Strength Characteristics of Controlled Low-Strength Materials with Waste Paper Sludge Ash (WPSA) for Prevention of Sewage Pipe Damage
Abstract
:1. Introduction
2. Strength Evaluation of CLSM with WPSA
2.1. Materials
2.2. Mix Design of CLSM
2.3. Experiment Details
2.4. Flowability and Unconfined Compressive Strength
3. Results and Discussion
3.1. Unconfined Compressive Strength Versus Mixing Ratio between WPSA and Fly Ash
3.2. Unconfined Compressive Strength Versus Sand Content
4. Bearing Capacity Evaluation of CLSM Using Plate Bearing Test
4.1. Materials
4.2. Plate Bearing Test Procedure
4.3. Evaluation Results
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Bae, Y.-S.; Kim, K.-T.; Lee, S.-Y. The Road Subsidence Status and Safety Improvement Plans. J. Korea Acad. Coop. Soc. 2017, 18, 545–552. [Google Scholar] [CrossRef]
- Korea institute of geoscience and mineral resources. Research on causes and policy suggestions by sinkhole type. In Research Report; Korea Institute of Geoscience and Mineral Resources: Daejeon, Korea, 2014; pp. 18–39. [Google Scholar]
- Lee, K.H.; Kim, J.D.; Hyun, S.C.; Song, Y.S.; Lee, B.S. Deformation behavior of underground pipe with controlled low strength materials with marine dredged soil. J. Korea Soc. Hazard Mitig. 2007, 7, 129–137. [Google Scholar]
- Controlled Low Strength Materials. In ACI Committee 229; American Concrete Institute: Farmington Hill, MI, USA, 1999.
- Ryu, Y.-S.; Han, J.-G.; Chae, W.-R.; Koo, J.-S.; Lee, D.-Y. Development of Rapid Hardening Backfill Material for Reducing Ground Subsidence. J. Korean Geosynth. Soc. 2015, 14, 13–20. [Google Scholar] [CrossRef] [Green Version]
- Lee, D.; Kim, D.-M.; Ryu, Y.-S.; Han, J.-G. Development and Application of Backfill Material for Reducing Ground Subsidence. J. Korean Geosynth. Soc. 2015, 14, 147–158. [Google Scholar] [CrossRef]
- Kim, J.H.; Cho, S.D.; Kong, J.Y.; Jung, H.S.; Chun, B.S. Curing characteristics of controlled low strength material made coal ashes. J. Korean Geoenviron. Soc. 2010, 11, 77–85. [Google Scholar]
- Kong, J.Y.; Kang, H.N.; Chun, B.S. Characteristics of unconfined compressive strength and flow in controlled low strength materials made with coal ash. J. Korean Geotech. Soc. 2010, 26, 75–83. [Google Scholar]
- Won, J.P.; Lee, Y.S. Properties of controlled low strength material containing bottom ash. J. Korea Concr. Inst. 2001, 13, 294–300. [Google Scholar]
- Razak, H.A.; Naganathan, S.; Hamid, S.N.A. Performance appraisal of industrial waste incineration bottom ash as controlled low-strength material. J. Hazard. Mater. 2009, 172, 862–867. [Google Scholar] [CrossRef] [PubMed]
- Wu, H.; Yin, J.; Bai, S. Experimental Investigation of Utilizing Industrial Waste and Byproduct Materials in Controlled Low Strength Materials (CLSM). Adv. Mater. Res. 2013, 639, 299–303. [Google Scholar] [CrossRef]
