Fibre-Reinforced Foamed Concretes: A Review
Abstract
:1. Introduction
2. Foam Concrete: A Preface
2.1. Foaming Agents
2.2. Methods of Manufacturing Foam
- -
- Cement, admixtures, or additives are mixed to produce the cement slurry.
- -
- About 1 kg of animal FA or high-efficiency FAs is diluted 30 to 40 times and then poured into the foam generator.
- -
- After the uniform and fine foam are emitted, it is then passed into the slurry and continued to be stirred. This is done to wholly integrate the foam and the cement slurry to make the mud cover the foam.
- -
- The FC slurry is then poured into different molds using a pouring pump to make different products.
- -
- The temperature and humidity should be maintained and kept constant for 2 to 3 days, after which the hardened FC should be cured until 7 to 10 days.
- -
- An early strength agent could be used for the rapid removal of the FC from the molds.
- -
- Cement and admixtures are mixed in a mixer and stirred evenly to produce the cement slurry
- -
- A chemical FA, hydrogen peroxide, or aluminum powder, is added to the slurry and continued to be stirred for approximately 45 s.
- -
- The FC slurry is then poured into the molds of different sizes using a pouring pump to produce different products.
- -
- The temperature and humidity should be maintained and kept constant for 2 to 3 days, after which the hardened FC should be cured until 7 to 10 days.
- -
- An early strength agent could be used for the rapid removal of the FC from the molds. Moreover, Table 3 lists the comparison of foam extrusion, batch foaming and foam injection molding.
2.3. Production of Foamed Concrete
3. Fibres Used in FC
3.1. Natural
3.1.1. Abaca, Bagasse and Bamboo
3.1.2. Banana, Sisal and Eucalyptus
3.1.3. Coconut, Coir and Pineapple Leaves
3.1.4. Wood, Cotton and, Flax
3.1.5. Henp and Kenaf
3.1.6. Jute and Palm
3.2. Artificial
3.2.1. Steel, Basalt and Glass
3.2.2. Asbestos
3.2.3. Polyvinyl Alcohol (PVA) and Polypropylene
3.2.4. Polyethylene, Polyester and Polyethylene Terephthalate
3.2.5. Nylon and Aramid
3.2.6. Acrylic and Carbon Nanofibres
4. Factors Affecting the Properties of FRFC
4.1. Fresh and Harden Densities
4.2. Diameter, Length and Content of Fibres
4.3. Effect of Aggregate Grading
4.4. Effect of Pozzolanic
5. Properties of FRFC
5.1. Fresh State Characteristics
5.1.1. The Rheology and Consistency
5.1.2. Workability
5.1.3. Segregation and Bleeding
5.2. Hardened Properties
5.2.1. Compressive Strength
5.2.2. Modulus of Elasticity
5.2.3. Splitting Tensile, Flexural and Fracture Strength
5.2.4. Water Absorption, Drying Shrinkage and Time-Dependency Properties
5.2.5. Thermal Conductivity
5.3. Summary of Properties of FRFC
6. Applications of FRFC
7. Future Research Focus
8. Conclusions
- -
- Future investigation to study the impact strength of FRFC.
- -
- Extra efforts must be paid to investigate the thermal insulating characteristic of FRFC that could be made by using the mixed-foaming techniques. Such foams have no superior characteristics than those of conventional porous materials, including glass foam or autoclaved-aerated concrete.
- -
- Further investigations to explore the possibility of utilizing FRFC in the construction of eco-friendly buildings, as applicable material to mitigate noise pollution for increase productivity, health and well-being.
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Castillo-Lara, J.F.; Flores-Johnson, E.A.; Valadez-Gonzalez, A.; Herrera-Franco, P.J.; Carrillo, J.G.; Gonzalez-Chi, P.I.; Li, Q.M. Mechanical Properties of Natural Fiber Reinforced Foamed Concrete. Materials 2020, 13, 3060. [Google Scholar] [CrossRef] [PubMed]
- Amran, Y.H.M. Influence of structural parameters on the properties of fibred-foamed concrete. Innov. Infrastruct. Solut. 2020, 5, 16. [Google Scholar] [CrossRef]
- Mohamad, N.; Omar, W.; Abdullah, R. Structural Behaviour of Precast Lightweight Foamed Concrete Sandwich Panel as a Load Bearing Wall. OIDA Int. J. Sustain. Dev. 2012, 5, 49–58. [Google Scholar]
- König, J.; Lopez-Gil, A.; Cimavilla-Roman, P.; Rodriguez-Perez, M.A.; Petersen, R.R.; Østergaard, M.B.; Iversen, N.; Yue, Y.; Spreitzer, M. Synthesis and properties of open- and closed-porous foamed glass with a low density. Constr. Build. Mater. 2020, 247, 118574. [Google Scholar] [CrossRef]
- Lesovik, V.; Voronov, V.; Glagolev, E.; Fediuk, R.; Alaskhanov, A.; Amran, Y.H.M.; Murali, G.; Baranov, A. Improving the behaviors of foam concrete through the use of composite binder. J. Build. Eng. 2020, 17, 101414. [Google Scholar] [CrossRef]
- Amran, Y.H.M.; Rashid, R.S.M.; Hejazi, F.; Ali, A.A.A.; Safiee, N.A.; Bida, S.M. Structural Performance of Precast Foamed Concrete Sandwich Panel Subjected to Axial Load. KSCE J. Civ. Eng. 2018, 22, 1179–1192. [Google Scholar] [CrossRef]
- Amran, Y.H.M.; Ali, A.A.A.; Rashid, R.S.M.; Hejazi, F.; Safiee, N.A. Structural behavior of axially loaded precast foamed concrete sandwich panels. Constr. Build. Mater. 2016, 107, 307–320. [Google Scholar] [CrossRef]
- Amran, Y.H.M.; Farzadnia, N.; Ali, A.A.A. Properties and applications of foamed concrete; A review. Constr. Build. Mater. 2015, 101, 990–1005. [Google Scholar] [CrossRef]
- Amran, Y.H.M. Determination of Structural Behavior of Precast Foamed Concrete Sandwich Panel. Ph.D. Thesis, Universiti Putra Malaysia (UPM), Seri Kembangan, Malaysia, 2016. [Google Scholar]
- Ramamurthy, K.; Nambiar, E.K.K.; Ranjani, G.I.S. A classification of studies on properties of foam concrete. Cem. Concr. Compos. 2009, 31, 388–396. [Google Scholar] [CrossRef]
- Song, P.S.; Hwang, S.; Sheu, B.C. Strength properties of nylon- and polypropylene-fiber-reinforced concretes. Cem. Concr. Res. 2005, 35, 1546–1550. [Google Scholar] [CrossRef]
- Singh, N.B. Fly ash-based geopolymer binder: A future construction material. Minerals 2018, 8, 299. [Google Scholar] [CrossRef] [Green Version]
- Narayanan, N.; Ramamurthy, K. Structure and properties of aerated concrete: A review. Cem. Concr. Compos. 2000, 22, 321–329. [Google Scholar] [CrossRef]
- Amran, Y.H.M.; Rashid, R.S.M.; Hejazi, F.; Safiee, N.A.; Ali, A.A.A. Response of precast foamed concrete sandwich panels to flexural loading. J. Build. Eng. 2016, 7, 143–158. [Google Scholar] [CrossRef]
- Amran, Y.H.M.; Rashid, R.S.M.; Hejazi, F.; Safiee, N.A.; Ali, A.A.A. Structural behavior of laterally loaded precast foamed concrete sandwich panel. Int. J. Civ. Environ. Struct. Constr. Archit. Eng. 2016, 10, 255–263. [Google Scholar]
- Mohamad, N.; Omar, W.; Abdullah, R. Precast Lightweight Foamed Concrete Sandwich Panel (PLFP) tested under axial load: Preliminary results. Adv. Mater. Res. 2011, 250, 1153–1162. [Google Scholar] [CrossRef]
- Hetzroni, O.E.; Harris, O.L. Cultural aspects in the development of AAC users, AAC Augment. Altern. Commun. 1996, 12, 528. [Google Scholar] [CrossRef]
- Amran, Y.H.M.; Alyousef, R.; Alabduljabbar, H.; Khudhair, M.H.R.; Hejazi, F.; Alaskar, A.; Alrshoudi, F.; Siddika, A. Performance properties of structural fibred-foamed concrete. Results Eng. 2020, 5, 100092. [Google Scholar] [CrossRef]
- Kearsley, E.P.; Wainwright, P.J. The effect of high fly ash content on the compressive strength of foamed concrete. Cem. Concr. Res. 2001, 31, 105–112. [Google Scholar] [CrossRef]
- Kearsley, E.P.; Wainwright, P.J. Porosity and permeability of foamed concrete. Cem. Concr. Res. 2001, 31, 805–812. [Google Scholar] [CrossRef]
- Jones, M.R.; McCarthy, A. Preliminary views on the potential of foamed concrete as a structural material. Mag. Concr. Res. 2005. [Google Scholar] [CrossRef]
- Hadipramana, J.; Samad, A.A.A.; Zaidi, A.M.A.; Mohammad, N.; Riza, F.V. Effect of uncontrolled burning rice husk ash in foamed concrete. Adv. Mater. Res. 2013, 626, 769–775. [Google Scholar] [CrossRef] [Green Version]
- Falliano, D.; de Domenico, D.; Ricciardi, G.; Gugliandolo, E. Compressive and flexural strength of fiber-reinforced foamed concrete: Effect of fiber content, curing conditions and dry density. Constr. Build. Mater. 2019, 198, 479–493. [Google Scholar] [CrossRef]
- Arisoy, B.; Wu, H.C. Material characteristics of high performance lightweight concrete reinforced with PVA. Constr. Build. Mater. 2008, 22, 635–645. [Google Scholar] [CrossRef]
