Perfect Topological Metal CrB2: A One-Dimensional (1D) Nodal Line, a Zero-Dimensional (0D) Triply Degenerate Point, and a Large Linear Energy Range
Abstract
:1. Introduction
2. Methods and Materials
3. Electronic Structures
4. Topological Signatures
5. Surface States and the Effect of Spin–Orbit Coupling
6. Conclusions
- CrB2 is an existing material and was confirmed to be dynamically stable based on the calculated phonon dispersion.
- CrB2 featured two types of topological elements: (i) one pair of 1D nodal lines in the kz = 0 plane and (ii) one pair of 0D triply degenerate nodal points along the A’–Γ–A paths.
- These band-crossing points were very robust against the effects of spin–orbit coupling.
- The energy range of the linear band dispersion was very large around the band-crossing points.
- The nontrivial surface states were around the band-crossing points and were very clear.
- The large linear energy range, 0D and 1D band crossings, and obvious nontrivial surface states observed in CrB2 will facilitate the experimental detection of potential topological elements.
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Burkov, A.A. Topological semimetals. Nat. Mater. 2016, 15, 1145–1148. [Google Scholar] [CrossRef] [PubMed]
- Hu, J.; Xu, S.-Y.; Ni, N.; Mao, Z. Transport of Topological Semimetals. Annu. Rev. Mater. Res. 2019, 49, 207–252. [Google Scholar] [CrossRef] [Green Version]
- Fang, C.; Gilbert, M.J.; Dai, X.; Bernevig, B.A. Multi-Weyl Topological Semimetals Stabilized by Point Group Symmetry. Phys. Rev. Lett. 2012, 108, 266802. [Google Scholar] [CrossRef] [PubMed]
- Kawabata, K.; Bessho, T.; Sato, M. Classification of Exceptional Points and Non-Hermitian Topological Semimetals. Phys. Rev. Lett. 2019, 123, 066405. [Google Scholar] [CrossRef] [Green Version]
- Weng, H.; Dai, X.; Fang, Z. Topological semimetals predicted from first-principles calculations. J. Phys. Condens. Matter 2016, 28, 303001. [Google Scholar] [CrossRef] [Green Version]
- Parameswaran, S.A.; Grover, T.; Abanin, D.A.; Pesin, D.A.; Vishwanath, A. Probing the Chiral Anomaly with Nonlocal Transport in Three-Dimensional Topological Semimetals. Phys. Rev. X 2014, 4, 031035. [Google Scholar] [CrossRef] [Green Version]
- Schoop, L.M.; Pielnhofer, F.; Lotsch, B.V. Chemical Principles of Topological Semimetals. Chem. Mater. 2018, 30, 3155–3176. [Google Scholar] [CrossRef] [Green Version]
- Guan, S.; Yu, Z.-M.; Liu, Y.; Liu, G.-B.; Dong, L.; Lu, Y.; Yao, Y.; Yang, S.A. Artificial gravity field, astrophysical analogues, and topological phase transitions in strained topological semimetals. npj Quantum Mater. 2017, 2, 205101. [Google Scholar] [CrossRef] [Green Version]
- Burkov, A.A. Giant planar Hall effect in topological metals. Phys. Rev. B 2017, 96, 041110. [Google Scholar] [CrossRef] [Green Version]
- Zhao, Y.X.; Schnyder, A.P.; Wang, Z.D. Unified Theory of P T and C P Invariant Topological Metals and Nodal Superconductors. Phys. Rev. Lett. 2016, 116, 156402. [Google Scholar] [CrossRef] [Green Version]
- Breitkreiz, M.; Brouwer, P.W. Large Contribution of Fermi Arcs to the Conductivity of Topological Metals. Phys. Rev. Lett. 2019, 123, 066804. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Burkov, A. Weyl Metals. Annu. Rev. Condens. Matter Phys. 2018, 9, 359–378. [Google Scholar] [CrossRef] [Green Version]
- Chen, Y.; Lu, Y.-M.; Kee, H.-Y. Topological crystalline metal in orthorhombic perovskite iridates. Nat. Commun. 2015, 6, 6593. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.-B.; Qin, T.; Deng, D.-L.; Duan, L.-M.; Xu, Y. Topological Amorphous Metals. Phys. Rev. Lett. 2019, 123, 076401. [Google Scholar] [CrossRef] [Green Version]