- Kubissa, W.; Jaskulski, R.; Szpetulski, J.; Gabrjelska, A.; Tomaszewska, E. Utilization of Fine Recycled Aggregate and the Calcareous Fly Ash in CLSM Manufacturing. Adv. Mater. Res. 2014, 1054, 199–204. [Google Scholar] [CrossRef]
- Naganathan, S.; Mustapha, K.N.; Omar, H. Use of recycled concrete aggregate in controlled low-strength material (CLSM). Civ. Eng. Dimens. 2012, 14, 13–18. [Google Scholar]
- Ahmadi, B.; Al-Khaja, W. Utilization of paper waste sludge in the building construction industry. Resour. Conserv. Recycl. 2001, 32, 105–113. [Google Scholar] [CrossRef]
- Frias, M.; Garcia, R.; Vigil, R.; Ferreiro, S. Calcination of art paper sludge waste for the use as a supplementary cementing material. Appl. Clay Sci. 2008, 42, 189–193. [Google Scholar] [CrossRef]
- García, R.; de la Villa, R.V.; Vegas, I.; Frias, E.; de Rojas, M.S. The pozzolanic properties of paper sludge waste. Constr. Build. Mater. 2008, 22, 1484–1490. [Google Scholar] [CrossRef]
- Monzó, J.; Payá, J.; Borrachero, M.V.; Morenilla, J.J.; Bonilla, M.; Calderón, P. Some strategies for reusing residues from waste water treatment plants: Preparation of binding materials. In Proceedings of the Conference on the Use of Recycled Material in Building and Structures, Barcelona, Spain, 8–11 November 2004; p. a289. [Google Scholar]
- Horiguchi, T.; Fujita, R.; Shimura, K. Applicability of Controlled Low-Strength Materials with Incinerated Sewage Sludge Ash and Crushed-Stone Powder. J. Mater. Civ. Eng. 2011, 23, 767–771. [Google Scholar] [CrossRef]
- Boni, M.R.; D’Aprile, L.; De Casa, G. Environmental quality of primary paper sludge. J. Hazard. Mater. 2004, 108, 125–128. [Google Scholar] [CrossRef]
- Bratina, B.; Šorgo, A.; Kramberger, J.; Ajdnik, U.; Zemljič, L.F.; Ekart, J.; Šafarič, R. From municipal/industrial wastewater sludge and FOG to fertilizer: A proposal for economic sustainable sludge management. J. Environ. Manag. 2016, 183, 1009–1025. [Google Scholar] [CrossRef]
- Heo, Y.; Lee, C.K.; Lee, M.W.; Ahn, K.K. A study on utilization method of paper ash in industrial waste. J. Korean Soc. Saf. 1999, 14, 135–141. [Google Scholar]
- Lee, C.K.; Ahn, K.K.; Heo, Y. Development of the bricks using paper ash. J. Korean Geoenviron. Soc. 2003, 4, 47–56. [Google Scholar]
- Seo, S.K. A Study on the Physicochemical Activation of Paper Sludge Ash & Fly Ash and Their Applications for Cement Admixture. Ph.D. Thesis, Hanyang University, Seoul, Korea, 2017. [Google Scholar]
- Khalid, N.; Mukri, M.; Kamarudin, F.; Arshad, M.F. Clay soil stabilized using waste paper sludge ash (WPSA) mixtures. Electron. J. Geotech. Eng. 2012, 17, 1215–1225. [Google Scholar]
- Bujulu, P.M.S.; Sorta, A.R.; Priol, G.; Emdal, A.J. Potential of waste paper sludge ash to replace cement in deep stabilization of quick clay. In Proceedings of the 2007 Annual Conference of the Transportation Association of Canada, Session on Characterization and Improvement of Soils and Materials, Saskatoon, SK, Canada, 14–17 October 2007. [Google Scholar]