- Keriene, J.; Kligys, M.; Laukaitis, A.; Yakovlev, G.; Špokauskas, A.; Aleknevičius, M. The influence of multi-walled carbon nanotubes additive on properties of non-autoclaved and autoclaved aerated concretes. Constr. Build. Mater. 2013, 49, 527–535. [Google Scholar] [CrossRef]
- Awang, H.; Ahmad, M.H. Durability Properties of Foamed Concrete with Fiber Inclusion. Int. J. Civ. Struct. Constr. Archit. Eng. 2014, 8, 269–272. [Google Scholar]
- Awang, H.; Ahmad, M.H.; Al-Mulali, M.Z. Influence of kenaf and polypropylene fibres on mechanical and durability properties of fibre reinforced lightweight foamed concrete. J. Eng. Sci. Technol. 2015, 10, 496–508. [Google Scholar]
- van Zijl, G.P.A.G.; van Rooyen, A.S.; Mubatapasango, M.S.; Dunn, T.P.A.; Grafe, J. Durability and bond of reinforced lightweight foamed concrete. In Proceedings of the High Tech Concrete: Where Technology and Engineering Meet, Maastricht, The Netherlands, 12–14 June 2017. [Google Scholar] [CrossRef]
- Bing, C.; Zhen, W.; Ning, L. Experimental Research on Properties of High-Strength Foamed Concrete. J. Mater. Civ. Eng. 2012, 24, 113–118. [Google Scholar] [CrossRef]
- Sun, H.; Gong, A.; Peng, Y.; Wang, X. The study of foamed concrete with polypropylene fiber and high volume fly ash. Appl. Mech. Mater. 2011, 90, 1039–1043. [Google Scholar] [CrossRef]
- Dawood, E.T.; Hamad, A.J. Toughness behaviour of high-performance lightweight foamed concrete reinforced with hybrid fibres. Struct. Concr. 2015, 16, 496–507. [Google Scholar] [CrossRef]
- Fedorov, V.; Mestnikov, A. Influence of cellulose fibers on structure and properties of fiber reinforced foam concrete. In MATEC Web of Conferences; EDP Sciences: Les Ulis, France, 2018; Volume 143, p. 02008. [Google Scholar]
- Mahzabin, M.S.; Hock, L.J.; Hossain, M.S.; Kang, L.S. The influence of addition of treated kenaf fibre in the production and properties of fibre reinforced foamed composite. Constr. Build. Mater. 2018, 178, 518–528. [Google Scholar] [CrossRef]
- Mydin, M.A.O.; Rozlan, N.A.; Ganesan, S. Experimental study on the mechanical properties of coconut fibre reinforced lightweight foamed concrete. J. Mater. Environ. Sci. 2015, 6, 407–411. [Google Scholar]
- Abbas, W.; Dawood, E.; Mohammad, Y. Properties of foamed concrete reinforced with hybrid fibres. In MATEC Web of Conferences; EDP Sciences: Les Ulis, France, 2018; Volume 162, p. 02012. [Google Scholar]
- Roslan, A.F.; Awang, H.; Mydin, M.A.O. Effects of various additives on drying shrinkage, compressive and flexural strength of lightweight foamed concrete (LFC). Adv. Mater. Res. 2013, 626, 594–604. [Google Scholar] [CrossRef]
- Hulimka, J.; Krzywoń, R.; Jȩdrzejewska, A. Laboratory Tests of Foam Concrete Slabs Reinforced with Composite Grid. Procedia Eng. 2017, 193, 337–344. [Google Scholar] [CrossRef]
- Falliano, D.; de Domenico, D.; Ricciardi, G.; Gugliandolo, E. Improving the flexural capacity of extrudable foamed concrete with glass-fiber bi-directional grid reinforcement: An experimental study. Compos. Struct. 2019, 209, 45–59. [Google Scholar] [CrossRef]
- Bawa, S.; Singh, S.P. Fatigue performance of self-compacting concrete containing hybrid steel–polypropylene fibres. Innov. Infrastruct. Solut. 2019, 4, 57. [Google Scholar] [CrossRef]
- Hanehara, S.; Yamada, K. Interaction between cement and chemical admixture from the point of cement hydration, absorption behaviour of admixture, and paste rheology. Cem. Concr. Res. 1999, 29, 1159–1165. [Google Scholar] [CrossRef]
- Fernandes, P.A.L.; Veludo, J.; Almeida, N.; Baptista, J.; Rodrigues, H. Study of a self-compacting fiber-reinforced concrete to be applied in the precast industry. Innov. Infrastruct. Solut. 2018, 3, 28. [Google Scholar] [CrossRef]
- Mindess, S. Developments in the Formulation and Reinforcement of Concrete; Woodhead Publishing: Sawston, UK, 2019. [Google Scholar] [CrossRef]
- Bentur, A.; Mindess, S. Fibre Reinforced Cementitious Composites; CRC Press: Boca Raton, FL, USA, 2006. [Google Scholar] [CrossRef]
- Yip, C.C.; Marsono, A.K.; Wong, J.Y.; Amran, M.Y.H. Flexural strength of special reinforced lightweight concrete beam for Industrialised Building System (IBS). J. Teknol. 2015, 77, 187–196. [Google Scholar] [CrossRef] [Green Version]
- Amran, Y.M.; Rashid, R.S.; Hejazi, F.; Safiee, N.A.; Ali, A.A. Structural Behavior of Precast Foamed Concrete Sandwich Panel Subjected to Vertical In-Plane Shear Loading. J. Civ. Environ. Struct. Constr. Arch. Eng. 2016, 10, 699–708. [Google Scholar]
- Richard, A. Experimental Production of Sustainable Lightweight Foamed Concrete. Br. J. Appl. Sci. Technol. 2013, 12, 994–1005. [Google Scholar] [CrossRef]
- Jiang, J.; Lu, Z.; Niu, Y.; Li, J.; Zhang, Y. Study on the preparation and properties of high-porosity foamed concretes based on ordinary Portland cement. Mater. Des. 2016, 92, 949–959. [Google Scholar] [CrossRef]
- Raj, A.; Sathyan, D.; Mini, K.M. Physical and functional characteristics of foam concrete: A review. Constr. Build. Mater. 2019, 221, 787–799. [Google Scholar] [CrossRef]
- Khan, M.Z.N.; Shaikh, F.U.A.; Hao, Y.; Hao, H. Effects of curing conditions and sand-to-binder ratios on compressive strength development of fly ash geopolymer. J. Mater. Civ. Eng. 2018, 30, 04017267. [Google Scholar] [CrossRef]
- Mydin, M.A.O.; Wang, Y.C. Structural performance of lightweight steel-foamed concrete–steel composite walling system under compression. Thin-Walled Struct. 2011, 49, 66–76. [Google Scholar] [CrossRef]
- Mydin, M.A.O.; Wang, Y.C. Mechanical properties of foamed concrete exposed to high temperatures. Constr. Build. Mater. 2012, 26, 638–654. [Google Scholar] [CrossRef]
- Ganesan, S.; Mydin, M.A.O.; Yunos, M.Y.M.; Nawi, M.N.M. Thermal Properties of Foamed Concrete with Various Densities and Additives at Ambient Temperature. Appl. Mech. Mater. 2015, 747, 230–233. [Google Scholar] [CrossRef]
- Panesar, D.K. Cellular concrete properties and the effect of synthetic and protein foaming agents. Constr. Build. Mater. 2013, 44, 575–584. [Google Scholar] [CrossRef]
- Jones, M.R.; McCarthy, A. Behaviour and assessment of foamed concrete for construction applications. In Proceedings of the International Conference, University of Dundee, Scotland, UK, 5 July 2005; pp. 61–88. [Google Scholar]
- Aldridge, D. Introduction to foamed concrete: What, why, how? In Proceedings of the International Conference Held at the University of Dundee, Scotland, UK, 5 July 2005; pp. 1–14. [Google Scholar]
- Nambiar, E.K.K.; Ramamurthy, K. Influence of filler type on the properties of foam concrete. Cem. Concr. Compos. 2006, 28, 475–480. [Google Scholar] [CrossRef]
- Atoyebi, O.D.; Odeyemi, S.O.; Bello, S.A.; Ogbeifun, C.O. Splitting Tensile Strength Assessment of Lightweight Foamed Concrete Reinforced with Waste Tyre Steel Fibres. Int. J. Civ. Eng. Technol. 2018, 9, 1129–1137. [Google Scholar]
- Niaounakis, M. Biopolymers: Processing and Products; William Andrew: Norwich, NY, USA, 2014. [Google Scholar] [CrossRef]
- Tan, X.; Chen, W.; Hao, Y.; Wang, X. Experimental study of ultralight (<300 kg/m3) foamed concrete. Adv. Mater. Sci. Eng. 2014. [Google Scholar] [CrossRef] [Green Version]
- Tikalsky, P.J.; Pospisil, J.; MacDonald, W. A method for assessment of the freeze-thaw resistance of preformed foam cellular concrete. Cem. Concr. Res. 2004, 34, 889–893. [Google Scholar] [CrossRef]
- Welker, C.D.; Welker, M.A.; Welker, M.F.; Justman, M.A.; Hendricksen, R.S. Foamed Concrete Compositional Process. U.S. Patent 6,153,005, 28 November 2000. [Google Scholar]
- Tan, C.S.; Lee, Y.L.; Mohammad, S.; Lim, S.K.; Lee, Y.H.; Lim, J.H. Flexural behaviour of reinforced slab panel system with embedded cold-formed steel frames as reinforcement. J. Teknol. 2015, 74, 39–44. [Google Scholar]
- Byun, K.; Song, H.; Park, S.; Song, Y. Development of structural lightweight foamed concrete using polymer foam agent. Icpic-98 1998, 9. [Google Scholar]
- Wee, T.H.; Babu, D.S.; Tamilselvan, T.; Lim, H.S. Air-void system of foamed concrete and its effect on mechanical properties. ACI Mater. J. 2006, 103, 45. [Google Scholar] [CrossRef]
