A Novel Technique to Increase the Thickness of TiO₂ of Dental Implants by Nd: DPSS Q-sw Laser Treatment
Abstract
:1. Introduction
2. Materials and Methods
2.1. Surface Treatment
2.2. XPS (X-ray Photoelectron Spectroscopy)
2.3. Auger Electron Spectroscopy (AES)
2.4. Focused Ion Beam Scanning Electron Microscopes (SEM/FIB)
2.5. Metallography
2.6. Statistical Evaluation
3. Results
3.1. XPS (X-ray Photoelectron Spectroscopy)
3.2. Auger Electron Spectroscopy (AES)
3.3. Focussed Ion Beam Scanning Electron Microscopes (SEM/FIB)
3.4. Metallography
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Scarano, A.; Carinci, F.; Quaranta, A.; Iezzi, G.; Piattelli, M.; Piattelli, A. Correlation between implant stability quotient (ISQ) with clinical and histological aspects of dental implants removed for mobility. Int. J. Immunopathol. Pharmacol. 2008, 20, 33–36. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Burgos, P.M.; Rasmusson, L.; Meirelles, L.; Sennerby, L. Early Bone Tissue Responses to Turned and Oxidized Implants in the Rabbit Tibia. Clin. Implant. Dent. Relat. Res. 2008, 10, 181–190. [Google Scholar] [CrossRef] [PubMed]
- Larsson, C.; Thomsen, P.; Aronsson, B.-O.; Rodahl, M.; Lausmaa, J.; Kasemo, B.; Ericson, L. Bone response to surface-modified titanium implants: studies on the early tissue response to machined and electropolished implants with different oxide thicknesses. Biomaterials 1996, 17, 605–616. [Google Scholar] [CrossRef]
- Scarano, A.; Degidi, M.; Perrotti, V.; Degidi, D.; Piattelli, A.; Iezzi, G. Experimental Evaluation in Rabbits of the Effects of Thread Concavities in Bone Formation with Different Titanium Implant Surfaces. Clin. Implant. Dent. Relat. Res. 2013, 16, 572–581. [Google Scholar] [CrossRef] [PubMed]
- Bowers, B.; Pollock, K.; Barclay, S. Administration of end-of-life drugs by family caregivers during covid-19 pandemic. BMJ 2020, 369, m1615. [Google Scholar] [CrossRef] [Green Version]
- Scarano, A.; Carinci, F.; Assenza, B.; Piattelli, M.; Murmura, G.; Piattelli, A. Vertical ridge augmentation of atrophic posterior mandible using an inlay technique with a xenograft without miniscrews and miniplates: case series. Clin. Oral Implant. Res. 2011, 22, 1125–1130. [Google Scholar] [CrossRef]
- Han, C.-H.; Johansson, C.B.; Wennerberg, A.; Albrektsson, T. Quantitative and qualitative investigations of surface enlarged titanium and titanium alloy implants. Clin. Oral Implant. Res. 1998, 9, 1–10. [Google Scholar] [CrossRef]
- Lausmaa, J.; Linder, L. Surface spectroscopic characterization of titanium implants after separation from plastic-embedded tissue. Biomaterials 1988, 9, 277–280. [Google Scholar] [CrossRef]
- Okazaki, Y.; Gotoh, E. Comparison of metal release from various metallic biomaterials in vitro. Biomaterials 2005, 26, 11–21. [Google Scholar] [CrossRef]
- Tengvall, P.; Lundström, I. Physico-chemical considerations of titanium as a biomaterial. Clin. Mater. 1992, 9, 115–134. [Google Scholar] [CrossRef]
- Wang, G.; Li, J.; Lv, K.; Zhang, W.; Ding, X.; Yang, G.; Liu, X.; Jiang, X. Surface thermal oxidation on titanium implants to enhance osteogenic activity and in vivo osseointegration. Sci. Rep. 2016, 6, 31769. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, L.-H.; Kong, Y.-M.; Kim, H.-W.; Kim, Y.-W.; Kim, H.-E.; Heo, S.-J.; Koak, J.-Y. Improved biological performance of Ti implants due to surface modification by micro-arc oxidation. Biomaterials 2004, 25, 2867–2875. [Google Scholar] [CrossRef] [PubMed]
- Lepore, S.; Milillo, L.; Trotta, T.; Castellani, S.; Porro, C.; Panaro, M.A.; Santarelli, A.; Bambini, F.; Muzio, L.L.; Conese, M.; et al. Adhesion and growth of osteoblast-like cells on laser-engineered porous titanium surface: expression and localization of N-cadherin and beta-catenin. J. Boil. Regul. Homeost. Agents 2013, 27, 531–541. [Google Scholar]
