Effects of Alloying Elements (C, Mo) on Hydrogen Assisted Cracking Behaviors of A516-65 Steels in Sour Environments
Abstract
:1. Introduction
2. Experimental
2.1. Specimen Preparation and Microstructure Observation
2.2. Hydrogen Induced Cracking Test (HIC)
2.3. Electrochemical Hydrogen Permeation Test
2.4. SSC Test and Fracture Surface Observation
2.5. Corrosion Characteristic Analysis
3. Results and Discussion
3.1. Microstructure Observation
3.2. Hydrogen Induced Cracking (HIC) Test
3.3. Electrochemical Hydrogen Permeation Test
3.4. Sulfide Stress Corrosion Cracking (SSC) Test
3.5. Corrosion Product Analysis
4. Conclusions
- The microstructures of the three steel samples (Steel A, B and C) were composed of ferrite and band-shaped pearlite. A higher C content in the steel resulted in a higher fraction of banded pearlite. On the other hand, the addition of Mo contributed to the dispersion of the banded structure.
- The sample with lower C and Mo contents (Steel B) showed the highest resistance to HIC, with fine cracks initiated mostly in a quarter of the sample in the thickness direction. In contrast, much coarser cracks were formed mostly in the center of the other samples with higher C, and Mo contents (Steel A and C), respectively, and they showed higher susceptibility to HIC. This is closely associated with the difference in hardness distribution in the through- thickness direction caused by the center segregation phenomenon.
- The sample with lower C and Mo contents and a smaller fraction of pearlite (Steel B) had the highest diffusion coefficient of hydrogen. On the other hand, the diffusion coefficient of the sample with a higher Mo content (Steel C) was rather high and similar to the case of the sample with a higher C content (Steel A). Therefore, more dispersed banded pearlite, which provides a larger interfacial area for hydrogen trapping, the formation of a stress field in the lattice structure by the difference in atomic size between Fe and Mo, and the presence of irreversible trap site for hydrogen, are the proposed mechanistic reasons.
- The sample with a higher Mo content (Steel C), however, showed the shortest rupture time by the SSC experiment. In contrast to the fracture surfaces of the other samples (Steel A and B), pit-like corrosion occurred on the surface of Steel C. This was connected to the internal HIBC, which facilitates rupture under the applied stress conditions. The corrosion products formed on Steel C, which were composed of FeS1−x, MoS2, CuS, and NiS have an uneven interface with the steel substrate and were locally detached. These results suggest that the addition of Mo in the steel should be optimized further to improve the resistance to HAC in sour environments.
Author Contributions
Funding
Conflicts of Interest
References
- Shi, X.B.; Yan, W.; Wang, W.; Zhao, L.Y.; Shan, Y.Y.; Yang, K. HIC and SSC behavior of High-strength pipeline steels. Acta Met. Sin. 2015, 28, 799–808. [Google Scholar] [CrossRef]
- Ghosh, G.; Rostron, P.; Garg, R.; Panday, A. Hydrogen induced cracking of pipeline and pressure vessel steel: A review. Eng. Fract. Mech. 2018, 199, 609–618. [Google Scholar] [CrossRef]
- Homrossukon, S.; Mostovoy, S.; Todd, J.A. Investigation of Hydrogen assisted cracking in high and low strength steels. J. Press. Vessel. Technol. 2009, 131, 041405. [Google Scholar] [CrossRef]
- Hobson, J.D.; Sykes, C. Effect of hydrogen on the properties of low-alloy steel. J. Iron Steel Inst. 1951, 169, 209–215. [Google Scholar]