- Van Deijk, S. Foamed Concrete: A Dutch View; British Cement Association: Camberley, UK, 1991. [Google Scholar]
- Kolias, S.; Georgiou, C. The effect of paste volume and of water content on the strength and water absorption of concrete. Cem. Concr. Compos. 2005, 27, 211–216. [Google Scholar] [CrossRef]
- Nambiar, E.K.K.; Ramamurthy, K. Fresh state characteristics of foam concrete. J. Mater. Civ. Eng. 2008, 20, 111–117. [Google Scholar] [CrossRef]
- McCormick, F.C. A Rational Procedure for Proportioning Pre-Formed Foam Cellular Concrete Mixes. Ph.D. Thesis, University of Michigan, Ann Arbor, MI, USA, 1964. [Google Scholar]
- Odler, I.; Rößler, M. Investigations on the relationship between porosity, structure and strength of hydrated Portland cement pastes. II. Effect of pore structure and of degree of hydration. Cem. Concr. Res. 1985, 15, 401–410. [Google Scholar] [CrossRef]
- Rößler, M.; Odler, I. Investigations on the relationship between porosity, structure and strength of hydrated portland cement pastes I. Effect of porosity. Cem. Concr. Res. 1985, 15, 401–410. [Google Scholar] [CrossRef]
- Li, W.; Guo, Z. Experimental investigation of strength and deformation of concrete at elevated temperature. J. Build. Struct. 1993, 1, 8–16. [Google Scholar]
- Ibrahim, M.H.W.; Jamaludin, N.; Irwan, J.M.; Ramadhansyah, P.J.; Hani, A.S. Compressive and flexural strength of foamed concrete containing polyolefin fibers. Adv. Mater. Res. 2014, 911, 489–493. [Google Scholar] [CrossRef] [Green Version]
- Xiujuan, W.; Changhai, L.; Chuanwen, Z.; Youjie, S.; Shouxiang, L. The Synthesis of an Aqueous Film Forming Foam Concentration and the Drainage Characteristic of the Foam. In Proceedings of the 2015 AASRI International Conference on Circuits and Systems (CAS 2015), Paris, France, 9–10 August 2015; Atlantis Press: Amsterdam, The Netherlands, 2015. [Google Scholar] [CrossRef] [Green Version]
- Altan, M. Thermoplastic Foams: Processing, Manufacturing, and Characterization. Recent Res. Polym. 2018, 117–137. [Google Scholar] [CrossRef] [Green Version]
- Sari, K.A.M.; Sani, A.R.M. Applications of Foamed Lightweight Concrete. In MATEC Web of Conference; EDP Sciences: Les Ulis, France, 2017; Volume 97, pp. 1–5. [Google Scholar] [CrossRef] [Green Version]
- Fediuk, R.; Smoliakov, A.; Cherkasov, A.; Bezruk, G.; Evseev, A. Application of Household Waste as Aggregates for Concrete. IOP Conf. Ser. Mater. Sci. Eng. 2020, 753, 032034. [Google Scholar] [CrossRef]
- Ibragimov, R.; Fediuk, R. Improving the early strength of concrete: Effect of mechanochemical activation of the cementitious suspension and using of various superplasticizers. Constr. Build. Mater. 2019, 226, 839–848. [Google Scholar] [CrossRef]
- AlTaan, S.A.; Mohammed, A.K.A.; Al-Jaffal, A.A.R. Breakout capacity of headed anchors in steel fibre normal and high strength concrete. Asian J. Appl. Sci. 2012, 5, 485–496. [Google Scholar] [CrossRef] [Green Version]
- Klyuev, S.V.; Khezhev, T.A.; Pukharenko, Y.V.; Klyuev, A.V. Fiber Concrete on the Basis of Composite Binder and Technogenic Raw Materials. Mater. Sci. Forum. 2018, 931, 603–607. [Google Scholar] [CrossRef]
- Amran, Y.H.M.; Gutierrez, M.; Alyousef, R.; El-zeadani, M.; Alabduljabbar, H.; Aune, V. Performance investigation of high-proportion Saudi- fly-ash-based concrete. Results Eng. 2020, 6, 100118. [Google Scholar] [CrossRef]
- Fediuk, R. High-strength fibrous concrete of Russian Far East natural materials. IOP Conf. Ser. Mater. Sci. Eng. 2016, 116, 012020. [Google Scholar] [CrossRef] [Green Version]
- Pacheco-Torgal, F.; Jalali, S. Cementitious building materials reinforced with vegetable fibres: A review. Constr. Build. Mater. 2011, 25, 575–581. [Google Scholar] [CrossRef] [Green Version]
- Fuqua, M.A.; Huo, S.; Ulven, C.A. Natural fiber reinforced composites. Polym. Rev. 2012, 52, 259–320. [Google Scholar] [CrossRef]
- Cai, M.; Takagi, H.; Nakagaito, A.N.; Li, Y.; Waterhouse, G.I.N. Effect of alkali treatment on interfacial bonding in abaca fiber-reinforced composites. Compos. Part A Appl. Sci. Manuf. 2016, 90, 589–597. [Google Scholar] [CrossRef]
- Verma, D.; Gope, P.C.; Maheshwari, M.K.; Sharma, R.K. Bagasse fiber composites-A review. J. Mater. Environ. Sci. 2012, 3, 1079–1092. [Google Scholar]
- Asdrubali, F.; Schiavoni, S.; Horoshenkov, K.V. A review of sustainable materials for acoustic applications. Build. Acoust. 2012, 19, 283–311. [Google Scholar] [CrossRef]
- Savastano, H.; Santos, S.F.; Radonjic, M.; Soboyejo, W.O. Fracture and fatigue of natural fiber-reinforced cementitious composites. Cem. Concr. Compos. 2009, 31, 232–243. [Google Scholar] [CrossRef]
- Akinyemi, B.A.; Dai, C. Development of banana fibers and wood bottom ash modified cement mortars. Constr. Build. Mater. 2020, 241, 118041. [Google Scholar] [CrossRef]
- Olukunle, B.G.; Uche, N.B.; Efomo, A.O.; Adeyemi, G.A.; Joshua, J.K. Data on acoustic behaviour of coconut fibre-reinforced concrete. Data Br. 2018, 21, 1004–1007. [Google Scholar] [CrossRef]
- Kochova, K.; Gauvin, F.; Schollbach, K.; Brouwers, H.J.H. Using alternative waste coir fibres as a reinforcement in cement-fibre composites. Constr. Build. Mater. 2020, 231, 117121. [Google Scholar] [CrossRef]
- Ranjbar, N.; Zhang, M. Fiber-reinforced geopolymer composites: A review. Cem. Concr. Compos. 2020, 107, 103498. [Google Scholar] [CrossRef]
- Xu, R.; He, T.; Da, Y.; Liu, Y.; Li, J.; Chen, C. Utilizing wood fiber produced with wood waste to reinforce autoclaved aerated concrete. Constr. Build. Mater. 2019, 208, 242–249. [Google Scholar] [CrossRef]
- Peña-Pichardo, P.; Martínez-Barrera, G.; Martínez-López, M.; Ureña-Núñez, F.; Reis, J.M.L.d. Recoveryof cotton fibers from waste Blue-Jeans and its use in polyester concrete. Constr. Build. Mater. 2018, 177, 409–416. [Google Scholar] [CrossRef]
- Wang, W.; Zhang, X.; Mo, Z.; Chouw, N.; Li, Z.; Xu, Z.D. A comparative study of impact behaviour between natural flax and glass FRP confined concrete composites. Constr. Build. Mater. 2020, 241, 117997. [Google Scholar] [CrossRef]
- Yan, L.; Chouw, N.; Jayaraman, K. Flax fibre and its composites—A review. Compos. Part B Eng. 2014, 56, 296–317. [Google Scholar] [CrossRef]
- Çomak, B.; Bideci, A.; Bideci, Ö.S. Effects of hemp fibers on characteristics of cement based mortar. Constr. Build. Mater. 2018, 169, 794–799. [Google Scholar] [CrossRef]
- Chennouf, N.; Agoudjil, B.; Boudenne, A.; Benzarti, K.; Bouras, F. Hygrothermal characterization of a new bio-based construction material: Concrete reinforced with date palm fibers. Constr. Build. Mater. 2018, 192, 348–356. [Google Scholar] [CrossRef]
- Fediuk, R.S.; Lesovik, V.S.; Svintsov, A.P.; Mochalov, A.V.; Kulichkov, S.V.; Stoyushko, N.Y.; Gladkova, N.A.; Timokhin, R.A. Self-compacting concrete using pretreatmented rice husk ash. Mag. Civ. Eng. 2018, 79. [Google Scholar] [CrossRef]
- Nawy, E.G. Fiber-reinforced composites. In Concrete Construction Engineering Handbook, 2nd ed.; CRC Press: Boca Raton, FL, USA, 2008. [Google Scholar] [CrossRef]
- Son, M.; Kim, G.; Kim, H.; Lee, S.; Nam, J.; Kobayashi, K. Effects of the strain rate and fiber blending ratio on the tensile behavior of hooked steel fiber and polyvinyl alcohol fiber hybrid reinforced cementitious composites. Cem. Concr. Compos. 2020, 106, 103482. [Google Scholar] [CrossRef]
- Yang, E.H.; Li, V.C. Tailoring engineered cementitious composites for impact resistance. Cem. Concr. Res. 2012, 42, 1066–1071. [Google Scholar] [CrossRef]
- Khan, S.U.; Ayub, T. Flexure and shear behaviour of self-compacting reinforced concrete beams with polyethylene terephthalate fibres and strips. Structures 2020, 25, 200–211. [Google Scholar] [CrossRef]
- Qin, Y.; Zhang, X.; Chai, J. Damage performance and compressive behavior of early-age green concrete with recycled nylon fiber fabric under an axial load. Constr. Build. Mater. 2019, 209, 105–114. [Google Scholar] [CrossRef]
- Gao, J.; Yang, X.; Guo, J.; Huang, J. Hyperelastic mechanical properties of chopped aramid fiber-reinforced rubber composite under finite strain. Compos. Struct. 2020, 243, 112187. [Google Scholar] [CrossRef]