- Ionescu, A.C.; Brambilla, E.; Azzola, F.; Ottobelli, M.; Pellegrini, G.; Francetti, L.A. Laser microtextured titanium implant surfaces reduce in vitro and in situ oral biofilm formation. PLOS ONE 2018, 13, e0202262. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sinjari, B.; Traini, T.; Caputi, S.; Mortellaro, C.; Scarano, A. Evaluation of Fibrin Clot Attachment on Titanium Laser-Conditioned Surface Using Scanning Electron Microscopy. J. Craniofac. Surg. 2018, 29, 2277–2281. [Google Scholar] [CrossRef] [PubMed]
- Berardi, D.; De Benedittis, S.; Scoccia, A.; Perfetti, G.; Conti, P. New laser-treated implant surfaces: a histologic and histomorphometric pilot study in rabbits. Clin. Investig. Med. 2011, 34, E202–E210. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Piattelli, A. Residual aluminum oxide on the surface of titanium implants has no effect on osseointegration. Biomaterials 2003, 24, 4081–4089. [Google Scholar] [CrossRef]
- Wennerberg, A.; Albrektsson, T.; Lausmaa, J. Torque and histomorphometric evaluation of c.p. titanium screws blasted with 25- and 75-microns-sized particles of Al2O3. J. Biomed. Mater. Res. 1996, 30, 251–260. [Google Scholar] [CrossRef]
- Wennerberg, A.; Albrektsson, T.; Andersson, B. An animal study of c.p. titanium screws with different surface topographies. J. Mater. Sci. Mater. Electron. 1995, 6, 302–309. [Google Scholar] [CrossRef]
- Cao, Y.; Zeng, X.; Cai, Z.; Duan, J. Laser micro/nano-fabrication techniques and their applications in electronics. In Advances in Laser Materials Processing; Elsevier BV: Amsterdam, The Netherlands, 2010; pp. 629–670. [Google Scholar]
- Lee, J.-T.; Cho, S.-A. Biomechanical evaluation of laser-etched Ti implant surfaces vs. chemically modified SLA Ti implant surfaces: Removal torque and resonance frequency analysis in rabbit tibias. J. Mech. Behav. Biomed. Mater. 2016, 61, 299–307. [Google Scholar] [CrossRef]
- Inchingolo, F.; Ballini, A.; Cagiano, R.; Inchingolo, A.D.; Serafini, M.; De Benedittis, M.; Cortelazzi, R.; Tatullo, M.; Marrelli, M.; Inchingolo, A.M.; et al. Immediately loaded dental implants bioactivated with platelet-rich plasma (PRP) placed in maxillary and mandibular region. La Clinica Terapeutica 2015, 166, 146–152. [Google Scholar]
- Scarano, A.; Piattelli, A.; Quaranta, A.; Lorusso, F. Bone Response to Two Dental Implants with Different Sandblasted/Acid-Etched Implant Surfaces: A Histological and Histomorphometrical Study in Rabbits. BioMed Res. Int. 2017, 2017, 1–8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ballo, A.M.; Bjöörn, D.; Åstrand, M.; Palmquist, A.; Lausmaa, J.; Thomsen, P. Bone response to physical-vapour-deposited titanium dioxide coatings on titanium implants. Clin. Oral Implant. Res. 2012, 24, 1009–1017. [Google Scholar] [CrossRef] [PubMed]
- Oh, S.; Tobin, E.; Yang, Y.; Carnes, D.L.; Ong, J.L. In vivo evaluation of hydroxyapatite coatings of different crystallinities. Int. J. Oral Maxillofac. Implant. 2005, 20, 726–731. [Google Scholar]
- Marenzi, G.; Impero, F.; Scherillo, F.; Sammartino, J.C.; Squillace, A.; Spagnuolo, G. Effect of Different Surface Treatments on Titanium Dental Implant Micro-Morphology. Materials 2019, 12, 733. [Google Scholar] [CrossRef] [Green Version]
- Ballo, M.A.; Omar, O.; Xia, W.; Palmquist, A. Dental Implant Surfaces—Physicochemical Properties, Biological Performance, and Trends. In Implant Dentistry—A Rapidly Evolving Practice; IntechOpen: London, UK, 2011; Volume 1, pp. 19–56. [Google Scholar] [CrossRef] [Green Version]
- Scarano, A.; Crocetta, E.; Quaranta, A.; Lorusso, F. Influence of the Thermal Treatment to Address a Better Osseointegration of Ti6Al4V Dental Implants: Histological and Histomorphometrical Study in a Rabbit Model. BioMed Res. Int. 2018, 2018, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Kokubo, T. Design of bioactive bone substitutes based on biomineralization process. Mater. Sci. Eng. C 2005, 25, 97–104. [Google Scholar] [CrossRef]