- Merrick, R.D. An overview of hydrogen damage to steels at low temperature. Mater. Perform. 1989, 28, 53–55. [Google Scholar]
- Gabetta, G.; Pagliari, F.; Rezgui, N. Hydrogen embrittlement in pipeline transporting sour hydrocarbons. Proc. Struct. Integr. 2018, 13, 746–752. [Google Scholar] [CrossRef]
- Huang, F.; Cheng, P.; Zhao, X.Y.; Liu, J.; Hu, Q.; Cheng, Y.F. Effect of sulfide films formed on X65 steel surface on hydrogen permeation in H2S environment. Int. J. Hydrog. Energy 2017, 42, 4561–4570. [Google Scholar] [CrossRef]
- Chen, Y.; Zheng, S.; Zhou, J.; Wang, P.; Chen, L.; Qi, Y. Influence of H2S interaction with prestrain on the mechanical properties of high-strength X80 steel. Int. J. Hydrog. Energy 2016, 41, 10412–10420. [Google Scholar] [CrossRef]
- Kittel, J.; Smanio, V.; Fregonese, M.; Garnier, L.; Lefebvre, X. Hydrogen induced cracking (HIC) testing of low alloy steel in sour environment: Impact of time of exposure on the extent of damage. Corros. Sci. 2010, 52, 1386–1392. [Google Scholar] [CrossRef]
- Domizzi, G.; Anteri, G.; Ovejero-García, J. Influence of sulphur content and inclusion distribution on the hydrogen induced blister cracking in pressure vessel and pipeline steels. J. Corros. Sci. 2001, 43, 325–339. [Google Scholar] [CrossRef]
- Jiang, X.F.; Chen, Z.P.; Lu, Z.X.; Zhang, G.; Zhong, Z.M. Development and application of BRP technology in Baosteel. Rev. Met. Paris 2007, 104, 29–34. [Google Scholar] [CrossRef]
- Schrama, F.N.H.; Beunder, E.M.; Berg, B.V.D.; Yang, Y.; Boom, R. Sulphur removal in ironmaking and oxygen steelmaking. Ironmak. Steelmak. 2017, 44, 333–343. [Google Scholar] [CrossRef]
- Chattoraj, I. The effect of hydrogen induced cracking on the integrity of steel components. Sadhana 1995, 20, 199–211. [Google Scholar] [CrossRef]
- Nieto, J.; Elías, T.; López, G.; Campos, G.; López, F.; Garcia, R.; De, A.K. Effective process design for the production of HIC-resistance linepipe steels. J. Mater. Eng. Perform. 2013, 22, 2493–2499. [Google Scholar] [CrossRef]
- Yoon, B.H. Characteristics of sulfide stress cracking of high strength pipeline steel weld by heat input. J. Weld. Join. 2018, 36, 38–44. [Google Scholar] [CrossRef] [Green Version]
- Tamehiro, H.; Yamada, N.; Matsuda, H. Effect of the thermo-mechanical control process on the properties of high-strength low alloy steel. Trans. ISIJ 1985, 25, 54–61. [Google Scholar] [CrossRef]
- Tomić, T.; Kožuh, Z.; Garašič, I.; Samardžič, I. Effect of hydrogen upon the properties of thermo mechanical controlled process (TMCP) steel. Metalurgija 2016, 55, 99–102. [Google Scholar]
- Liao, C.M.; Lee, J.L. Effect of molybdenum on sulfide stress cracking resistance of low-alloy steels. Corrosion 1994, 50, 695–704. [Google Scholar] [CrossRef]
- Shi, X.B.; Yan, W.; Wang, W.; Zhao, L.Y.; Shan, Y.Y.; Yang, K. Effect of microstructure on hydrogen induced cracking behavior of a high deformability pipeline steel. J. Iron Steel Res. 2015, 22, 937–942. [Google Scholar] [CrossRef]
- Hong, G.W.; Lee, J.Y. The interaction of hydrogen and the cementite-ferrite interface in carbon steel. J. Mater. Sci. 1983, 18, 271–277. [Google Scholar] [CrossRef]
- Jiang, Y.F.; Zhang, B.; Zhou, Y.; Wang, J.Q.; Han, E.H.; Ke, W. Atom probe tomographic observation of hydrogen trapping at carbides/ferrite interfaces for a high strength steel. J. Mater. Sci. Tech. 2018, 34, 1344–1348. [Google Scholar] [CrossRef]
