Slicing Ceramics on Material Removed by a Single Abrasive Particle
Abstract
:1. Introduction
2. Theoretical Derivation Model
2.1. Removal Mechanism of Hard-Brittle Material
2.2. Brittle Fracture
2.3. Plastic Deformation
2.4. Material Removed by an Abrasive Particle
3. Experimental Results and Discussion
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Nomenclature
Total area of the machining zone | |
b | Cutting width for a single abrasive particle |
Line width | |
m | Mass of the abrasive particle |
Total number of particles | |
Total number of machining abrasives per unit time | |
r | Average particle radius |
Kerf width | |
Projection area of the contact between the abrasive particle and the chip | |
Cutting area per unit time | |
Gap coefficient | |
Wire speed coefficient | |
Diameter of a single abrasive particle | |
Modulus of elasticity | |
Horizontal cutting force for the tip of an abrasive particle | |
Vertical cutting force for the tip of an abrasive particle | |
I | Moment of inertia of a particle about its center of gravity |
Chip length | |
Line contact length | |
Centroid moment | |
Working load | |
P* | Minimum threshold load for lateral cracking |
Wire speed | |
Volume of material removed by an abrasive particle | |
Total volume removed per unit of time | |
Total energy stored in an element | |
XT, YT | Locus left by the tip of an abrasive particle cutting into the material surface |
Strain vector | |
σ | Plastic flow stress |
Stress vector | |
Stress in the Z plane | |
Ultimate material strength | |
Coefficient of friction | |
Poisson’s ratio | |
Vibration angle | |
Angle at which occurs | |
ρ | Density of a single abrasive particle |
References
- Liedke, T.; Kuna, M. Discrete element simulation of micromechanical removal processes during wire sawing. Wear 2013, 304, 77–82. [Google Scholar] [CrossRef]
- Li, X.; Gao, Y.; Ge, P.; Zhang, L.; Bi, W. The effect of cut depth and distribution for abrasives on wafer surface morphology in diamond wire sawing of PV polycrystalline silicon. Mater. Sci. Semicond. Process. 2019, 91, 316–326. [Google Scholar] [CrossRef]
- Xiao, H.; Wang, H.; Yu, N.; Liang, R.; Tong, Z.; Chen, Z.; Wang, J. Evaluation of fixed abrasive diamond wire sawing induced subsurface damage of solar silicon wafers. J. Mater. Process. Technol. 2019, 273, 116267. [Google Scholar] [CrossRef]
- Bidiville, A.; Wasmer, K.; Van Der Meer, M.; Ballif, C. Wire-sawing processes: parametrical study and modeling. Sol. Energy Mater. Sol. Cells 2015, 132, 392–402. [Google Scholar] [CrossRef]
- Zhang, B.; Howes, T.D. Material-Removal Mechanisms in Grinding Ceramics. CIRP Ann. 1994, 43, 305–308. [Google Scholar] [CrossRef]
- Buttery, T.C.; Archard, J.F. Grinding and Abrasive Wear. Proc. Inst. Mech. Eng. 1970, 185, 537–551. [Google Scholar] [CrossRef] [Green Version]
- Finnie, I.; McFadden, D. On the velocity dependence of the erosion of ductile metals by solid particles at low angles of incidence. Wear 1978, 48, 181–190. [Google Scholar] [CrossRef] [Green Version]
- Evans, A.G. Impact damage in ceramic. In Fracture Mechanics of Ceramics; Springer: Boston, MA, USA, 1978; pp. 303–330. [Google Scholar]
- Wang, Z.Y.; Rajurkar, K.P. Dynamic Analysis of the Ultrasonic Machining Process. J. Manuf. Sci. Eng. 1996, 118, 376–381. [Google Scholar] [CrossRef]
- Turchetta, S.; Sorrentino, L.; Bellini, C. A method to optimize the diamond wire cutting process. Diam. Relat. Mater. 2017, 71, 90–97. [Google Scholar] [CrossRef]
- Yilmazkaya, E.; Ozcelik, Y. The Effects of Operational Parameters on a Mono-wire Cutting System: Efficiency in Marble Processing. Rock Mech. Rock Eng. 2015, 49, 523–539. [Google Scholar] [CrossRef]
- Liedke, T.; Kuna, M. A macroscopic mechanical model of the wire sawing process. Int. J. Mach. Tools Manuf. 2011, 51, 711–720. [Google Scholar] [CrossRef]
- Liu, T.; Ge, P.; Bi, W.; Gao, Y. Subsurface crack damage in silicon wafers induced by resin bonded diamond wire sawing. Mater. Sci. Semicond. Process. 2017, 57, 147–156. [Google Scholar] [CrossRef]