- Mo, K.H.; Alengaram, U.J.; Jumaat, M.Z.; Liu, M.Y.J. Contribution of acrylic fibre addition and ground granulated blast furnace slag on the properties of lightweight concrete. Constr. Build. Mater. 2015, 95, 686–695. [Google Scholar] [CrossRef]
- Laborel-Préneron, A.; Aubert, J.E.; Magniont, C.; Tribout, C.; Bertron, A. Plant aggregates and fibers in earth construction materials: A review. Constr. Build. Mater. 2016, 111, 719–734. [Google Scholar] [CrossRef]
- Mekhermeche, A.; Kriker, A.; Dahmani, S. Contribution to the study of thermal properties of clay bricks reinforced by date palm fiber. In AIP Conference Proceedings; AIP Publishing LLC: Melville, NY, USA, 2016; Volume 1758, p. 030004. [Google Scholar] [CrossRef]
- Roesler, J.R.; Altoubat, S.A.; Lange, D.A.; Rieder, K.A.; Ulreich, G.R. Effect of synthetic fibers on structural behavior of concrete slabs-on-ground. ACI Mater. J. 2006, 103, 3. [Google Scholar] [CrossRef]
- Yin, S.; Tuladhar, R.; Shi, F.; Combe, M.; Collister, T.; Sivakugan, N. Use of macro plastic fibres in concrete: A review. Constr. Build. Mater. 2015, 93, 180–188. [Google Scholar] [CrossRef]
- Hejazi, S.M.; Sheikhzadeh, M.; Abtahi, S.M.; Zadhoush, A. A simple review of soil reinforcement by using natural and synthetic fibers. Constr. Build. Mater. 2012, 30, 100–116. [Google Scholar] [CrossRef]
- Behfarnia, K.; Behravan, A. Application of high performance polypropylene fibers in concrete lining of water tunnels. Mater. Des. 2014, 55, 274–279. [Google Scholar] [CrossRef]
- Serin, S.; Morova, N.; Saltan, M.; Terzi, S. Investigation of usability of steel fibers in asphalt concrete mixtures. Constr. Build. Mater. 2012, 36, 238–244. [Google Scholar] [CrossRef]
- Deák, T.; Czigány, T. Chemical Composition and Mechanical Properties of Basalt and Glass Fibers: A Comparison. Text. Res. J. 2009, 79, 645–651. [Google Scholar] [CrossRef]
- Chen, H.; Xu, Q. Experimental study of fibers in stabilizing and reinforcing asphalt binder. Fuel 2010, 89, 1616–1622. [Google Scholar] [CrossRef]
- Mirzababaei, M.; Mohamed, M.; Arulrajah, A.; Horpibulsuk, S.; Anggraini, V. Practical approach to predict the shear strength of fibre-reinforced clay. Geosynth. Int. 2018, 25, 50–66. [Google Scholar] [CrossRef]
- Batool, F.; Bindiganavile, V. Fresh Properties of Fiber Reinforced Cement-Based Foam with Pozzolans. Iran. J. Sci. Technol. Trans. Civ. Eng. 2020. [Google Scholar] [CrossRef]
- Karahan, O.; Yakupoǧlu, A. Resistance of alkali-activated slag mortar to abrasion and fire. Adv. Cem. Res. 2011, 23, 289–297. [Google Scholar] [CrossRef]
- Lee, Y.H.; Lim, M.H.; Lee, Y.L.; Lee, Y.Y.; Tan, C.S.; Mohammad, S.; Ma, C.K. Compressive strength of lightweight foamed concrete with charcoal as a sand replacement. Indian J. Eng. Mater. Sci. 2018, 25, 98–108. [Google Scholar] [CrossRef]
- Hoff, G.C. Porosity-strength considerations for cellular concrete. Cem. Concr. Res. 1972, 2, 91–100. [Google Scholar] [CrossRef] [Green Version]
- Batool, F.; Bindiganavile, V. Microstructural parameters of fiber reinforced cement-based foam and their influence on compressive and thermal properties. J. Build. Eng. 2020, 101320. [Google Scholar] [CrossRef]
- Yu, L.; Liu, Z. Mechanical Properties Optimization of Fiber Reinforced Foam Concrete. In MATEC Web of Conference; EDP Sciences: Les Ulis, France, 2016; Volume 67, p. 03022. [Google Scholar] [CrossRef] [Green Version]
- Rahyan, F.; Mohd, Z.S. Paper Fiber Reinforced Foam Concrete. In Proceedings of the 2nd International conference on Built Environment in Developing Countries ICBEDC, Penang, Malaysia, 3–4 December 2008. [Google Scholar]
- Kim, Y.J.; Hu, J.; Lee, S.J.; You, B.H. Mechanical properties of fiber reinforced lightweight concrete containing surfactant. Adv. Civ. Eng. 2010. [CrossRef]
- Lim, S.K.; Tan, C.S.; Chen, K.P.; Lee, M.L.; Lee, W.P. Effect of different sand grading on strength properties of cement grout. Constr. Build. Mater. 2013, 38, 348–355. [Google Scholar] [CrossRef]
- Lim, S.K.; Tan, C.S.; Li, B.; Ling, T.C.; Hossain, M.U.; Poon, C.S. Utilizing high volumes quarry wastes in the production of lightweight foamed concrete. Constr. Build. Mater. 2017, 151, 441–448. [Google Scholar] [CrossRef]
- Saman, M. Performance of Foamed Concrete With Waste Paper Sludge Ash (Wpsa) and Fine Recycled Concrete Aggregate (Frca) Contents. Int. Sustain. Civ. Eng. J. 2012, 626, 376–380. [Google Scholar] [CrossRef]
- Ikponmwosa, E.; Fapohunda, C.; Kolajo, O.; Eyo, O. Structural behaviour of bamboo-reinforced foamed concrete slab containing polyvinyl wastes (PW) as partial replacement of fine aggregate. J. King Saud Univ. Eng. Sci. 2017, 29, 348–355. [Google Scholar] [CrossRef] [Green Version]
- Singh, M.; Siddique, R. Strength properties and micro-structural properties of concrete containing coal bottom ash as partial replacement of fine aggregate. Constr. Build. Mater. 2014, 50, 246–256. [Google Scholar] [CrossRef]
- Akhund, M.A.; Khoso, A.R.; Pathan, A.A.; Memon, U.; Siddiqui, F.H. Influence of biomass aggregate on strength of foam concrete. Int. J. Civ. Eng. Technol. 2017, 8, 1645–1653. [Google Scholar]
- Lim, S.K.; Tan, C.S.; Zhao, X.; Ling, T.C. Strength and toughness of lightweight foamed concrete with different sand grading. KSCE J. Civ. Eng. 2014, 19, 2191–2197. [Google Scholar] [CrossRef] [Green Version]
- Balasundaram, M. Experimental Study on Light Weight Foam Concrete Bricks. Int. Res. J. Eng. Technol. 2017, 4, 677–686. [Google Scholar]
- Hajimohammadi, A.; Ngo, T.; Kashani, A. Sustainable one-part geopolymer foams with glass fines versus sand as aggregates. Constr. Build. Mater. 2018, 171, 223–231. [Google Scholar] [CrossRef]
- Lee, Y.L. Structural Behaviour of Slab Panel System with Embedded Cold-Formed Steel Skeletal Frame. Ph.D. Thesis, Universiti Teknologi Malaysia, Johor Bahru, Malaysia, 2016. [Google Scholar]
- Anusree, P.S.; Gopakumar, R. Investigation on Strength Characteristics of Silica Fume Incorporated Foamed Concrete. Lect. Notes Civ. Eng. 2020, 193–203. [Google Scholar] [CrossRef]
- Wang, X.; Huang, J.; Dai, S.; Ma, B.; Jiang, Q. Investigation of silica fume as foam cell stabilizer for foamed concrete. Constr. Build. Mater. 2020, 237, 117514. [Google Scholar] [CrossRef]
- Batool, F.; Bindiganavile, V. Evaluation of thermal conductivity of cement-based foam reinforced with polypropylene fibers. Mater. Struct. Constr. 2020, 53, 13. [Google Scholar] [CrossRef]
- Gong, J.; Zhu, L.; Li, J.; Shi, D. Silica Fume and Nanosilica Effects on Mechanical and Shrinkage Properties of Foam Concrete for Structural Application. Adv. Mater. Sci. Eng. 2020. [Google Scholar] [CrossRef]
- Zhang, S.; Cao, K.; Wang, C.; Wang, X.; Wang, J.; Sun, B. Effect of silica fume and waste marble powder on the mechanical and durability properties of cellular concrete. Constr. Build. Mater. 2020, 241, 117980. [Google Scholar] [CrossRef]
- Faleschini, F.; Fernández-Ruíz, M.A.; Zanini, M.A.; Brunelli, K.; Pellegrino, C.; Hernández-Montes, E. High performance concrete with electric arc furnace slag as aggregate: Mechanical and durability properties. Constr. Build. Mater. 2015. [Google Scholar] [CrossRef]
- De Domenico, D.; Faleschini, F.; Pellegrino, C.; Ricciardi, G. Structural behavior of RC beams containing EAF slag as recycled aggregate: Numerical versus experimental results. Constr. Build. Mater. 2018, 171, 321–337. [Google Scholar] [CrossRef]
- Lim, S.K.; Tan, C.S.; Lim, O.Y.; Lee, Y.L. Fresh and hardened properties of lightweight foamed concrete with palm oil fuel ash as filler. Constr. Build. Mater. 2013, 46, 39–47. [Google Scholar] [CrossRef]
- Hilal, A.A.; Thom, N.H.; Dawson, A.R. On void structure and strength of foamed concrete made without/with additives. Constr. Build. Mater. 2015, 85, 157–164. [Google Scholar] [CrossRef]
- Fediuk, R.S.; Ibragimov, R.A.; Lesovik, V.S.; Pak, A.A.; Krylov, V.V.; Poleschuk, M.M.; Stoyushko, N.Y.; Gladkova, N.A. Processing equipment for grinding of building powders. IOP Conf. Ser. Mater. Sci. Eng. 2018, 327, 042029. [Google Scholar] [CrossRef]
- Meilin, P. Development of Structural Grade Foamed Concrete. Ph.D. Thesis, University of Dundee, Scotland, UK, 1999. [Google Scholar]