- Park, J.S.; Seong, H.G.; Kim, S.J. Effect of heat treatment conditions on corrosion and hydrogen diffusion behaviors of ultra-strong steel used for automotive applications. Corros. Sci. Tech. 2019, 18, 267–276. [Google Scholar]
- Zapffe, C.A.; Sims, C.E. Hydrogen embrittlement, internal stress and defects in steel. Trans. AIME 1941, 145, 225–261. [Google Scholar]
- Troiano, A.R. The role of hydrogen and other interstitials in the mechanical behavior of metals. Trans ASM 1960, 52, 54–80. [Google Scholar] [CrossRef]
- Carneiro, R.A.; Ratnapuli, R.C.; Lins, V.D.F.C. The influence of chemical composition and microstructure of API linepipe steels on hydrogen induced cracking and sulfide stress corrosion cracking. Mater. Sci. Eng. 2003, 357, 104–110. [Google Scholar] [CrossRef]
- Kim, S.J.; Jung, H.G.; Park, G.T.; Kim, K.Y. Effect of Cu and Ni on sulfide film formation and corrosion behavior of pressure vessel steel in acid sour environment. Appl. Surf. Sci. 2014, 313, 396–404. [Google Scholar] [CrossRef]
- Standard Test Method for Evaluation of Pipeline and Pressure Vessel Steels for Resistance to Hydrogen Induced Cracking; NACE TM 0284-96A; NACE International: Houston, TX, USA, 2016.
- Method of Measurement of Hydrogen Permeation and Determination of Hydrogen Uptake and Transport in Metals by an Electrochemical Technique; ISO 17081; ISO: Geneva, Switzerland, 2004.
- Hwang, E.H.; Seong, H.G.; Kim, S.J. Effect of carbon contents on corrosion and hydrogen diffusion behaviors of ultra-strong steels for automotive applications. Korean J. Met. Mater. 2018, 56, 570–579. [Google Scholar] [CrossRef]
- Kim, S.J.; Hwang, E.H.; Park, J.S.; Ryu, S.M.; Yun, D.W.; Seong, H.G. Inhibiting hydrogen embrittlement in ultra-strong steels for automotive applications by Ni-alloying. NPJ Mater. Degrad. 2019, 3, 12. [Google Scholar] [CrossRef] [Green Version]
- Park, J.S.; Hwang, E.H.; Lee, M.J.; Kim, S.J. Effect of tempering condition on hydrogen diffusion behavior of martensitic high-strength steel. Corros. Sci. Tech. 2018, 17, 242–248. [Google Scholar]
- Gan, L.; Huang, F.; Zhao, X.; Liu, J.; Cheng, Y.F. Hydrogen trapping and hydrogen induced cracking of welded X100 pipeline steel in H2S environment. Int. J. Hydrog. Energy 2018, 43, 2293–2306. [Google Scholar] [CrossRef]
- Rao, C.N.R.; Subba Rao, G.V. Electrical conduction in metal oxides. Phys. Status Solidi 1970, 1, 579–652. [Google Scholar] [CrossRef]
- Frappart, S.; Feaugas, X.; Creus, J.; Thebault, F.; Delattre, L.; Marchebois, H. Study on the hydrogen diffusion and segregation into Fe-C-Mo martensitic HSLA steel using electrochemical permeation test. J. Phys. Chem. Solids 2010, 71, 1467–1479. [Google Scholar] [CrossRef] [Green Version]
- Bolzon, G.; Boukharouba, T.; Gabetta, G.; Elboujdaini, M.; Mellas, M. Integrity of Pipelines Transporting Hydrocarbons; Springer Science & Business Media: Dordrecht, The Netherlands, 2011. [Google Scholar]
- Zakroczymski, T. Adaptation of the electrochemical permeation technique for studying entry, transport and trapping of hydrogen in metals. Electrochim. Acta 2006, 51, 2261–2266. [Google Scholar] [CrossRef]
- Shirley, A.I.; Hall, C.K. Trapping of hydrogen by substitutional and interstitial impurities in α-iron. Scr. Met. 1983, 17, 1003–1008. [Google Scholar] [CrossRef]
- Standard Test Method for Laboratory Testing of Metals for Resistance to Sulfide Stress Cracking and Stress Corrosion Cracking in H2S Environments; NACE TM 0177; NACE International: Houston, TX, USA, 2016.
