MSZ | 0, 20, 40 wt% | - | 1.75 | 1.75 | 230 | Single-screw extruder | T, F | [42] |
PLA | Wood flour | Powder form | MSZ | 5 wt% | - | 0.4 | 1.75 | 210 | Single-screw extruder | T, F, SM | [43] |
PLA | Basalt fiber and carbon fiber | Fiber form | 1–3 mm | 5–20 wt% | - | 1.8 | 40.4 | 195 | Flat-head nozzle | T | [44] |
PLA | Grass biomass | - | MSZ | - | Pretreatment: 1 alkali- H2O2, 3% (v/v) H2O2, 1.5% (w/v) NaOH and 12.5 g/L Na2SiO3 2. acid treatment: silvergrass was pretreated with 1.5% (w/v) of H2SO4 PLA was mixed with biomass and coupling agents | 0.75 | 1.75 | 190–200 | Co-rotating twin-screw extruder | MP, CR | [45] |
PLA | Rice husks Wood flour | Both in powder form | MSZ | 10 wt% | - | 2.7 | - | 200 | Co-rotating twin-screw extruder | MP, TGMA | [46] |
PLA | Hemp hurd | Powder form | 50 μm | - | Poly butylene adipate-co-terephthalate)(PBAT), ethylene-methyl acrylate-glycidyl methacrylate terpolymer (EGMA) | 0.8 | 1.75 | 230 | Single-screw extruder | T, DT | [47] |
PLA | Cork | Powder form | MSZ | 5 wt% | TBC | 0.30 | - | >130 | Twin-screw extruder | MP | [48] |
PLA | 1.Wood 2. Ceramic 3. Copper 4. Aluminum 5. Carbon fiber | - | MSZ | - | - | 0.4 | 1.75 | 200 | - | T, F | [49] |
PLA | Jute fiber Flax fiber | - | Jute fiber 2 mm Flax fiber 0.5 mm | - | - | 0.2 | - | 215 | - | T, F | [50] |
PLA | Macadamia nutshell | Powder | MSZ | 0, 5, 10, 15 wt% | Zirconium balls | 0.4–0.6 | 1.75–0.3 | 210 | Single-screw extruder | MP | [51] |
PLA | Bamboo Flax | - | MSZ | 15 wt% | - | - | 2.85 | - | - | FT | [52] |
PLA | Cellulose fiber | - | MSZ | 0–20 wt% | - | 0.5 | 2.85 | 210 | Two step extruder | [53] | |
PLA | Commercial grade wood powder waste | Powder | - | 5–20 wt% | MAH NaOH | - | 1.5 mm | - | Twin and single screw extruder | MT, T | [54] |
PLA | Phosphor | Powder | 500 μm | 2 wt% | Toughening agent | 1.75mm | 1.75 + 0.05 mm | 170–180 | Singe screw extruder | T, F | [55] |
PLA | Continuous flax fiber | Yarn | - | - | - | - | 1.0 mm | 190 | - | Compressive strength | [56] |
TPU | Poplar wood flour | Powder form | 150 μm | 10–40 wt.% | EPDM-g-MAH, POE-g-MAH, chitosan, MDI 5wt. % | 0.4 | 1.45–1.75 | 180–200 | - | FT, F | [57] |
CMC | Natural cellulose | Fibers | 100–200 μm | 35–50 wt.% | Distilled water | 0.4 | 1.75 | 210 | - | T, ST, TGMA | [58] |
PPco | Cellulose nano-fibers | Suspension form | MSZ | 0–15 wt.% | MAPP | 0.4 | 1.75 | 200 | Single-screw extruder | MP, ST | [59] |
Keratin | Lignin | Aqueous solution | MSZ | 15, 20, 30 wt.% | polyethylene gly- col (PEG) | - | - | - | - | T, F, A | [60] |
Elium® liquid thermoplastic resin | Flax natural fiber | - | MSZ | 5 to 15 wt.% of matrix | tamarind seed powder | 0.8 | - | 230 | Novel extruder | 3PT Test, T | [61] |
Biobased TPE | Cellulose nanocrystals | Spray dried | MSZ | - | - | 0.4 | - | 178 | - | T | [62] |
PP | Hemp | Fiber | MSZ | 10–30 wt.% | Alkaline | 3 | 2.4–3.1 | 174–18 | Twin-screw extruder | T, FFT | [63] |
PVA | Cellulose nanocrystals | Microcrystals | MSZ | 2–10 wt.% | - | 0.35 | 230 | Single-screw extruder | T | [64] | |
Domperidone | Hydroxypropyl Cellulose | - | MSZ | 80–90 wt.% | - | 0.2 | 1.76 | 210 | Twin-screw extruder | MP | [65] |
Polyamide 6,6 | Short basalt fiber | Fiber | 137 μm | 20 wt.% | Portland cement | - | - | 270–290 | Tein screw extruder | T | [66] |
Photopolymer | Abaca & Cabuya | - | - | 20 wt.% | - | - | - | - | - | - | [67] |
SF/gelatin composite hydrogel scaffolds | Bacteria cellulose nano-fibers | - | MSZ | 1:2 ratio | - | 0.3 | 1.77 | - | - | MP | [68] |
Recycled PP using cellulose waste materials | Wood flour Cardboard Wastepaper | Powder form | MSZ | 5, 10, 20 wt.% | - | 0.8 | 2.2 | 220 | Twin-screw extruder | T | [69] |
Recycled PP | Hemp+harakeke | Fiber | MSZ | 10–50 wt.% | Alkaline | 1 | 3 | 230 | - | T, F | [70] |
PLA + PP | Bamboo fiber | Dried fiber | MSZ | 20 wt.% | MAPP | - | - | 150–170 | Co-rotating twin-screw extruder | MP | [71] |
Metakaolin, bentonite, and distilled water | Microalgal biomass species and lignin | Freeze-dried powders | MSZ | 1, 3, 5 wt.% | Bentonite | 2.25 | - | - | Piston-type extruder | ST | [71] |
PLA+PHA | Pinewood fiber | - | MSZ | 30 wt.% | - | 0.4 | 1.75 | 210–250 | - | T | [73] |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ahmed, W.; Alnajjar, F.; Zaneldin, E.; Al-Marzouqi, A.H.; Gochoo, M.; Khalid, S. Implementing FDM 3D Printing Strategies Using Natural Fibers to Produce Biomass Composite. Materials 2020, 13, 4065. https://doi.org/10.3390/ma13184065
Ahmed W, Alnajjar F, Zaneldin E, Al-Marzouqi AH, Gochoo M, Khalid S. Implementing FDM 3D Printing Strategies Using Natural Fibers to Produce Biomass Composite. Materials. 2020; 13(18):4065. https://doi.org/10.3390/ma13184065
Chicago/Turabian StyleAhmed, Waleed, Fady Alnajjar, Essam Zaneldin, Ali H. Al-Marzouqi, Munkhjargal Gochoo, and Sumayya Khalid. 2020. "Implementing FDM 3D Printing Strategies Using Natural Fibers to Produce Biomass Composite" Materials 13, no. 18: 4065. https://doi.org/10.3390/ma13184065
APA StyleAhmed, W., Alnajjar, F., Zaneldin, E., Al-Marzouqi, A. H., Gochoo, M., & Khalid, S. (2020). Implementing FDM 3D Printing Strategies Using Natural Fibers to Produce Biomass Composite. Materials, 13(18), 4065. https://doi.org/10.3390/ma13184065