- Narayanan, N. Influence of Composition on the Structure and Properties of Aerated Concrete; IIT Madras: Chennai, India, 1999. [Google Scholar]
- Dhir, R.; Jones, M.; Nicol, L. Development of Structural Grade Foamed Concrete. Final Rep. DETR Res. Contr. 1999, 39, 385. [Google Scholar]
- Brewer, W.E. Controlled low strength materials (CLSM). In Radical Concrete Technology; Dhir, R.K., Hewlett, P.C., Eds.; E and FN Spon: New York, NY, USA, 1996; pp. 655–667. [Google Scholar]
- Mo, K.H.; Alengaram, U.J.; Jumaat, M.Z. Bond properties of lightweight concrete—A review. Constr. Build. Mater. 2016, 112, 478–496. [Google Scholar] [CrossRef]
- Nandi, S.; Chatterjee, A.; Samanta, P.; Hansda, T. Cellular Concrete and its facets of application in Civil Engineering. Int. J. Eng. Res. 2016, 5, 37–43. [Google Scholar] [CrossRef]
- Kim, H.; Hong, J.; Pyo, S. Acoustic characteristics of sound absorbable high performance concrete. Appl. Acoust. 2018, 138, 171–178. [Google Scholar] [CrossRef]
- Jones, M.R.; Mccarthy, M.J.; Mccarthy, A. Moving fly ash utilisation in concrete forward: A UK perspective. In Proceedings of the 2003 International Ash Utilization Symposium, Lexington, KY, USA, 20 October 2003; University Press of Kentucky: Lexington, KY, USA, 2003; pp. 20–22. [Google Scholar]
- Papadopoulos, A.M.; Giama, E. Environmental performance evaluation of thermal insulation materials and its impact on the building. Build. Environ. 2007, 42, 2178–2187. [Google Scholar] [CrossRef]
- Persson, B. The effect of silica fume on the principal properties of concrete. Adv. Des. Concr. Struct. 1997, 161–168. [Google Scholar]
- Raupit, F.; Saggaff, A.; Tan, C.S.; Lee, Y.L.; Tahir, M.M. Splitting tensile strength of lightweight foamed concrete with polypropylene fiber. Int. J. Adv. Sci. Eng. Inf. Technol. 2017, 7, 424–430. [Google Scholar] [CrossRef]
- Flores-Vivian, I.; Pradoto, R.G.K.; Moini, M.; Kozhukhova, M.; Potapov, V.; Sobolev, K. The effect of SiO2 nanoparticles derived from hydrothermal solutions on the performance of portland cement based materials. Front. Struct. Civ. Eng. 2017. [Google Scholar] [CrossRef]
- Mohan, A.; Mini, K.M. Strength and durability studies of SCC incorporating silica fume and ultra fine GGBS. Constr. Build. Mater. 2018, 171, 919–928. [Google Scholar] [CrossRef]
- Li, P.; Wu, H.; Liu, Y.; Yang, J.; Fang, Z.; Lin, B. Preparation and optimization of ultra-light and thermal insulative aerogel foam concrete. Constr. Build. Mater. 2019, 205, 529–542. [Google Scholar] [CrossRef]
- Jaini, Z.M.; Rum, R.H.M.; Boon, K.H. Strength and fracture energy of foamed concrete incorporating rice husk ash and polypropylene mega-mesh 55. In Proceedings of the IOP Conference Series: Materials Science and Engineering, Kunming, China, 27–29 October 2017. [Google Scholar] [CrossRef]
- Dawood, E.T.; Mohammad, Y.Z.; Abbas, W.A.; Mannan, M.A. Toughness, elasticity and physical properties for the evaluation of foamed concrete reinforced with hybrid fibers. Heliyon 2018, 4, e01103. [Google Scholar] [CrossRef] [Green Version]
- Ahmad, M.H.; Awang, H. Effect of steel and alkaline-resistance glass fibre on mechanical and durability properties of lightweight foamed concrete. Adv. Mater. Res. 2013, 626, 404–410. [Google Scholar] [CrossRef]
- Iawan, T.; Saloma; Idris, Y. Mechanical Properties of Foamed Concrete with Additional Pineapple Fiber and Polypropylene Fiber. J. Phys. Conf. Ser. 2019, 1198, 082018. [Google Scholar] [CrossRef]
- Papayianni, I.; Milud, I.A. Production of foamed concrete with high calcium fly ash. In Use of Foamed Concrete in Construction, Proceedings of the International Conference, University of Dundee, Scotland, UK, 5 July 2005; Thomas Telford Publishing: London, UK, 2005; pp. 23–27. [Google Scholar]
- Li, L.; Chu, S.; Zeng, K.; Zhu, J.; Kwan, A. Roles of water film thickness and fibre factor in workability of polypropylene fibre reinforced mortar. Cem. Concr. Compos. 2018, 93, 196–204. [Google Scholar] [CrossRef]
- Bagherzadeh, R.; Pakravan, H.R.; Sadeghi, A.-H.; Latifi, M.; Merati, A.A. An Investigation on Adding Polypropylene Fibers to Reinforce Lightweight Cement Composites (LWC). J. Eng. Fibers Fabr. 2012, 7. [Google Scholar] [CrossRef]
- Yan, L.; Kasal, B.; Huang, L. A review of recent research on the use of cellulosic fibres, their fibre fabric reinforced cementitious, geo-polymer and polymer composites in civil engineering. Compos. Part B Eng. 2016, 92, 94–132. [Google Scholar] [CrossRef]
- Tam, C.T.; Lim, T.Y.; Ravindrarajah, R.S.; Lee, S.L. Relationship between strength and volumetric composition of moist-cured cellular concrete. Mag. Concr. Res. 1987, 39, 12–18. [Google Scholar] [CrossRef]
- Falliano, D.; De Domenico, D.; Ricciardi, G.; Gugliandolo, E. Experimental investigation on the compressive strength of foamed concrete: Effect of curing conditions, cement type, foaming agent and dry density. Constr. Build. Mater. 2018, 165, 735–749. [Google Scholar] [CrossRef]
- Abd, S.M.; Jassam, D.G. Improving the Mechanical Properties of Lightweight Foamed Concrete Using Silica Fume and Steel Fibers. Al-Nahrain J. Eng. Sci. 2018, 21, 300–307. [Google Scholar] [CrossRef] [Green Version]
- Trüb, M. Numerical modeling of high performance fiber reinforced cementitious composites. Inst. Struct. Eng. Swiss Fed. Inst. Technol. 2011, 333. [Google Scholar]
- Sanjeev, J.; Nitesh, K.S. Study on the effect of steel and glass fibers on fresh and hardened properties of vibrated concrete and self-compacting concrete. Mater. Today Proc. 2020, 27, 1559–1568. [Google Scholar] [CrossRef]
- Chen, B.; Liu, J. Contribution of hybrid fibers on the properties of the high-strength lightweight concrete having good workability. Cem. Concr. Res. 2005, 35, 913–917. [Google Scholar] [CrossRef]
- Nath, D.C.P.D.R. Study of Flexural Behavior of Hybrid Fibre Reinforced Geopolymer Concrete Beam. Int. J. Sci. Res. 2015, 4, 130–135. [Google Scholar]
- Hsie, M.; Tu, C.; Song, P. Mechanical properties of polypropylene hybrid fiber-reinforced concrete. Mater. Sci. Eng. A 2008, 494, 153–157. [Google Scholar] [CrossRef]
- Liu, Y.; Wang, Z.; Fan, Z.; Gu, J. Study on properties of sisal fiber modified foamed concrete. In IOP Conference Series: Materials Science and Engineering, Kuala Lumpur, Malaysia, 9–11 July 2020; IOP Publishing: Bristol, UK, 2020; Volume 744, p. 012042. [Google Scholar] [CrossRef]
- Amarnath, Y.; Ramachandrudu, C. Properties of Foamed Concrete with Sisal Fibre. In Proceedings of the 9th International Concrete Conference, Dundee, Scotland, 5 July2016. [Google Scholar]
- Yan, Y.; Carrillo, J.; Gonzalez-Chi, P.; Herrera-Franco, P.; Li, Q.; Flores-Johnson, E. Mechanical Characterization of Foamed Concrete Reinforced with Natural Fibre. Non-Conv. Mater. Technol. 2018. [Google Scholar] [CrossRef]
- Nezhad, R.S.; Kabir, M.; Banazadeh, M. Shaking table test of fibre reinforced masonry walls under out-of-plane loading. Constr. Build. Mater. 2016, 120, 89–103. [Google Scholar] [CrossRef]
- Awang, H.; Mydin, A.O.; Ahmad, M.H. Mechanical and Durability Properties of Fibre Lightweight Foamed Concrete. Aust. J. Basic Appl. Sci. 2013, 7, 14–21. [Google Scholar]
- Banthia, N.; Sheng, J. Fracture toughness of micro-fiber reinforced cement composites. Cem. Concr. Compos. 1996, 18, 251–269. [Google Scholar] [CrossRef]
- ACI, Aci 318-05. Building Code Requirements for Structural Concrete; American Concrete Institute: Farmington Hills, MI, USA, 2005. [Google Scholar]
- McCormick, F.C. Rational proportioning of preformed foam cellular concrete. ACI J. Proc. 1967, 64, 104–110. [Google Scholar]
- Zulkarnain, F.; Suleiman, M.Z.; Fadila, R. The Potential Usgae Paper Fiber Reinforced Foam Concrete (Pfrfc) Wall Paneling System As An Idea Building Material, Kumpul. J. Dosen Univ. Muhammadiyah Sumat. Utara 2016, 4, 139–148. [Google Scholar]
- Raj, B.; Sathyan, D.; Mini, K.M.; Raj, A. Mechanical and durability properties of hybrid fiber reinforced foam concrete. Constr. Build. Mater. 2020, 245, 118373. [Google Scholar] [CrossRef]