- Kop, T.A.; Sietsma, J.; Zwaag, S.V.D. Anisotropic dilatation behavior during transformation of hot rolled steels showing banded structure. Mater. Sci. Tech. 2001, 17, 1569–1574. [Google Scholar] [CrossRef]
- Farahani, H.; Xu, W.; Zwaag, S.V.D. A novel approach for controlling the band formation in medium Mn steels. Metall. Mater. Trans. 2018, 49A, 1998–2010. [Google Scholar] [CrossRef] [Green Version]
- De, A.C.G.; Capdevila, C.; Caballero, F.G.; San, M.D. Effect of molybdenum on continuous cooling transformations in two medium carbon forging steels. J. Mater. Sci. 2001, 36, 565–571. [Google Scholar]
- Hu, H.; Xu, G.; Zhou, M.; Yuan, Q. Effect of Mo content on microstructure and property of low-carbon bainitic steels. Metals 2016, 6, 173. [Google Scholar] [CrossRef] [Green Version]
- Komenda, J.; Sandstrom, R. Assessment of pearlite banding using automatic image analysis: Application to hydrogen-induced cracking. Mater. Charact. 1993, 31, 143–153. [Google Scholar] [CrossRef]
- Cheng, R.; Zhang, J.; Wang, B. Deformation behavior of inclusion system CaO-Al2O3-SiO2 with different compositions during hot rolling processes. Trans. Indian Inst. Met. 2018, 71, 705–713. [Google Scholar] [CrossRef]
- Bhadeshia, H.K.D.H. Prevention of hydrogen embrittlement in steels. ISIJ Int. 2016, 56, 24–36. [Google Scholar] [CrossRef] [Green Version]
- Choo, W.Y.; Lee, J.Y. Thermal analysis of trapped hydrogen in pure iron. Met. Trans. 1982, 13, 135–140. [Google Scholar] [CrossRef]
- Fragiel, A.; Serna, S.; Malo-Tamayo, J.; Silva, P.; Campillo, B.; Martinez-Martinez, E.; Cota, L.; Staia, M.H.; Puchi-Cabrera, E.S.; Perez, R. Effect of microstructure and temperature on the stress corrosion cracking of two microalloyed pipeline steels in H2S environment for gas transport. Eng. Fail. Anal. 2019, 105, 1055–1068. [Google Scholar] [CrossRef]
- Jeng, H.W.; Chiu, L.H.; Johnson, D.L.; Wu, J.K. Effect of pearlite morphology on hydrogen permeation, diffusion, and solubility in carbon steels. Mater. Trans. 1990, 21, 1990–3257. [Google Scholar] [CrossRef]
- Lee, W.B.; Hong, S.G.; Park, C.G.; Kim, K.H.; Park, S.H. Influence of Mo on precipitation hardening in hot rolled HSLA steels containing Nb. Scr. Mater. 2000, 43, 319–324. [Google Scholar] [CrossRef]
- Wei, F.G.; Tsuzaki, K. Quantitative analysis on hydrogen trapping of TiC particles in steel. Metall. Mater. Trans. 2006, 37A, 331–353. [Google Scholar] [CrossRef]
- Eeckhout, E.V.D.; Depover, T.; Verbeken, K. The effect of microstructural characteristics on the hydrogen permeation transient in quenched and tempered martensitic alloys. Metals 2018, 8, 779. [Google Scholar] [CrossRef] [Green Version]
- Lee, J.; Lee, T.; Kwon, Y.J.; Mun, D.J.; Yoo, J.Y.; Lee, C.S. Role of Mo/V carbides in hydrogen embrittlement of tempered martensitic steel. Corros. Rev. 2015, 33, 433–441. [Google Scholar] [CrossRef]
