Corrosion Behavior of Steel-Reinforced Green Concrete Containing Recycled Coarse Aggregate Additions in Sulfate Media
Abstract
:1. Introduction
2. Materials and Methods
2.1. Green Concrete (GC)
2.2. Design Mixtures of Conventional Concrete (MC) and GC
2.3. Physical and Mechanical Properties of Concrete Mixtures (Fresh and Hardened State)
2.4. Specifications, Characteristic and Nomenclature of Specimens for Electrochemical Tests
- MC, M50 and M100 indicate the concrete mixture (conventional and green concrete);
- W indicates exposed DI-water (control medium);
- S indicate exposed to 3.5 wt.% Na2SO4 solution (aggressive medium);
- 18 for rebars of AISI 1018 CS;
- 304 for rebars of AISI 304 SS.
3. Results and Discussion
3.1. Half-Cell Potential—Corrosion Potential
3.1.1. Ecorr Specimens Exposed DI-Water (Control Medium)
3.1.2. Ecorr Specimens Exposed 3.5 wt.% Na2SO4 Solution (Aggressive Medium)
3.2. Corrosion Current Density, icorr
3.2.1. icorr Specimens Exposed DI-Water (Control Medium)
3.2.2. icorr Specimens Exposed 3.5 wt.% Na2SO4 Solution (Aggressive Medium)
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Cramer, S.D.; Covino, B.S.; Bullard, S.J.; Holcomb, G.R.; Russell, J.H.; Nelson, F.J.; Laylor, H.M.; Soltesz, S.M. Corrosion prevention and remediation strategies for reinforced concrete coastal bridges. Cem. Concr. Compos. 2002, 24, 101–117. [Google Scholar] [CrossRef]
- Koch, G.H.; Brongers, M.; Neil, G.; Thompson, C.C.; Virmani, P.; Payer, J.H. Corrosion Costs and Preventive Strategies in the United States; Publication No. FHWA-RD-01-156; NACE International: Houston, TX, USA, 2002. [Google Scholar]
- Güneyisi, E.; Ozturan, T.; Gesoglu, M. A study on reinforcement corrosion and related properties of plain and blended cement concretes under different curing conditions. Cem. Concr. Compos. 2005, 27, 449–461. [Google Scholar] [CrossRef]
- Pin Gu, S.; Beaudoin, J.J.; Arsenault, B. Corrosion resistance of stainless steel in chloride contaminated concrete. Cem. Concr. Res. 1996, 26, 1151–1156. [Google Scholar]
- Saricimen, H.; Mohammad, M.; Quddus, A.; Shameem, M.; Barry, M.S. Effectiveness of concrete inhibitors in retarding rebar corrosion. Cem. Concr. Compos. 2002, 24, 89–100. [Google Scholar] [CrossRef]
- De Rincon, O.T.; Montenegro, J.; Vera, R.; Carvajal, A.; De Gutiérrez, R.M.; Saborio, E.; Acosta, A.A.T.; PãRez-Quiroz, J.; Martinez-Madrid, M.; Martínez-Molina, W.; et al. Reinforced concrete durability in marine environments DURACON Project: Long-term exposure. Corrosion 2016, 72, 824–833. [Google Scholar] [CrossRef]
- Baltazar, M.A.; Márquez, S.; Landa, L.; Croche, R.; López, O. Effect of the type of curing on the corrosion behavior of concrete exposed to urban and marine environment. Eur. J. Eng. Res. Sci. 2020, 5, 91–95. [Google Scholar] [CrossRef] [Green Version]
- Ormellese, M.; Berra, M.; Bolzoni, F.; Pastore, T. Corrosion inhibitors for chlorides induced corrosion in reinforced concrete structures. Cem. Concr. Res. 2006, 36, 536–547. [Google Scholar] [CrossRef]