- Mastali, M.; Kinnunen, P.; Isomoisio, H.; Karhu, M.; Illikainen, M. Mechanical and acoustic properties of fiber-reinforced alkali-activated slag foam concretes containing lightweight structural aggregates. Constr. Build. Mater. 2018, 187, 371–381. [Google Scholar] [CrossRef]
- Mastali, M.; Paivo, K.; Karhu, M.; Abdollahnejad, Z.; Korat, L.; Ducman, V.; Ahmad, A.; Mirja, I. Impacts of Casting Scales and Harsh Conditions on the Thermal, Acoustic, and Mechanical Properties of Indoor Acoustic Panels Made with Fiber-Reinforced Alkali-Activated Slag Foam Concretes. Materials 2019, 12, 825. [Google Scholar] [CrossRef] [Green Version]
- Rasheed, M.A.; Prakash, S.S. Mechanical behavior of sustainable hybrid-synthetic fiber reinforced cellular light weight concrete for structural applications of masonry. Constr. Build. Mater. 2015, 98, 631–640. [Google Scholar] [CrossRef]
- Rasheed, M.A.; Prakash, S.S. Behavior of hybrid-synthetic fiber reinforced cellular lightweight concrete under uniaxial tension – Experimental and analytical studies. Constr. Build. Mater. 2018, 162, 857–870. [Google Scholar] [CrossRef]
- Prakash, S.S. Experimental Study on Compression Behavior of Fiber-Reinforced Cellular Concrete Stack Bonded Masonry Prisms. ACI Mater. J. 2018, 115. [Google Scholar] [CrossRef]
- Wang, X.-H.; Zhang, S.-R.; Wang, C.; Cao, K.-L.; Wei, P.-Y.; Wang, J.-X. Effect of steel fibers on the compressive and splitting-tensile behaviors of cellular concrete with millimeter-size pores. Constr. Build. Mater. 2019, 221, 60–73. [Google Scholar] [CrossRef]
- Comm Rep. Guide for Cellular Concretes above 50 pcf, and for Aggregate Concretes above 50 pcf with Compressive Strengths Less Than 2500 PSI; Amer Concrete Inst: Farmington Hills, MI, USA, 1975. [Google Scholar]
- C09 Committee Specification for Lightweight Aggregates for Structural Concrete; ASTM International: West Conshohocken, PA, USA, 1900. [CrossRef]
- Rahman, N.A.; Jaini, Z.M.; Zahir, N.N.M. Fracture energy of foamed concrete by means of the three-point bending tests on notched beam specimens. ARPN J. Eng. Appl. Sci. 2015, 10, 6562–6570. [Google Scholar]
- Jaini, Z.M.; Rahman, N.A.; Rum, R.H.M.; Haurula, M.M. Fracture Energy of Foamed Concrete: Numerical Modelling Using the Combined Finite-Discrete Element Method. In MATEC Web of Conferences; EDP Sciences: Les Ulis, France, 2017; Volume 103, p. 2030. [Google Scholar] [CrossRef] [Green Version]
- Zamri, M.N.; Rahman, N.A.; Jaini, Z.M.; Kozłowski, M. Fracture Energy of Fibrous-Foamed Concrete Using V-Notched Beam Specimens. Int. Rev. Civ. Eng. (IRECE) 2019, 10, 8–14. [Google Scholar] [CrossRef]
- Fathilah, N.N.F.M.; Tan, C.S. Flexural Strength of Lightweight Foamed Concrete using cement to sand ratio 3:1 with Inclusion of Polypropylene Fibre. Struct. Mater. 2016. [Google Scholar]
- Awang, H.; Ahmad, M.H. The effect of steel fibre inclusion on the mechanical properties and durability of lightweight foam concrete. Adv. Eng. Inform. 2012, 48, 9348–9351. [Google Scholar]
- Mydin, M.A.O.; Sahidun, N.S.; Yusof, M.Y.M.; Noordin, N.M. Compressive, Flexural and Splitting Tensile Strengths of Lightweight Foamed Concrete with Inclusion of Steel Fibre. J. Teknol. 2015, 75. [Google Scholar] [CrossRef] [Green Version]
- Flores-Johnson, E.A.; Li, Q. Structural behaviour of composite sandwich panels with plain and fibre-reinforced foamed concrete cores and corrugated steel faces. Compos. Struct. 2012, 94, 1555–1563. [Google Scholar] [CrossRef] [Green Version]
- Mydin, A.O.; Soleimanzadeh, S. Effect of polypropylene fiber content on flexural strength of lightweight foamed concrete at ambient and elevated temperatures. Adv. Appl. Sci. Res. 2012, 3, 2837–2846. [Google Scholar]
- Kudyakov, A.I.; Steshenko, A. Cement Foam Concrete with Low Shrinkage. Adv. Mater. Res. 2015, 1085, 245–249. [Google Scholar] [CrossRef]
- Kudyakov, A.I.; Steshenko, A. Shrinkage deformation of cement foam concrete. IOP Conf. Ser. Mater. Sci. Eng. 2015, 71, 012019. [Google Scholar] [CrossRef] [Green Version]
- Gailitis, R.; Korniejenko, K.; Sprince, A.; Pakrastins, L. Comparison of the long-term properties of foamed concrete and geopolymer concrete in compression. In AIP Conference Proceedings; AIP Publishing: Melville, NY, USA, 2020; Volume 2239, p. 020012. [Google Scholar]
- Awang, H.; Mydin, A.O.; Roslan, A.F. Effect of additives on mechanical and thermal properties of lightweight foamed concrete. Adv. Appl. Sci. Res. 2012, 3, 3326–3338. [Google Scholar]
- Wei, S.; Yiqiang, C.; Yunsheng, Z.; Jones, M. Characterization and simulation of microstructure and thermal properties of foamed concrete. Constr. Build. Mater. 2013, 47, 1278–1291. [Google Scholar] [CrossRef]
- Samson, G.; Phelipot-Mardelé, A.; Lanos, C. Thermal and mechanical properties of gypsum–cement foam concrete: Effects of surfactant. Eur. J. Environ. Civ. Eng. 2017, 21, 1502–1521. [Google Scholar] [CrossRef]
- Papa, E.; Medri, V.; Kpogbemabou, D.; Morinière, V.; Laumonier, J.; Vaccari, A.; Rossignol, S. Porosity and insulating properties of silica-fume based foams. Energy Build. 2016, 131, 223–232. [Google Scholar] [CrossRef]
- Sayadi, A.; Tapia, J.V.; Neitzert, T.R.; Clifton, G.C. Effects of expanded polystyrene (EPS) particles on fire resistance, thermal conductivity and compressive strength of foamed concrete. Constr. Build. Mater. 2016, 112, 716–724. [Google Scholar] [CrossRef]
- Zahari, N.M.; Rahman, I.A.; Ahmad Zaidi, A.M. Foamed Concrete: Potential Application in Thermal Insulation. In Proceedings of the Malaysian Technical Universities Conference on Engineering and Technology (MUCEET 2009), Kuantan, Pahang, Malaysia, 20–22 June 2009. [Google Scholar]
- Ma, C.; Chen, B. Experimental study on the preparation and properties of a novel foamed concrete based on magnesium phosphate cement. Constr. Build. Mater. 2017, 137, 160–168. [Google Scholar] [CrossRef]
- Huang, Z.; Zhang, T.; Wen, Z. Proportioning and characterization of Portland cement-based ultra-lightweight foam concretes. Constr. Build. Mater. 2015, 79, 390–396. [Google Scholar] [CrossRef]
- Batool, F.; Bindiganavile, V. Quantification of factors influencing the thermal conductivity of cement-based foam. Cem. Concr. Compos. 2018, 91, 76–86. [Google Scholar] [CrossRef]
- Demirboğa, R.; Türkmen, I.; Karakoç, M.B. Thermo-mechanical properties of concrete containing high-volume mineral admixtures. Build. Environ. 2007, 42, 349–354. [Google Scholar] [CrossRef]
- Nagy, B.; Nehme, S.G.; Szagri, D. Thermal Properties and Modeling of Fiber Reinforced Concretes. Energy Procedia 2015, 78, 2742–2747. [Google Scholar] [CrossRef] [Green Version]
- Jhatial, A.A.; Goh, W.I.; Mohamad, N.; Alengaram, U.J.; Mo, K.H. Effect of Polypropylene Fibres on the Thermal Conductivity of Lightweight Foamed Concrete. In MATEC Web of Conference; EDP Sciences: Les Ulis, France, 2018; Volume 150, p. 03008. [Google Scholar] [CrossRef] [Green Version]
- Chen, G.; Wang, K. Mechanical and thermal properties of glass fibre-reinforced ceramsite-foamed concrete. Indoor Built Environ. 2017, 27, 890–897. [Google Scholar] [CrossRef]
- ACI Committee 213. ACI 213R-03: Guide for Structural Lightweight Aggregate Concrete; American Concrete Institute (ACI): Farmington Hills, MI, USA, 2003. [Google Scholar] [CrossRef]
- Batool, F.; Rafi, M.M.; Bindiganavile, V. Microstructure and thermal conductivity of cement-based foam: A review. J. Build. Eng. 2018, 20, 696–704. [Google Scholar] [CrossRef]
- Markin, V.; Nerella, V.N.; Schröfl, C.; Guseynova, G.; Mechtcherine, V. Material Design and Performance Evaluation of Foam Concrete for Digital Fabrication. Materials 2019, 12, 2433. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liew, A.C.M. New innovative lightweight foam concrete technology. In Use of Foamed Concrete in Construction, Proceedings of the International Conference, University of Dundee, Scotland, UK, 5 July 2005; Thomas Telford Publishing: London, UK, 2005; pp. 45–50. [Google Scholar]
- Amran, Y.M.; Alyousef, R.; Alabduljabbar, H.; Alrshoudi, F.; Rashid, R.S. Influence of slenderness ratio on the structural performance of lightweight foam concrete composite panel. Case Stud. Constr. Mater. 2019, 10, e00226. [Google Scholar] [CrossRef]