- Wang, D.; Tang, F.; Po, H.C.; Vishwanath, A.; Wan, X. XFe4Ge2 (X = Y, Lu) and Mn3Pt: Filling-enforced magnetic topological metals. Phys. Rev. B 2020, 101, 115122. [Google Scholar] [CrossRef] [Green Version]
- Armitage, N.P.; Mele, E.J.; Vishwanath, A. Weyl and Dirac semimetals in three-dimensional solids. Rev. Mod. Phys. 2018, 90, 15001. [Google Scholar] [CrossRef] [Green Version]
- Potter, A.C.; Kimchi, I.; Vishwanath, A. Quantum oscillations from surface Fermi arcs in Weyl and Dirac semimetals. Nat. Commun. 2014, 5, 5161. [Google Scholar] [CrossRef]
- Lundgren, R.; Laurell, P.; Fiete, G.A. Thermoelectric properties of Weyl and Dirac semimetals. Phys. Rev. B 2014, 90, 165115. [Google Scholar] [CrossRef] [Green Version]
- Gorbar, E.V.; Miransky, V.A.; Shovkovy, I.A. Chiral anomaly, dimensional reduction, and magnetoresistivity of Weyl and Dirac semimetals. Phys. Rev. B 2014, 89, 085126. [Google Scholar] [CrossRef] [Green Version]
- Schoop, L.M.; Topp, A.; Lippmann, J.; Orlandi, F.; Muechler, L.; Vergniory, M.G.; Sun, Y.; Rost, A.W.; Duppel, V.; Krivenkov, M.; et al. Tunable Weyl and Dirac states in the nonsymmorphic compound CeSbTe. Sci. Adv. 2018, 4, eaar2317. [Google Scholar] [CrossRef] [Green Version]
- Weng, H.; Fang, C.; Fang, Z.; Dai, X. Topological semimetals with triply degenerate nodal points in θ-phase tantalum nitride. Phys. Rev. B 2016, 93, 241202. [Google Scholar] [CrossRef] [Green Version]
- Zhang, X.; Yu, Z.-M.; Sheng, X.-L.; Yang, H.Y.; Yang, S.A. Coexistence of four-band nodal rings and triply degenerate nodal points in centrosymmetric metal diborides. Phys. Rev. B 2017, 95, 235116. [Google Scholar] [CrossRef] [Green Version]
- Weng, H.; Fang, C.; Fang, Z.; Dai, X. Coexistence of Weyl fermion and massless triply degenerate nodal points. Phys. Rev. B 2016, 94, 165201. [Google Scholar] [CrossRef] [Green Version]
- Jin, L.; Zhang, X.; Dai, X.; Liu, H.; Chen, G.; Liu, G. Centrosymmetric Li2NaN: A superior topological electronic material with critical-type triply degenerate nodal points. J. Mater. Chem. C 2019, 7, 1316–1320. [Google Scholar] [CrossRef] [Green Version]
- Sun, J.-P.; Zhang, D.; Chang, K. Coexistence of topological nodal lines, Weyl points, and triply degenerate points in TaS. Phys. Rev. B 2017, 96, 045121. [Google Scholar] [CrossRef] [Green Version]
- Sun, Z.P.; Hua, C.Q.; Liu, X.L.; Liu, Z.T.; Ye, M.; Qiao, S.; Liu, J.S.; Guo, Y.F.; Lu, Y.H.; Shen, D. Direct observation of sixfold exotic fermions in the pyrite-structured topological semimetal PdSb2. Phys. Rev. B 2020, 101, 155114. [Google Scholar] [CrossRef] [Green Version]
- Cano, J.; Bradlyn, B.; Vergniory, M.G. Multifold nodal points in magnetic materials. APL Mater. 2019, 7, 101125. [Google Scholar] [CrossRef]
- Berry, T.; Pressley, L.A.; Phelan, W.A.; Tran, T.T.; McQueen, T. Laser-Enhanced Single Crystal Growth of Non-Symmorphic Materials: Applications to an Eight-Fold Fermion Candidate. Chem. Mater. 2020, 23, 5827. [Google Scholar] [CrossRef]
- Jin, L.; Zhang, X.; He, T.; Meng, W.; Dai, X.; Liu, G. Topological nodal line state in superconducting NaAlSi compound. J. Mater. Chem. C 2019, 7, 10694–10699. [Google Scholar] [CrossRef]
- He, T.; Zhang, X.; Meng, W.; Jin, L.; Dai, X.; Liu, G. Topological nodal lines and nodal points in the antiferromagnetic material β-Fe2PO5. J. Mater. Chem. C 2019, 7, 12657–12663. [Google Scholar] [CrossRef]