- Baltazar, M.A.; Santiago, G.; Moreno, V.M.; Croche, R.; De la Garza, M.; Estupiñan, F.; Zambrano, P.; Gaona, G. Electrochemical behaviour of galvanized steel embedded in concrete exposed to sand contaminated with NaCl. Int. J. Electrochem. Sci. 2016, 11, 10306–10319. [Google Scholar] [CrossRef]
- Gowripalan, N.; Mohameda, H.M. Chloride-ion induced corrosion of galvanized and ordinary steel reinforcement in high-performance concrete. Cem. Concr. Res. 1998, 28, 1119–1131. [Google Scholar] [CrossRef]
- Liang, M.; Lan, J.J. Reliability analysis for the existing reinforced concrete pile corrosion of bridge substructure. Cem. Concr. Res. 2005, 35, 540–550. [Google Scholar] [CrossRef]
- Santiago, G.; Baltazar, M.A.; Galindo, A.; Cabral, J.A.; Estupíñan, F.H.; Zambrano, P.; Gaona, C. Anticorrosive Efficiency of Primer Applied in Carbon Steel AISI 1018 as Reinforcement in a Soil Type MH. Int. J. Electrochem. Sci. 2013, 8, 8490–8501. [Google Scholar]
- Elias, V.; Fishman, K.L.; Cristopher, B.R.; Berg, R.R. Corrosion/Degradation of Soil Reinforcements for Mechanically Stabilized Earth Walls and Reinforced Soil Slopes; U.S. Department of Transportation Publication No. FHWA-NHI-09-087; Federal Highway Administration: Washington, DC, USA, 2009.
- Ismail, A.I.M.; El-Shamy, A.M. Engineering behaviour of soil materials on the corrosion of mild steel. Appl. Clay Sci. 2009, 42, 356–362. [Google Scholar] [CrossRef]
- Santiago, G.; Baltazar, M.A.; Galván, R.; López, L.; Zapata, F.; Zambrano, P.; Gaona, C.; Almeraya, F. Electrochemical evaluation of reinforcement concrete exposed to soil type SP contaminated with sulphates. Int. J. Electrochem. Sci. 2016, 11, 4850–4864. [Google Scholar] [CrossRef]
- Baltazar, M.A.; Santiago, G.; Gaona, C.; Maldonado, M.; Barrios, C.P.; Nunez, R.; Perez, T.; Zambrano, P.; Almeraya, F. Evaluation of the corrosion at early age in reinforced concrete exposed to sulfates. Int. J. Electrochem. Sci. 2012, 7, 588–600. [Google Scholar]
- Baltazar-Zamora, M.A.; Landa-Ruiz, L.; Rivera, Y.; Croche, R. Electrochemical evaluation of galvanized steel and AISI 1018 as reinforcement in a soil type MH. Eur. J. Eng. Res. Sci. 2020, 5, 259–263. [Google Scholar] [CrossRef] [Green Version]
- Bellezze, T.; Malavolta, M.; Quaranta, A.; Ruffini, N.; Roventi, G. Corrosion behaviour in concrete of three differently galvanized steel bars. Cem. Concr. Compos. 2006, 28, 246–255. [Google Scholar] [CrossRef]
- Kayali, O.; Yeomans, S. Bond of ribbed galvanized reinforcing steel in concrete. Cem. Concr. Compos. 2000, 22, 459–467. [Google Scholar] [CrossRef]
- Cheng, A.; Huang, R.; Wu, J.K.; Chen, C.H. Effect of rebar coating on corrosion resistance and bond strength of reinforced concrete. Constr. Build. Mater. 2005, 19, 404–412. [Google Scholar] [CrossRef]
- Martin, U.; Ress, J.; Bosch, J.; Bastidas, D.M. Stress corrosion cracking mechanism of AISI 316LN stainless steel rebars in chloride contaminated concrete pore solution using the slow strain rate technique. Electrochim. Act. 2020, 335, 135565. [Google Scholar] [CrossRef]