- Weigler, H.; Karl, S. Structural lightweight aggregate concrete with reduced density—lightweight aggregate foamed concrete. Int. J. Cem. Compos. Light. Concr. 1980, 2, 101–104. [Google Scholar] [CrossRef]
- Kum, Y.J. Cracking Mode and Shear Strength of Lightweight Concrete Beams. Ph.D. Thesis, National University Singapore, Singapore, 2011. [Google Scholar]
- Bagheri, A.R.; Rastegar, M.M. Investigation of passive layer formation on steel rebars in foamed concrete. Mater. Corros. 2019, 70, 1252–1261. [Google Scholar] [CrossRef]
- Zhao, L.L.; Liu, Y.; Wang, Z.H.; Cui, J.P.; Jiang, Q.; Ma, L.-P.; Fang, M.H. Life Cycle Assessment of Lightweight Aggregate Concrete Block. Key Eng. Mater. 2014, 599, 66–69. [Google Scholar] [CrossRef]
- Lemay, L. Life Cycle Assessment of Concrete Buildings, Concrete Sustainability Report, CSR04; National Ready Mixed Concrete Association: Silver Spring, MD, USA, 2011. [Google Scholar]
- Namsone, E.; Korjakins, A.; Sahmenko, G.; Sinka, M. The environmental impacts of foamed concrete production and exploitation. IOP Conf. Ser. Mater. Sci. Eng. 2017, 251, 12029. [Google Scholar] [CrossRef] [Green Version]
Name of Foam Agent | Property | Advantages | Density of | Online Access | ||
---|---|---|---|---|---|---|
Natural | Synthetic | Foam | Concrete | |||
Genfil Herbal resin based | √ | - | Improved high-yield herbal resin based foam agent Stable foam | 80 to 95 g/L | 115–1600 kg/m3 | http://www.foam-concrete.com |
LithoFoam protein based | √ | - | Improved silicone oil resistance, frost resistance -Highly active proteins | 20–180 kg/m³ | 1600–1675 kg/m³ | http://www.luca-industries.com |
CMX™ Synthetic based | - | √ | Performs well with a wide variety of ad-mixtures Proven to withstand higher lifts | 1.02 kg/L | 500–1600 kg/m³ | https://www.richway.com |
Sakshi CLC Synthetic Based | - | √ | Air entrainers Set accelerator Water Reducer | 0.2–0.7 L/m³ | 300–1300 kg/m³ | https://www.sakshichemsciences.in/ |
EABASSOC Synthetic based | - | √ | It highly concentrated, highly efficient liquid | 0.3–0.6 L/m³ | 250–1800 kg/m³ | https://www.eabassoc.co.uk |
VariMax Synthetic based | - | √ | To offer a variable high dilution ratio | 1:40 | 150–1450 kg/m³ | https://www.vermillionassociates.com |
LITEBUILT Synthetic based | - | √ | Fast turnaround in the production process No harmful or toxic fumes | 2–3 wt.% of the mixture | 300–1600 kg/m3 | http://www.litebuilt.com/ |
Refs. | Density kg/m3 | Volume of Foam Agent | Type Materials Added | Compressive Strength at 28 Days | |
---|---|---|---|---|---|
By kg/m3 | By Dilution with Water | ||||
[63] | 600 | 75–80 g/L | 1:33 | Lightweight aggregate, PP fibres, sand, and cement | 25–58 |
541–1003 | - | 0.5–3% | Sludge aggregate | 25 | |
[64] | 1000 | Cement–sand | 1.82–16.73 | ||
[65] | 1150 | 75–80 g/L | - | Fly ash, sand and cement | 10–26 |
[55] | 982–1185 | 40 | 0.5–3% | Fly ash sand, and cement | 1.0–6.0 |
[66] | 650–1200 | 40 | 1:5 | Fly ash, sand, cement | 20–43 |
[55] | 280–1200 | 40 | 1:5 | Fly ash, sand and OPC | 0.6–1091days |
[20] | 800–1350 | 40 | 1:5 | Silica fume (10–15%) | P4.73 |
1380 | 0.25% | Fine sand, fly ash, lime, and PP fibre | 15–3077days 0.2–1180days 1.6–4.6180days | ||
[66] | 800–1500 | 70 | 1:40 | PP fibres, sand and cement | 10–50 |
[54] | 70 | 1:40 | Course sand and OPC | 1.0–7.0 | |
[19] | 650–1200 | 40 | 1:5 | Partially (OPC-fly ash) | 2.0–18 |
[29,56] | 1000–1500 | 70 | - | Fly ash, ultra-fine silica powder, and silica fume | 85.4365days |
[36] | 70 | 1:5 | Fly ash (fine and coarse) | 4.0–7.37days 1.0–2.07days 0.5–107days | |
[55,56] | PP fibre and Silica fume | 39.6–91.3 | |||
[67] | 1000–1400 | 50 | - | Fly ash, cement and sand | 4.0–19 |
[68] | 1400 | 70 | 1:2 | 5.5–9.3 | |
1200–1600 | 70 | - | Fine sand and OPC | 2.0–11 | |
1710 | 50 | - | Fly ash, fine sand, and | 5.4–13.2 | |
400–1800 | 50 | - | Fly ash, sand, and cement, | 44180days | |
[19,29] | 1400–1800 | 50 | 1:35 | Lightweight aggregate, sand, and cement | 9.9–39.5 |
[10] | 59 | 13.8–48 | |||
[55] | 50 | - | Fly ash only | 25 | |
[69,70] | 80 | 1:35 | 75%-fly ash, sand, and cement | 40 | |
[71] | 1500–1800 | 60 | - | Sand, aggregate and cement | 1.8–17.9 |
[72] | 1837 | 30–50 | 1:5 | 28 |
Criterion | Foam Extrusion | Foam Injection Molding | Batch Foaming |
---|---|---|---|
Quantity of materials | Large, in kilograms | Larger amount, in kilograms | Less, in grams |
Pre-molding | Not required | Not required | Required |
Specimen state during gas saturation/loading temperature | Melt | Melt | Solid |
Range of cell density (cells/cm3) | 1 × 104 to 1 × 1011 | 1 × 104 to 1 × 108 | 1 × 106 to 1 × 1016 |
Distribution of cell | Uniform, but the cells in the core may differ in size than the cells at edges | Difficult to produce foam with uniform cell | Uniform |
Quality of the surface | Good and glossy | Poor | Good |
Skin layer thickness (μm) | Thin | Thick | Thin |
Incorporation of nucleation agent | Composition can be changed any time Can be introduced any time during processing | Can be introduced any time during processing | Foam composition is fixed from the very beginning |
Supply of blowing agent | Foamer is metered but not more than the melt can take | Gusting agent is measured but not greater than the dissolve can engross under special treatment mode | Sample is saturated with foam agent until equilibrium is reached |
Cost of tooling | Costly, depends on the capacity of machine | Costly, depends on the capacity of machine and the cost of mold | Cheap |
Ref | Fibres | Fibre Properties | Properties of FRFC at Max. Compression Strength | |||||||
---|---|---|---|---|---|---|---|---|---|---|
Length | Density | Tensile | Elastic Modulus | Dia | Comp | Density | Tensile | Flexural | ||
mm | kg/m3 | MPa | GPa | µm | MPa | kg/m3 | MPa | MPa | ||
[1] | Polypropylene | 19 | 900 | 552 | 3.8 | 70 | 2.14 | 734 | 0.341 | - |
Henequen | 19 | 1400 | 500 | 13.2 | 170 | 1.78 | 728 | 0.445 | - | |
[23] | Polymer | 20 | 1000 | 520 | 0.54 | 12.44 | 835 | - | 2.35 | |
Glass mesh | 4 × 4 mm | 125 g/m2 | 25 | - | - | - | - | - | - | |
Glass mesh + polymer | - | - | - | - | 11.67 | 822 | - | 7.05 | ||
[80] | Polypropylene | 12 | 1000 | 2.69 | 3.46 | 587 | - | - | - | - |
Polyvinyl alcohol | 25 | 1500 | 0.9 | 29 | 398 | - | - | - | - | |
Polypropylene | 12 | 15 | 2.79 | 3.48 | 25 | - | - | - | - | |
[72] | Polyolefin | 50.4 | - | 275 | 2.6 | 0.64 | 7.82 | 1600 | - | 1.53 |
[29] | Polypropylene | 15 | 900 | 800 | 8.0 | 100 | 50 | 1500 | 8.0 | - |
Sort of Fibre | Physical Properties | Hardened Properties | Refs. | ||
---|---|---|---|---|---|
Sisal fibre | Diameter | 0.004–0.3 mm | Modulus of elasticity | 5–18 GPa | [106] |
Length | 4–160 cm | ||||
Absorption | 110% | Tensile strength | 233–580 MPa | ||
Absolute density | 1370 kg/m3 | ||||
Date palm fibre | Diameter | 0.1–0.8 mm | Elastic modulus | 5 GPa | |
Length | 2.5–3.5 cm | Split strength | 233 MPa | ||
Apparent density | 512–1089 kg/m3 | - | - | ||
Absorption | 97–203% | - | - | ||
Absolute density | 1300–1350 kg/m3 | - | - | ||
Date palm fibre | Diameter | 60 mm | Split strength | 240 ± 30 MPa | [107] |
20 mm | 290 ± 20 MPa | ||||
100 mm | 170 ± 40 MPa | ||||
Absolute specific weight | 1300–1450 kg/m3 | - | - | ||
Apparent specific weight | 512.21–1088.81 kg/m3 | Elongation at break | 0.23% | ||
Humidity | 9.5–10.5% | - | - | ||
Water absorption (1 day) | 96.83–202.64% | - | - | ||
Jute fibre | Diameter | 1 mm | Elastic modulus | 10–30 GPa | [106] |
Length | 2–4 cm | Split strength | 400–800 MPa | ||
Absolute density | 1700 kg/m3 | - | - | ||
Hemp hurds | Diameter | 1–8 mm | - | - | |
Length | 0.5–3.5 cm | ||||
Absorption | 280% | ||||
Flax fibre | Diameter | 0.035 mm | Elastic modulus | 21 GPa | |
Length | 7–8.5 cm | Split strength | 805 MPa | ||
Kenaf fibre | Diameter | 0.13 mm | Elastic modulus | 136 GPa | |
Length | 3 cm | Tensile strength | 1000 MPa | ||
Absorption | 307% | - | - | ||
Absolute density | 1040 kg/m | - | - | ||
Apparent density | 50–114.4 kg/m3 | - | - | ||
Diameter | 0.025–0.05 mm | ||||
Absolute density | 440 kg/m3 | ||||
Thermal conductivity | 35.3–53.9 W/mK | ||||
Absorption | 240% | ||||
Polypropylene and polyethylene fibres | Aspect ratio | 90 | - | 620 MPa | [108] |