- Wang, P.; Ge, P.; Gao, Y.; Bi, W. Prediction of sawing force for single-crystal silicon carbide with fixed abrasive diamond wire saw. Mater. Sci. Semicond. Process. 2017, 63, 25–32. [Google Scholar] [CrossRef]
- Wang, P.; Ge, P.; Ge, M.; Bi, W.; Meng, J. Material removal mechanism and crack propagation in single scratch and double scratch tests of single-crystal silicon carbide by abrasives on wire saw. Ceram. Int. 2019, 45, 384–393. [Google Scholar] [CrossRef]
- Su, Y.-T.; Wang, S.-Y.; Hsiau, J.-S. On machining rate of hydrodynamic polishing process. Wear 1995, 188, 77–87. [Google Scholar] [CrossRef]
- Bifano, T.G.; Dow, T.A.; Scattergood, R.O. Ductile-Regime Grinding: A New Technology for Machining Brittle Materials. J. Eng. Ind. 1991, 113, 184–189. [Google Scholar] [CrossRef]
- Malkin, S.; Hwang, T. Grinding Mechanisms for Ceramics. CIRP Ann. 1996, 45, 569–580. [Google Scholar] [CrossRef]
- Chen, S.Y.; Farris, T.N.; Chandrasekar, S. Sliding Microindentation Fracture of Brittle Materials. Tribol. Trans. 1991, 34, 161–168. [Google Scholar] [CrossRef]
- Sih, G.C. Mechanics of Fracture Initiation and Propagation; Lehigh University: Bethlehem, PA, USA, 1991. [Google Scholar]
- Chao, C.; Chang, R. Crack trajectories influenced by mechanical and thermal disturbance in anisotropic material. Theor. Appl. Fract. Mech. 1992, 17, 177–187. [Google Scholar] [CrossRef]
- Timoshenko, S.P.; Goodier, J.N. Theory of Elasticity; McGraw-Hill: New York, NY, USA, 1970. [Google Scholar]
- Krell, A.; Klaffke, D. Effect of grain size and Humidity on fretting wear in fine-grained alumina, Al2O3/Tic, and Zirconi. J. Am. Ceram. Soc. 1996, 79, 1139–1146. [Google Scholar] [CrossRef]
- Suwabe, H.; Ishikawa, K.I.; Miyashita, T. A study of the processing characteristics of a vibration multi-wire saw-regarding the effects of slurry composition. Int. Conf. Precis. Eng. 1996, 1, 253–256. [Google Scholar]
- Bower, A.; Fleck, N. Brittle fracture under a sliding line contact. J. Mech. Phys. Solids 1994, 42, 1375–1396. [Google Scholar] [CrossRef]
Item | Specification |
---|---|
Workpiece (Diameter) | Al2O3 (ϕ8 mm) |
Slurry contents | SiC + Water |
Grains (Diameter) | GC# 600 (27 µm) |
Concentration (wt.%) | 10 |
Wire diameter (mm) | ϕ0.24 ± 0.05 (Stainless wire) |
Wire tension (N) | 18 |
Wire speed (m/s) | 4.1, 5.6 and 6.4 |
Working load (N) | 0.60, 0.90, 1.12, 1.27, 1.76 and 1.96 |
Frequency (Hz) | 0.8 |
Vibration angle (θ) | 60° |
P (N) | S (m/s) | V | NX | NY | |
---|---|---|---|---|---|
a | 0.6 | 4.1 | 1.31 × 10−7 | 2.325 | 3.550 |
0.6 | 5.6 | 1.41 × 10−7 | 2.325 | 2.791 | |
0.6 | 6.4 | 1.10 × 10−7 | 2.325 | 2.428 | |
b | 0.9 | 4.1 | 2.04 × 10−7 | 2.990 | 3.680 |
0.9 | 5.6 | 2.08 × 10−7 | 2.990 | 2.750 | |
0.9 | 6.4 | 2.14 × 10−7 | 2.990 | 2.480 | |
c | 1.12 | 4.1 | 2.69 × 10−7 | 3.474 | 3.900 |
1.12 | 5.6 | 2.76 × 10−7 | 3.474 | 2.940 | |
1.12 | 6.4 | 2.72 × 10−7 | 3.474 | 2.610 | |
d | 1.27 | 4.1 | 3.20 × 10−7 | 3.805 | 4.100 |
1.27 | 5.6 | 3.40 × 10−7 | 3.805 | 3.197 | |
1.27 | 6.4 | 3.47 × 10−7 | 3.805 | 2.850 | |
e | 1.76 | 4.1 | 5.00 × 10−7 | 4.887 | 4.570 |
1.76 | 5.6 | 5.10 × 10−7 | 4.887 | 3.880 | |
1.76 | 6.4 | 5.10 × 10−7 | 4.887 | 3.040 | |
f | 1.96 | 4.1 | 5.70 × 10−7 | 5.330 | 4.710 |
1.96 | 5.6 | 6.30 × 10−7 | 5.330 | 4.010 | |
1.96 | 6.4 | 6.25 × 10−7 | 5.330 | 3.270 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tsai, Y.-Y.; Wu, M.-C.; Liao, Y.-S.; Tsao, C.-C.; Hsu, C.-Y. Slicing Ceramics on Material Removed by a Single Abrasive Particle. Materials 2020, 13, 4324. https://doi.org/10.3390/ma13194324
Tsai Y-Y, Wu M-C, Liao Y-S, Tsao C-C, Hsu C-Y. Slicing Ceramics on Material Removed by a Single Abrasive Particle. Materials. 2020; 13(19):4324. https://doi.org/10.3390/ma13194324
Chicago/Turabian StyleTsai, Yao-Yang, Ming-Chang Wu, Yunn-Shiuan Liao, Chung-Chen Tsao, and Chun-Yao Hsu. 2020. "Slicing Ceramics on Material Removed by a Single Abrasive Particle" Materials 13, no. 19: 4324. https://doi.org/10.3390/ma13194324
APA StyleTsai, Y. -Y., Wu, M. -C., Liao, Y. -S., Tsao, C. -C., & Hsu, C. -Y. (2020). Slicing Ceramics on Material Removed by a Single Abrasive Particle. Materials, 13(19), 4324. https://doi.org/10.3390/ma13194324