- Mahasenan, N.; Smith, S.; Humphreys, K. The cement industry and global climate change: Current and potential future cement industry CO2 emissions. In Greenhouse Gas Control Technologies, Proceedings of the 6th International Conference, Kyoto, Japan, 1–4 October 2002; Elsevier: Amsterdam, The Netherlands, 2003; pp. 995–1000. [Google Scholar]
- Habert, G.; d’Espinose de Lacaillerie, J.B.; Roussel, N. An environmental evaluation of geopolymer based concrete production: Reviewing current research trends. J. Clean. Prod. 2011, 19, 1229–1238. [Google Scholar] [CrossRef]
- Ariza-Figueroa, H.A.; Bosch, J.; Baltazar-Zamora, M.A.; Croche, R.; Santiago-Hurtado, G.; Landa-Ruiz, L.; Mendoza-Rangel, J.M.; Bastidas, J.M.; Almeraya-Calderón, F.; Bastidas, D.M. Corrosion behavior of AISI 304 stainless steel reinforcements in SCBA-SF ternary ecological concrete exposed to MgSO4. Materials 2020, 13, 2412. [Google Scholar] [CrossRef] [PubMed]
- Franco-Luján, V.A.; Maldonado-García, M.A.; Mendoza-Rangel, J.M.; Montes-García, P. Chloride-induced reinforcing steel corrosion in ternary concretes containing fly ash and untreated sugarcane bagasse ash. Const. Build. Mater. 2019, 198, 608–618. [Google Scholar] [CrossRef]
- Kupwade-Patil, K.; Allouche, E.N. Examination of chloride-induced corrosion in reinforced geopolymer concretes. J. Mater. Civil Eng. 2013, 25, 1465–1476. [Google Scholar] [CrossRef]
- Gunasekara, C.; Law, D.W.; Setunge, S. Long term permeation properties of different fly ash geopolymer concretes. Const. Build. Mater. 2016, 124, 352–362. [Google Scholar] [CrossRef]
- Ganesan, K.; Rajagopal, K.; Thangavel, K. Evaluation of bagasse ash as corrosion resisting admixture for carbon steel in concrete. Anti-Corros. Methods Mater. 2007, 54, 230–236. [Google Scholar] [CrossRef]
- Amin, N.U. Use of bagasse ash in concrete and its impact on the strength and chloride resistivity. J. Mater. Civil Eng. 2011, 23, 717–720. [Google Scholar] [CrossRef]
- Somna, R.; Jaturapitakkul, C.; Rattanachu, P.; Chalee, W. Effect of ground bagasse ash on mechanical and durability properties of recycled aggregate concrete. Mater. Des. 2012, 36, 597–603. [Google Scholar] [CrossRef]
- Cordeiro, G.C.; Toledo Filho, R.D.; Tavares, L.M.; Fairbairn, E.M.R. Experimental characterization of binary and ternary blended-cement concretes containing ultrafine residual rice husk and sugar cane bagasse ashes. Constr. Build. Mater. 2012, 29, 641–646. [Google Scholar] [CrossRef]
- Rukzon, S.; Chindaprasirt, P. Utilization of bagasse ash in high-strength concrete. Mater. Des. 2012, 34, 45–50. [Google Scholar] [CrossRef]
- Baltazar-Zamora, M.A.; Ariza-Figueroa, H.; Landa-Ruiz, L.; Croche, R. Electrochemical evaluation of AISI 304 SS and galvanized steel in ternary ecological concrete based on sugar cane bagasse ash and silica fume (SCBA-SF) exposed to Na2SO4. Eur. J. Eng. Res. Sci. 2020, 5, 353–357. [Google Scholar] [CrossRef]
- Padhi, R.; Mukharjee, B. Effect of rice husk ash on compressive strength of recycled aggregate concrete. J. Basic Appl. Eng. Res 2017, 4, 356–359. [Google Scholar]
- Joshaghani, A.; Moeini, M.A. Evaluating the effects of sugar cane bagasse ash (SCBA) and nanosilica on the mechanical and durability properties of mortar. Constr. Build. Mater. 2017, 152, 818–831. [Google Scholar]