Length | 40 mm | Split strength | 600 MPa | ||
Specific gravity | 0.92 | Elastic modulus | 9.5 GPa | ||
Thickness | 0.105 mm | - | - | ||
Cross-section shape | Rectangular | - | - | ||
Width | 1.4 mm | - | - | ||
PET fibre | Density | 1.38 g/cm3 | Split strength | 3 GPa | [109] |
10 GPa | |||||
160 MPa | |||||
420 MPa | |||||
450 MPa | |||||
Elastic modulus | - | ||||
Polyester fibre | Diameter | 30–40 µm | Elastic modulus | 10–30 GPa | [110] |
Length | 3, 6, 12, 20, 64 mm | Split strength | 400–600 MPa | ||
Specific gravity | 1.35 g/cm3 | - | - | ||
Steel fibre | Diameter | 0.6 mm | Split strength | >1000 MPa | [111] |
Length | 32 mm | ||||
Specific gravity | 7.85 | ||||
Steel fibre | Maximum diameter | 0.75% ± 5% mm | Elastic modulus | 200,000 MPa | [112] |
Length | 60% ± 5% mm | Tensile strength | 1035 MPa | ||
Number of fibres per kg | 4600 | - | - | ||
Slenderness ratio | 90 | - | - | ||
Glass fibre | Diameter: | 3–19 µm | Elastic modulus | 53–95 GPa | [110] |
Length | 25 mm | Ultimate tensile strength | 1500–5000 MPa | ||
Specific gravity | 2.49–2.60 g/cm3 | - | - | ||
E-glass fibre | Density | 2.61 g/cm3 | Modulus of elasticity | 57.0 ± 3.0 GPa | [113] |
Diameter | 16.8 ± 1.6 µm | Split strength | 1472 ± 395 MPa | ||
Area or cross-section | 223.4 ± 42 µm2 | Maximum force | 0.32 ± 0.08 N | ||
Asbestos | Specific surface area | 60 (10−3 m2/g) | Split strength | 602 ± 295 MPa | [114] |
Average length | 5.5 mm | ||||
Specific gravity | 2.75 | ||||
Basalt fibre | Density | 2.66 g/cm3 | Split strength | 30–40 MPa | [113] |
Diameter | 10 ± 3.1 µm | Elastic modulus | 48.2 ± 20.6 GPa | ||
Cross-section | 90.2 ± 56.7 µm2 | Maximum force | 0.05 ± 0.04 N | ||
Propylene nylon fibres | Thickness | 80 to 1500 µm | Specific tensile modulus | 0.27–0.7 GPa/g/cm3 | [115] |
Length | 2 to 20 mm | ||||
Water absorption | 0–4.5% | ||||
Specific gravity | 0.9–1.32 |
Refs. | Mix Details | Fresh Properties | Harden Properties | |||||||
---|---|---|---|---|---|---|---|---|---|---|
Mechanical | Functional | |||||||||
Fibre | Design | Optimum | Density kg/m³ | Density kg/m³ | Compressive Strength MPa | Tensile Strength MPa | Flexural Strength MPa | Shrinkage | Thermal Conductivity | |
[121,122] | paper fibres | cement: sand: w/c ratio 1:1.5:0.45 (5, 10, 15, 20% of paper fibres) | 0.2 | 1043–1099 | 930–1060 | 0.5–1.9 | - | 0.15–0.8 | - | - |
[32] | MC-8B waste paper (recycled cellulose fibres) | 0.1–0.5% of binder mass | 0.003 | - | D600 | 1.9 (0.3%, 28 d) | - | - | decrease | - |
[123,124] | Basalt | - | 0.001 | - | D400 | 60% increment to CS (0.1%, 28 d) | - | - | 57% reduce | 35% reduce |
Chrysotile asbestos | - | 0.02 | - | D400 | 2.5 times to CS (2.0%, 28 d) | - | - | 90% reduce | 40% reduce | |
Polypropylene | - | 0.004 | - | D400 | 62% increment to CS (0.4%, 28 d) | - | - | 42% reduce | 30% reduce | |
[72] | Polyolefin | 0.2, 0.4, 0.6, 0.8% | 0.004 | - | 1600 | 6.397–7.8236 | - | 1.36–1.53 | - | - |
[23,38] | short polymer fibres and GFRP | 0.7, 2.0, 5.0% | 2.0% polymer fibres + GFRP | 400, 600, 800 | 382–823 | 1.11–12.84 | - | 0.09–2.53 | - | - |
[35] | carbon fibres and polypropylene fibres | 0.5, 1.0, 1.5% | 1% of carbon + 0.5 polypropylene (cost effective) | 1800 | 1670–1820 | 13.8–23.1 | 1.9–2.9 | 2.1–4.5 | - | - |
[125] | coir and polyvinyl alcohol fibres | 0.3, 0.4, 0.5% | 0.3% of coir + 0.2% of PVA or 0.2% of coir + 0.3% of PVA | - | - | 6.5–16 | 2.0–4.5 | 1.0–2.4 | - | - |
[126,127] | Basalt, Polyvinyl alcohol (PVA), polypropylene (PP) | 2%, alkali-activated slag foam concretes | PVA | - | - | 32–40 | - | 2.5–8 | - | - |
[128,129,130] | Polyolefin | <0.55% | hybrid (macro + fibrillated) | - | - | 3.89–8.44 | - | 6.3–10.68 | - | - |
[131] | steel fibres | 0.5–1.5% | - | 2150–2250 | - | 17.34–22.37 | 0.88–2.97 | - | - | - |
[27] | kenaf and polypropylene | 0.25 & 0.4% | - | 1130 | - | 2–3.8 | - | 0.55–1.0 | 0.1–0.4 mm | - |
[132] | Polypropylene | 0.2, 0.25, 0.3% | 0.002 | 1600 | - | 7.459–10.783 | - | - | - | 0.66–0.71 W/mK |
[80] | Polypropylene | 0.5–3% | 0.008 | 1.0001 × 1015 | - | 25,842 | 2.6–4.0 | 41,306 | 55% reduce | 0.56–0.64 W/mK |
[1] | Henequen | 0.5, 1, 1.5% | - | 700 | 681-732 | 1.42–2.14 | 0.225–0.447 | - | - | - |
[29] | Polypropylene | - | 0.008 | 800–1500 | - | 18,537 | 3.5–8.0 | - | 1.3–1.7 mm | - |
Type of Material Used | Main Findings | Refs. |
---|---|---|
Quarry waste | The excellent bond is achieved through the finer quarry dust, which alleviated the necessity of foam’s volume for the given density of concrete. Henceforth, improved compressive strength and thermal conductivity were detected. | [136] |
Fine-recycled concrete aggregate | Enhanced mechanical properties at 10% replacement by sand weight. Simultaneously, recycled sand demonstrates more excellent water absorption and porosity in compared to calcareous sand used. | [137] |
Polyvinyl waste | The combined content of Fe2O2, Al2O3 and SiO2 in polyvinyl waste above 50% promotes creating a C-S-H gel, resulting in improved characteristics of both flexural and compressive strength. | [138] |
Rice husk ash (RHA) | Mechanical properties improve with increasing content of RHA up to 20 wt.% due to its pozzolanic nature. | [22] |
M Sand | Mechanical properties improve with increasing content of M Sand up to 20 wt.%. | [139] |
Biomass aggregates | The biomass aggregate in FC results in superior compressive strength when exposed to air for 91 days compared to conventional fine aggregate. | [140] |
Different gradations of sand | Mechanical properties enhance with the fineness of aggregate. | [141] |
River sand, sea sand and quarry dust | The sample with quarry dust as a fine aggregate achieved higher strength and density than the other samples, and sea sand as a filler reached very similar strength and density values with river sand. | [142] |
Glass fines | The shrinkage of the cement paste is reduced with a further improvement in strength at low density. | [143] |
Ref. | Elastic Modulus–Prediction Model | ||
---|---|---|---|
[21,192] | [192] | [63] | |
GPa | GPa | GPa | |
[121,122] | 0.7 | 0.6 | 4.0 |
[32] | 0.7 | 1.5 | 4.1 |
[72] | 5.3 | 3.4 | 32.4 |
[23,38] | 0.3 | 1.1 | 1.6 |
[35] | 8.4 | 5.7 | 50.7 |
[125] | - | 3.5 | - |
[126,127] | - | 10.1 | - |
[128,129,130] | - | 2.5 | - |
[131] | 13.7 | 6.7 | 83.0 |
[27] | 1.8 | 1.6 | 10.7 |
Refs. | Density, kg/m3 | Applications |
---|---|---|
[8] | <300 | Production of decoration applications and partitioning walls |
[75] | 300–600 | Substitutions of current soil, raft foundation, soil steadiness. |
[8] | 500–600 | Rehabilitation of geotechnical applications including road construction and soil settlement, |
[219] | 600–800 | Void filling, including old sewerage pipes, boreholes, basement and tunnels |
[55] | 800–900 | Fabrications of masonry blocks, bricks for non-load bearing walls in building constructions |
[10] | 1100–1400 | Fabrications of non-and-load bearing applications including floor screeds |
1100–1500 | Housing construction applications | |
[219] | 1600–1800 | Production of wall bearing and slabs systems of concrete building |
[6,7,14,15,220] | 1800–1900 | Production of load-bearing precast sandwich wall panels |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Amran, M.; Fediuk, R.; Vatin, N.; Huei Lee, Y.; Murali, G.; Ozbakkaloglu, T.; Klyuev, S.; Alabduljabber, H. Fibre-Reinforced Foamed Concretes: A Review. Materials 2020, 13, 4323. https://doi.org/10.3390/ma13194323
Amran M, Fediuk R, Vatin N, Huei Lee Y, Murali G, Ozbakkaloglu T, Klyuev S, Alabduljabber H. Fibre-Reinforced Foamed Concretes: A Review. Materials. 2020; 13(19):4323. https://doi.org/10.3390/ma13194323
Chicago/Turabian StyleAmran, Mugahed, Roman Fediuk, Nikolai Vatin, Yeong Huei Lee, Gunasekaran Murali, Togay Ozbakkaloglu, Sergey Klyuev, and Hisham Alabduljabber. 2020. "Fibre-Reinforced Foamed Concretes: A Review" Materials 13, no. 19: 4323. https://doi.org/10.3390/ma13194323
APA StyleAmran, M., Fediuk, R., Vatin, N., Huei Lee, Y., Murali, G., Ozbakkaloglu, T., Klyuev, S., & Alabduljabber, H. (2020). Fibre-Reinforced Foamed Concretes: A Review. Materials, 13(19), 4323. https://doi.org/10.3390/ma13194323