- Kokubo, T.; Kushitani, H.; Sakka, S.; Kitsugi, T.; Yamamuro, T. Solutions able to reproducein vivo surface-structure changes in bioactive glass-ceramic A-W3. J. Biomed. Mater. Res. 1990, 24, 721–734. [Google Scholar] [CrossRef]
- Wang, X.-X.; Hayakawa, S.; Tsuru, K.; Osaka, A. Improvement of bioactivity of H2O2/TaCl5-treated titanium after subsequent heat treatments. J. Biomed. Mater. Res. 2000, 52, 171–176. [Google Scholar] [CrossRef]
- Rossi, S.; Moritz, N.; Tirri, T.; Peltola, T.; Areva, S.; Jokinen, M.; Happonen, R.-P.; Närhi, T. Comparison between sol-gel-derived anatase- and rutile-structured TiO2 coatings in soft-tissue environment. J. Biomed. Mater. Res. Part A 2007, 82, 965–974. [Google Scholar] [CrossRef]
- Zhou, W.; Zhong, X.; Wu, X.; Yuan, L.; Shu, Q.; Xia, Y.; Ostrikov, K. (Ken) Plasma-controlled nanocrystallinity and phase composition of TiO2: A smart way to enhance biomimetic response. J. Biomed. Mater. Res. Part A 2007, 81, 453–464. [Google Scholar] [CrossRef] [PubMed]
- Chen, G.; Wen, X.; Zhang, N. Corrosion resistance and ion dissolution of titanium with different surface microroughness. Bio-Med. Mater. Eng. 1998, 8, 61–74. [Google Scholar]
- Ishizawa, H.; Ogino, M. Formation and characterization of anodic titanium oxide films containing Ca and P. J. Biomed. Mater. Res. 1995, 29, 65–72. [Google Scholar] [CrossRef] [PubMed]
- Park, I.S.; Yang, E.J.; Bae, T.S. Effect of Cyclic Precalcification of Nanotubular TiO2 Layer on the Bioactivity of Titanium Implant. BioMed Res. Int. 2013, 2013, 1–7. [Google Scholar] [CrossRef]
- Nguyen, T.-D.T.; Park, I.-S.; Lee, M.-H.; Bae, T.-S. Enhanced biocompatibility of a pre-calcified nanotubular TiO2 layer on Ti–6Al–7Nb alloy. Surf. Coat. Technol. 2013, 236, 127–134. [Google Scholar] [CrossRef]
- Butt, A.; Hamlekhan, A.; Patel, S.B.; Royhman, D.; Sukotjo, C.; Mathew, M.T.; Shokuhfar, T.; Takoudis, C. A Novel Investigation of the Formation of Titanium Oxide Nanotubes on Thermally Formed Oxide of Ti-6Al-4V. J. Oral Implant. 2015, 41, 523–531. [Google Scholar] [CrossRef]
- Scarano, A.; Piattelli, A.; Polimeni, A.; Di Iorio, D.; Carinci, F. Bacterial Adhesion on Commercially Pure Titanium and Anatase-Coated Titanium Healing Screws: An In Vivo Human Study. J. Periodontol. 2010, 81, 1466–1471. [Google Scholar] [CrossRef]
- Ballini, A.; Cantore, S.; Farronato, D.; Cirulli, N.; Inchingolo, F.; Papa, F.; Malcangi, G.; Inchingolo, A.D.; DiPalma, G.; Sardaro, N.; et al. Periodontal disease and bone pathogenesis: The crosstalk between cytokines and porphyromonas gingivalis. J. Boil. Regul. Homeost. Agents 2015, 29, 273–281. [Google Scholar]
Atomic Concentration % | [Ti] | [O] | [C] | [N] | [Al] | [Si] | [Ca] |
---|---|---|---|---|---|---|---|
Machined | 16.0 ± 0.56 | 43.45 ± 1.62 | 34.6 ± 1.98 | 1.6 ± 0.28 | 3.85 ± 0.63 | 1.0 ± 0.4 | - |
Laser | 16.4 ± 0.14 | 43.4 ± 0.28 | 36.25 ± 0.21 | 0.95 ± 0.07 | - | 1.4 ± 0.14 | 1.6 ± 0.28 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Scarano, A.; Postiglione, F.; Khater, A.G.A.; Al-Hamed, F.S.; Lorusso, F. A Novel Technique to Increase the Thickness of TiO₂ of Dental Implants by Nd: DPSS Q-sw Laser Treatment. Materials 2020, 13, 4178. https://doi.org/10.3390/ma13184178
Scarano A, Postiglione F, Khater AGA, Al-Hamed FS, Lorusso F. A Novel Technique to Increase the Thickness of TiO₂ of Dental Implants by Nd: DPSS Q-sw Laser Treatment. Materials. 2020; 13(18):4178. https://doi.org/10.3390/ma13184178
Chicago/Turabian StyleScarano, Antonio, Francesca Postiglione, Ahmad G. A. Khater, Faez Saleh Al-Hamed, and Felice Lorusso. 2020. "A Novel Technique to Increase the Thickness of TiO₂ of Dental Implants by Nd: DPSS Q-sw Laser Treatment" Materials 13, no. 18: 4178. https://doi.org/10.3390/ma13184178
APA StyleScarano, A., Postiglione, F., Khater, A. G. A., Al-Hamed, F. S., & Lorusso, F. (2020). A Novel Technique to Increase the Thickness of TiO₂ of Dental Implants by Nd: DPSS Q-sw Laser Treatment. Materials, 13(18), 4178. https://doi.org/10.3390/ma13184178