- Jagadesh, P.; Ramachandramurthy, A.; Murugesan, R.; Karthik Prabhu, T. Adaptability of sugar cane bagasse ash in mortar. J. Inst. Eng. India Ser. A 2019, 100, 225–240. [Google Scholar]
- Praveenkumar, S.; Sankarasubramanian, G. Mechanical and durability properties of bagasse ash-blended high-performance concrete. SN Appl. Sci. 2019, 1, 1664. [Google Scholar]
- Ojeda, O.; Mendoza, J.M.; Baltazar, M.A. Influence of sugar cane bagasse ash inclusion on compacting, CBR and unconfined compressive strength of a subgrade granular material. Rev. Alconpat 2018, 8, 194–208. [Google Scholar]
- Ganesan, K.; Rajagopal, K.; Thangavel, K. Evaluation of bagasse ash as supplementary cementitious material. Cem. Concr. Compos. 2007, 29, 515–524. [Google Scholar]
- Chusilp, N.; Jaturapitakkul, C.; Kiattikomol, K. Effects of LOI of ground bagasse ash on the compressive strength and sulfate resistance of mortars. Constr. Build. Mater. 2009, 23, 3523–3531. [Google Scholar]
- Turner, L.K.; Collins, F.G. Carbon dioxide equivalent (CO2-e) emissions: A comparison between geopolymer and OPC cement concrete. Constr. Build. Mater. 2013, 43, 125–130. [Google Scholar]
- Talha Junaid, M.; Kayali, O.; Khennane, A.; Black, J. A mix design procedure for low calcium alkali activated fly ash-based concretes. Constr. Build. Mater. 2015, 79, 301–310. [Google Scholar]
- Pawluczuk, E.; Kalinowska-Wichrowska, K.; Boltryk, M.; Ramón, J.; Fernandez, J. The influence of heat and mechanical treatment of concrete rubble on the properties of recycled aggregate concrete. Materials 2019, 12, 367. [Google Scholar]
- Fraile García, E.; Ferreiro-Cabello, J.; López-Ochoa, L.M.; López Gonzáles, L.M. Study of the technical feasibility of increasing the amount of recycled concrete waste used in ready-mix concrete production. Materials 2017, 10, 817. [Google Scholar] [CrossRef] [Green Version]
- Dhir, R.; Henderson, N.; Limbachiya, M. Proceedings of International Symposium: Sustainable Construction: Use of Recycled Concrete Aggregate; Thomas Telford Ltd.: London, UK, 2015. [Google Scholar]
- De Vries, P. Concrete recycled: Crushed concrete aggregate. In Concrete in the Service of Mankind. I. Concrete for Environment Enhancement and Protection, Proceedings of the International Conference, Dundee, UK, 24–26 June 1996; E & FN Spon: London, UK; New York, NY, USA, 1996; pp. 121–130. [Google Scholar]
- Limbachiya, M.C.; Leelawat, T.; Dhir, R.K. Use of recycled concrete aggregate in high-strength concrete. Mater. Struct. 2000, 33, 574–580. [Google Scholar]
- Oikonomou, N.D. Recycled concrete aggregates. Cem. Concr. Compos. 2005, 27, 315–318. [Google Scholar]
- Berndt, M.L. Properties of sustainable concrete containing fly ash, slag and recycled concrete aggregate. Constr. Build. Mater 2009, 23, 2606–2613. [Google Scholar]
- Landa-Gómez, A.E.; Croche, R.; Márquez-Montero, S.; Villegas Apaez, R.; Ariza-Figueroa, H.A.; Estupiñan López, F.; Gaona Tiburcio, G.; Almeraya Calderón, F.; Baltazar-Zamora, M.A. Corrosion behavior 304 and 316 stainless steel as reinforcement in sustainable concrete based on sugar cane bagasse ash exposed to Na2SO4. ECS Trans. 2018, 84, 179–188. [Google Scholar] [CrossRef]