- Ahmad, S. Study of Concrete Involving Use of Waste Paper Sludge Ash as Partial Replacement of Cement. IOSR J. Eng. 2013, 3, 6–15. [Google Scholar] [CrossRef]
- Sani, M.S.H.M.; Muftah, F.B.; Rahman, M.A. Properties of Waste Paper Sludge Ash (WPSA) as cement replacement in mortar to support green technology material. In Proceedings of the 3rd International Symposium & Exhibition in Sustainable Energy & Environment (ISESEE 2011), Melaka, Malaysia, 1–3 June 2011. [Google Scholar]
- Ridzuan, A.R.M.; Fauzi, M.A.; Ghazali, E.; Arshad, M.F.; Fauzi, M.A.M. Strength assessment of controlled low strength materials (CLSM) utilizing recycled concrete aggregate and waste paper sludge ash. In Proceedings of the 2011 IEEE Colloquium on Humanities, Science and Engineering Research, Penang, Malaysia, 5–6 December 2011. [Google Scholar]
- Fauzi, M.A.; Sulaiman, H.; Ridzuan, A.R.M.; Azmi, A.N. The effect of recycled aggregate concrete incorporating waste paper sludge ash as partial replacement of cement. AIP Conf. Proc. 2016, 1774, 030007. [Google Scholar]
- Azmi, A.M.; Fauzi, M.A.; Nor, M.D.; Ridzuan, A.R.M.; Arshad, M.F. Production of controlled low strength material utilizing waste paper sludge ash and recycled aggregate concrete. In Proceedings of the 3rd International Conference on Civil and Environmental Engineering for Sustainability, MATEC Web of Conferences, Kuala Lumpur, Malaysia, 15–17 August 2016; p. 01011. [Google Scholar]
- Bai, J.; Chaipanich, A.; Kinuthia, J.M.; O’Farrell, M.; Sabir, B.; Wild, S.; Lewis, M. Compressive strength and hydration of wastepaper sludge ash–ground granulated blastfurnace slag blended pastes. Cem. Concr. Res. 2003, 33, 1189–1202. [Google Scholar] [CrossRef]
- Mozaffari, E.; O’Farrell, M.; Kinuthia, J.M.; Wild, S. Improving strength development of waste paper sludge ash by wet-milling. Cem. Concr. Compos. 2006, 28, 144–152. [Google Scholar] [CrossRef]
- Farzampour, A. Temperature and humidity effects on behavior of grouts. Adv. Concr. Constr. 2017, 5, 659–669. [Google Scholar]
- Farzampour, A. Compressive Behavior of Concrete under Environmental Effects. In Compressive Strength of Concrete; IntechOpen: London, UK, 2019. [Google Scholar] [CrossRef] [Green Version]
- Mansouri, I.; Shahheidari, F.S.; Hashemi, S.M.A.; Farzampour, A. Investigation of steel fiber effects on concrete abrasion resistance. Adv. Concr. Constr. 2020, 9, 367–374. [Google Scholar]
- Won, H. A laboratory Study on Anti-Acid Mortar Using Calcium-Aluminate Cement and Blast-Furnace Slag with Fly-Ash. Master’s Thesis, Seoul National University of Technology, Seoul, Korea, 2010. [Google Scholar]
- Joseph, I.G.; Dale, E.N.; Patrick, E.; David, C.J.; Charles, E.L.; Eric, L.; Linda, S.; Joseph, R.M. The SEM and Its Modes of Operation. In Scanning Electron Microscopy and X-ray Microanalysis; Springer: Boston, MA, USA, 2003; pp. 21–60. [Google Scholar]