- Zhang, X.; Fu, B.; Jin, L.; Dai, X.; Liu, G.; Yao, Y. Topological Nodal Line Electrides: Realization of an Ideal Nodal Line State Nearly Immune from Spin–Orbit Coupling. J. Phys. Chem. C 2019, 123, 25871–25876. [Google Scholar] [CrossRef]
- Meng, W.; Zhang, X.; Liu, Y.; Dai, X.; Liu, G. Lorentz-violating type-II Dirac fermions in full-Heusler compounds XMg2Ag (X = Pr, Nd, Sm). New J. Phys. 2020, 22, 073061. [Google Scholar] [CrossRef]
- Jin, L.; Zhang, X.; Dai, X.F.; Wang, L.Y.; Liu, H.Y.; Liu, G. Screening topological materials with a CsCl-type structure in crystallographic databases. IUCrJ 2019, 6, 688–694. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, X.; Ding, G.; Cheng, Z.; Wang, X.; Zhang, G.; Yang, T. Intersecting nodal rings in orthorhombic-type BaLi2Sn compound. J. Mater. Chem. C 2020, 8, 5461–5466. [Google Scholar] [CrossRef]
- Wang, X.; Cheng, Z.; Zhang, G.; Wang, B.; Wang, X.L.; Chen, H. Rich novel zero-dimensional (0D), 1D, and 2D topological elements predicted in the P63/m type ternary boride HfIr3B4. Nanoscale 2020, 12, 8314–8319. [Google Scholar] [CrossRef] [PubMed]
- Zhou, F.; Ding, G.; Cheng, Z.; Surucu, G.; Chen, H.; Wang, X. Pnma metal hydride system LiBH: A superior topological semimetal with the coexistence of twofold and quadruple degenerate topological nodal lines. J. Phys. Condens. Matter 2020, 32, 365502. [Google Scholar] [CrossRef]
- Nie, S.; Weng, H.; Prinz, F.B. Topological nodal-line semimetals in ferromagnetic rare-earth-metal monohalides. Phys. Rev. B 2019, 99, 035125. [Google Scholar] [CrossRef] [Green Version]
- Geng, Z.-G.; Peng, Y.-G.; Shen, Y.-X.; Ma, Z.; Yu, R.; Gao, J.-H.; Zhu, X.-F. Topological nodal line states in three-dimensional ball-and-stick sonic crystals. Phys. Rev. B 2019, 100, 224105. [Google Scholar] [CrossRef]
- Wu, W.; Liu, Y.; Li, S.; Zhong, C.; Yu, Z.-M.; Sheng, X.-L.; Zhao, Y.X.; Yang, S.A. Nodal surface semimetals: Theory and material realization. Phys. Rev. B 2018, 97, 115125. [Google Scholar] [CrossRef] [Green Version]
- Qie, Y.; Liu, J.; Wang, S.; Sun, Q.; Jena, P.; Jena, P. Tetragonal C24: A topological nodal-surface semimetal with potential as an anode material for sodium ion batteries. J. Mater. Chem. A 2019, 7, 5733–5739. [Google Scholar] [CrossRef]
- Yang, T.; Khenata, R.; Wang, X. Predicted remarkably topological nodal surface states in P63/m type Sr3WN3 from first-principles. Results Phys. 2020, 17, 103026. [Google Scholar] [CrossRef]
- Chen, Y.; Xie, Y.; Yang, S.A.; Pan, H.; Zhang, C.; Cohen, M.L.; Zhang, S. Nanostructured Carbon Allotropes with Weyl-like Loops and Points. Nano Lett. 2015, 15, 6974–6978. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, X.; Li, T.; Cheng, Z.; Wang, X.-L.; Chen, X. Recent advances in Dirac spin-gapless semiconductors. Appl. Phys. Rev. 2018, 5, 041103. [Google Scholar] [CrossRef] [Green Version]
- Post, B.; Glaser, F.W.; Moskowitz, D. Transition metal diborides. Acta Met. 1954, 2, 20–25. [Google Scholar] [CrossRef]
- Hafner, J. Ab-initiosimulations of materials using VASP: Density-functional theory and beyond. J. Comput. Chem. 2008, 29, 2044–2078. [Google Scholar] [CrossRef]
- Perdew, J.P.; Burke, K.; Ernzerhof, M. Perdew, Burke, and Ernzerhof Reply. Phys. Rev. Lett. 1998, 80, 891. [Google Scholar] [CrossRef]
- Wu, Q.; Zhang, S.; Song, H.-F.; Troyer, M.; Soluyanov, A.A. WannierTools: An open-source software package for novel topological materials. Comput. Phys. Commun. 2018, 224, 405–416. [Google Scholar] [CrossRef] [Green Version]
- Materials Project Database. Available online: https://materialsproject.org/materials/mp-374 (accessed on 28 June 2020).