- Nagao, A.; Hayashi, K.; Oi, K.; Mitao, S. Effect of uniform distribution of fine cementite on hydrogen embrittlement of low carbon martensitic steel plates. ISIJ Int. 2012, 52, 213–221. [Google Scholar] [CrossRef] [Green Version]
- Takahashi, J.; Kawakami, K.; Kobayashi, Y.; Tarui, T. The first direct observation of hydrogen trapping sites in TiC precipitation-hardening steel through atom probe tomography. Scr. Mater. 2010, 63, 261–264. [Google Scholar] [CrossRef]
- Kim, S.J. Effect of the elastic tensile load on the electrochemical corrosion behavior and diffusible hydrogen content of ferritic steel in acidic environment. Int. J. Hydrog. Energy 2017, 42, 19367–19375. [Google Scholar] [CrossRef]
- Mullin, J.W. Crystallization, 3rd Ed. ed; Butterworth-Heinemann: London, UK, 1993. [Google Scholar]
- Farelas, F.; Galicia, M.; Brown, B.; Nesis, S.; Castaneda, H. Evolution of dissolution processes at the interface of carbon steel corroding in a CO2 environment studied by EIS. Corros. Sci. 2010, 52, 509–517. [Google Scholar] [CrossRef]
- Koh, S.U.; Lee, J.M.; Yang, B.Y.; Kim, K.Y. Effect of molybdenum and chromium addition on the susceptibility to sulfide stress cracking of high-strength, low-alloy steels. Corrosion 2007, 63, 220–230. [Google Scholar] [CrossRef]
Specimens | Chemical Composition (wt.%) | YS (MPa) | TS (MPa) | Strain (%) | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|
C | Mn | Si | Mo | Cr | Nb | Ti | Fe | ||||
Steel A | 0.16 | 1–1.5 | 0.3–0.4 | <0.003 | <0.05 | <0.01 | <0.01 | Bal. | 349.11 | 512.18 | 16.22 |
Steel B | 0.13 | 1–1.5 | 0.3–0.4 | 0.01–0.015 | <0.05 | <0.01 | <0.01 | Bal. | 345.1 | 487.21 | 17.55 |
Steel C | 0.13 | 1–1.5 | 0.3–0.4 | 0.05–0.055 | <0.05 | <0.01 | <0.01 | Bal. | 347.33 | 492.61 | 17.22 |
Phase | Binding Energy (eV) | Relative Quantity |
---|---|---|
S 2p1/2 | 163.7 | 0.095 (±0.009) |
CuS | 162.8 | 0.207 (±0.021) |
MoS2 | 162.3 | 0.100 (±0.009) |
FeS1-X | 161.66 | 0.374 (±0.037) |
NiS | 160.79 | 0.224 (±0.022) |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Park, J.S.; Lee, J.W.; Hwang, J.K.; Kim, S.J. Effects of Alloying Elements (C, Mo) on Hydrogen Assisted Cracking Behaviors of A516-65 Steels in Sour Environments. Materials 2020, 13, 4188. https://doi.org/10.3390/ma13184188
Park JS, Lee JW, Hwang JK, Kim SJ. Effects of Alloying Elements (C, Mo) on Hydrogen Assisted Cracking Behaviors of A516-65 Steels in Sour Environments. Materials. 2020; 13(18):4188. https://doi.org/10.3390/ma13184188
Chicago/Turabian StylePark, Jin Sung, Jin Woo Lee, Joong Ki Hwang, and Sung Jin Kim. 2020. "Effects of Alloying Elements (C, Mo) on Hydrogen Assisted Cracking Behaviors of A516-65 Steels in Sour Environments" Materials 13, no. 18: 4188. https://doi.org/10.3390/ma13184188
APA StylePark, J. S., Lee, J. W., Hwang, J. K., & Kim, S. J. (2020). Effects of Alloying Elements (C, Mo) on Hydrogen Assisted Cracking Behaviors of A516-65 Steels in Sour Environments. Materials, 13(18), 4188. https://doi.org/10.3390/ma13184188