- Borchert, H. X-ray Diffraction. In Solar Cells Based on Colloidal Nanocrystals; Springer Series in Materials Science: Cham, Switzerland, 2014; pp. 79–94. [Google Scholar]
- ASTM. Standard Test Method for Flow Consistency of Controlled Low Strength Material (CLSM); ASTM International: West Conshohocken, PA, USA, 2004; p. D6103. [Google Scholar]
- ASTM. Standard Test for Preparation and Testing of Controlled Low Strength Material (CLSM) Test Cylinders; ASTM International: West Conshohocken, PA, USA, 2004; p. D4832. [Google Scholar]
- Emery, J.; Johnston, T. Unshrinkable Fill for Utility Cut Restorations; American Concrete Institute Special Publication: Farmington Hills, MI, US, 1986; pp. 187–212. [Google Scholar]
- NRMCA. Guide Specification for Controlled: Low Strength Materials (CLSM); National Ready Mixed Concrete Association: Alexandria, VA, USA, 1995; pp. 5–7. [Google Scholar]
- Crouch, L.; Gamble, R.; Brogdon, J.; Tucker, C. Use of High-Fines Limestone Screenings as Aggregate for Controlled Low-Strength Material (CLSM). In The Design and Application of Controlled Low-Strength Materials (Flowable Fill); ASTM International: West Conshohocken, PA, USA, 1998; p. 45. [Google Scholar]
Specific Gravity (Gs) | Maximum Dry Unit Weight (γd(max); kN/m3) | Optimum Moisture Content (ωopt; %) | Internal Friction Angle (ϕ; °) | USCS * |
---|---|---|---|---|
2.65 | 16.9 | 9.4 | 33.4 | SP ** |
Component | SiO2 | Al2O3 | Fe2O3 | CaO | K2O | TiO2 | MgO | Na2O | SO3 | Loss on Ignition |
---|---|---|---|---|---|---|---|---|---|---|
FA (%) | 75.94 | 14.70 | 3.85 | 1.47 | 1.11 | 0.83 | 0.6 | 0.54 | 0.46 | 0.5 |
Component | SiO2 | Al2O3 | Fe2O3 | CaO | K2O | TiO2 | MgO | Na2O | SO3 | Loss on Ignition |
---|---|---|---|---|---|---|---|---|---|---|
FA (%) | 59.35 | 11.19 | 10.27 | 4.43 | 4.02 | 3.98 | 1.74 | 1.36 | 0.64 | 3.02 |
Case Number | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Cement (%) | 5 | |||||||||||
Sand (%) | 35 | 40 | 45 | 50 | ||||||||
WPSA (%) | 60 | 30 | 0 | 55 | 27.5 | 0 | 50 | 25 | 0 | 45 | 22.5 | 0 |
Fly ash (%) | 0 | 30 | 60 | 0 | 27.5 | 55 | 0 | 25 | 50 | 0 | 22.5 | 45 |
Case Number | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 |
Cement (%) | 10 | |||||||||||
Sand (%) | 35 | 40 | 45 | 50 | ||||||||
WPSA (%) | 55 | 27.5 | 0 | 50 | 25 | 0 | 45 | 22.5 | 0 | 40 | 20 | 0 |
Fly ash (%) | 0 | 27.5 | 55 | 0 | 25 | 50 | 0 | 22.5 | 45 | 0 | 20 | 40 |
Case Number | Mix Design | Water Content Required For Adequate Flowability (%) | |||
---|---|---|---|---|---|
Cement (%) | Sand (%) | WPSA (%) | FA (%) | ||
01 | 5 | 35 | 60 | 0 | 32.0 |
02 | 30 | 30 | 29.0 | ||
03 | 0 | 60 | 27.0 | ||
04 | 40 | 55 | 0 | 31.5 | |
05 | 27.5 | 27.5 | 28.5 | ||
06 | 0 | 55 | 26.0 | ||
07 | 45 | 50 | 0 | 29.5 | |
08 | 25 | 25 | 26.0 | ||
09 | 0 | 50 | 25.0 | ||
10 | 50 | 45 | 0 | 29.0 | |
11 | 22.5 | 22.5 | 26.0 | ||
12 | 0 | 45 | 25.0 | ||