- Ding, G.; He, J.; Cheng, Z.; Wang, X.; Li, S. Low lattice thermal conductivity and promising thermoelectric figure of merit of Zintl type TlInTe2. J. Mater. Chem. C 2018, 6, 13269–13274. [Google Scholar] [CrossRef]
- Han, Y.; Wu, M.; Feng, Y.; Cheng, Z.; Lin, T.; Yang, T.; Khenata, R.; Wang, X. Competition between cubic and tetragonal phases in all-d-metal Heusler alloys, X2−xMn1+xV (X = Pd, Ni, Pt, Ag, Au, Ir, Co; x = 1, 0): A new potential direction of the Heusler family. IUCrJ 2019, 6, 465–472. [Google Scholar] [CrossRef] [Green Version]
- Wu, M.; Han, Y.; Bouhemadou, A.; Cheng, Z.; Khenata, R.; Kuang, M.; Wang, X.; Yang, T.; Yuan, H.; Wang, X. Site preference and tetragonal distortion in palladium-rich Heusler alloys. IUCrJ 2019, 6, 218–225. [Google Scholar] [CrossRef]
- Deák, P.; Aradi, B.; Frauenheim, T.; Janzén, E.; Gali, A. Accurate defect levels obtained from the HSE06 range-separated hybrid functional. Phys. Rev. B 2010, 81, 153203. [Google Scholar] [CrossRef] [Green Version]
- Weng, H.; Liang, Y.; Xu, Q.; Yu, R.; Fang, Z.; Dai, X.; Kawazoe, Y. Topological node-line semimetal in three-dimensional graphene networks. Phys. Rev. B 2015, 92, 045108. [Google Scholar] [CrossRef] [Green Version]
- Huang, H.; Liu, J.; Vanderbilt, D.; Duan, W. Topological nodal-line semimetals in alkaline-earth stannides, germanides, and silicides. Phys. Rev. B 2016, 93, 201114. [Google Scholar] [CrossRef] [Green Version]
- Yamakage, A.; Yamakawa, Y.; Tanaka, Y.; Okamoto, Y. Line-Node Dirac Semimetal and Topological Insulating Phase in Noncentrosymmetric Pnictides CaAgX(X= P, As). J. Phys. Soc. Jpn. 2016, 85, 013708. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.; Ding, G.; Cheng, Z.; Surucu, G.; Wang, X.-L.; Ding, G. Novel topological nodal lines and exotic drum-head-like surface states in synthesized CsCl-type binary alloy TiOs. J. Adv. Res. 2020, 22, 137–144. [Google Scholar] [CrossRef]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, Y.; Xia, J.; Khenata, R.; Kuang, M. Perfect Topological Metal CrB2: A One-Dimensional (1D) Nodal Line, a Zero-Dimensional (0D) Triply Degenerate Point, and a Large Linear Energy Range. Materials 2020, 13, 4321. https://doi.org/10.3390/ma13194321
Li Y, Xia J, Khenata R, Kuang M. Perfect Topological Metal CrB2: A One-Dimensional (1D) Nodal Line, a Zero-Dimensional (0D) Triply Degenerate Point, and a Large Linear Energy Range. Materials. 2020; 13(19):4321. https://doi.org/10.3390/ma13194321
Chicago/Turabian StyleLi, Yang, Jihong Xia, Rabah Khenata, and Minquan Kuang. 2020. "Perfect Topological Metal CrB2: A One-Dimensional (1D) Nodal Line, a Zero-Dimensional (0D) Triply Degenerate Point, and a Large Linear Energy Range" Materials 13, no. 19: 4321. https://doi.org/10.3390/ma13194321
APA StyleLi, Y., Xia, J., Khenata, R., & Kuang, M. (2020). Perfect Topological Metal CrB2: A One-Dimensional (1D) Nodal Line, a Zero-Dimensional (0D) Triply Degenerate Point, and a Large Linear Energy Range. Materials, 13(19), 4321. https://doi.org/10.3390/ma13194321