13 | 10 | 35 | 55 | 0 | 31.5 |
14 | 27.5 | 27.5 | 28.5 | ||
15 | 0 | 55 | 26.5 | ||
16 | 40 | 50 | 0 | 30.0 | |
17 | 25 | 25 | 27.5 | ||
18 | 0 | 50 | 25.5 | ||
19 | 45 | 45 | 0 | 28.5 | |
20 | 22.5 | 22.5 | 25.0 | ||
21 | 0 | 45 | 24.0 | ||
22 | 50 | 40 | 0 | 28.0 | |
23 | 20 | 20 | 25.0 | ||
24 | 0 | 40 | 24.0 |
Case Number | Unconfined Compressive Strength (MPa) | Case No. | Unconfined Compressive Strength (MPa) | ||||||
---|---|---|---|---|---|---|---|---|---|
1 Day | 7 Days | 28 Days | 60 Days | 1 Day | 7 Days | 28 Days | 60 Days | ||
01 | 0.12 | 0.59 | 1.00 | 1.10 | 13 | 0.13 | 0.76 | 1.70 | 2.11 |
02 | 0.16 | 0.60 | 1.30 | 1.31 | 14 | 0.21 | 1.10 | 1.50 | 2.50 |
03 | 0.56 | 0.86 | 1.50 | 1.53 | 15 | 1.40 | 3.60 | 4.50 | 5.00 |
04 | 0.08 | 0.31 | 0.53 | 0.76 | 16 | 0.17 | 0.87 | 1.15 | 1.30 |
05 | 0.05 | 0.50 | 1.00 | 1.20 | 17 | 0.16 | 0.91 | 1.84 | 1.91 |
06 | 0.50 | 0.81 | 0.90 | 0.91 | 18 | 1.30 | 3.90 | 4.79 | 5.20 |
07 | 0.09 | 0.49 | 1.10 | 1.20 | 19 | 0.18 | 1.00 | 1.37 | 1.20 |
08 | 0.13 | 0.52 | 1.20 | 1.22 | 20 | 0.30 | 1.20 | 2.47 | 2.50 |
09 | 0.65 | 0.90 | 1.30 | 1.29 | 21 | 1.20 | 3.50 | 5.84 | 5.96 |
10 | 0.06 | 0.30 | 0.54 | 0.70 | 22 | 0.32 | 0.79 | 1.00 | 1.20 |
11 | 0.04 | 0.50 | 0.80 | 0.72 | 23 | 0.44 | 0.92 | 1.82 | 1.88 |
12 | 0.40 | 0.60 | 0.80 | 0.73 | 24 | 1.10 | 3.00 | 4.81 | 5.06 |
Classification | Normal Stress (kPa) | Strength Parameters | ||||
---|---|---|---|---|---|---|
50 | 100 | 150 | Cohesion (c; kPa) | Internal Friction Angle (ϕ; °) | ||
Weathered soil | Shear stress (kPa) | 57.8 | 77.6 | 120.1 | 22.9 | 31.9 |
CSLM after 7 days | 90.0 | 129.0 | 162.1 | 54.9 | 35.8 | |
CSLM after 28 days | 144 | 196.7 | 225.5 | 107.2 | 39.2 |
Classification | Elapsed Time (Days) | |||||
---|---|---|---|---|---|---|
1 | 7 | 14 | 28 | 60 | ||
Allowable bearing capacity (kPa) | Weathered soil | 183.3 | 186.7 | 188.3 | 190.0 | 191.7 |
CSLM | 186.7 | 225.0 | 231.7 | 240.0 | 243.3 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Park, J.; Hong, G. Strength Characteristics of Controlled Low-Strength Materials with Waste Paper Sludge Ash (WPSA) for Prevention of Sewage Pipe Damage. Materials 2020, 13, 4238. https://doi.org/10.3390/ma13194238
Park J, Hong G. Strength Characteristics of Controlled Low-Strength Materials with Waste Paper Sludge Ash (WPSA) for Prevention of Sewage Pipe Damage. Materials. 2020; 13(19):4238. https://doi.org/10.3390/ma13194238
Chicago/Turabian StylePark, Jeongjun, and Gigwon Hong. 2020. "Strength Characteristics of Controlled Low-Strength Materials with Waste Paper Sludge Ash (WPSA) for Prevention of Sewage Pipe Damage" Materials 13, no. 19: 4238. https://doi.org/10.3390/ma13194238
APA StylePark, J., & Hong, G. (2020). Strength Characteristics of Controlled Low-Strength Materials with Waste Paper Sludge Ash (WPSA) for Prevention of Sewage Pipe Damage. Materials, 13(19), 4238. https://doi.org/10.3390/ma13194238