- Chusilp, N.; Jaturapitakkul, C.; Kiattikomol, K. Utilization of bagasse ash as a pozzolanic material in concrete. Constr. Build. Mater. 2009, 23, 3352–3358. [Google Scholar] [CrossRef]
- Khan, K.; Ullah, M.F.; Shahzada, K.; Amin, M.; Bibi, T.; Wahab, N.; Aljaafari, A. Effective use of micro-silica extracted from rice husk ash for the production of high-performance and sustainable cement mortar. Constr. Build. Mater. 2020, 258, 119589. [Google Scholar]
- Akram, T.; Memon, S.; Obaid, H. Production of low cost self compacting concrete using bagasse ash. Constr. Build. Mater. 2009, 23, 703–712. [Google Scholar]
- Yashwanth, M.K.; Naresh, B.G.; Sandeep, D.S. Potential of bagasse ash as alternative cementitious material in recycled aggregate concrete. Int. J. Innov. Technol. Explor. Eng. 2019, 8, 271–275. [Google Scholar]
- Zhao, Y.; Dong, J.; Wu, Y.; Wang, H.; Li, X.; Xu, Q. Steel corrosion and corrosion-induced cracking in recycled aggregate concrete. Corros. Sci. 2014, 85, 241–250. [Google Scholar]
- Liang, C.; Ma, H.; Pan, Y.; Ma, Z.; Duan, Z.; He, Z. Chloride permeability and the caused steel corrosion in the concrete with carbonated recycled aggregate. Constr. Build. Mater. 2019, 218, 506–518. [Google Scholar] [CrossRef]
- Qing, X.; Tao, J.; San-Ji, G.; Zhengxian, Y.; Nengsen, W. Characteristics and Applications of Sugar Cane Bagasse Ash Waste in Cementitious Materials. Materials 2019, 12, 1–19. [Google Scholar]
- ACI 211.1-91 Standard. Standard Practice for Selecting Proportions for Normal, Heavyweight, and Mass Concrete; ACI: Farmington Hills, MI, USA, 2002.
- NMX-C-414-ONNCCE-2014–Industria de la Construcción—Cementantes Hidráulicos–Especificaciones y Métodos de Ensayo; ONNCCE, Cd.: Mexico City, Mexico, 2014.
- ASTM C127–15–Standard Test Method for Relative Density (Specific Gravity) and Absorption of Coarse Aggregate; ASTM International: West Conshohocken, PA, USA, 2015.
- ASTM C128–15–Standard Test Method for Relative Density (Specific Gravity) and Absorption of Fine Aggregate; ASTM International: West Conshohocken, PA, USA, 2015.
- ASTM C29/C29M–07–Standard Test Method for Bulk Density (“Unit Weight”) and Voids in Aggregate; ASTM International: West Conshohocken, PA, USA, 2007.
- ASTM C33/C33M–16e1–Standard Specification for Concrete Aggregates; ASTM International: West Conshohocken, PA, USA, 2016.
- ACI 214R-11 Standard, Guide to Evaluation of Strength Test Results of Concrete; ACI: Farmington Hills, MI, USA, 2011.
- NMX-C-156-ONNCCE-2010–Determinacion de Revenimiento en Concreto Fresco; ONNCCE, Cd.: Mexico City, Mexico, 2010.
- ASTM C 1064/C1064M–08–Standard Test Method for Temperature of Freshly Mixed Hydraulic-Cement Concrete; ASTM International: West Conshohocken, PA, USA, 2008.
- NMX-C-162-ONNCCE-2014–Industria de la Construcción—Concreto Hidráulico—Determinación de la Masa Unitaria, Cálculo del Rendimiento y Contenido de Aire del Concreto Fresco por el Método Gravimétrico; ONNCCE, Cd.: Mexico City, Mexico, 2014.
- NMX-C-083-ONNCCE-2014–Industria de la Construcción—Concreto–Determinación de la Resistencia a la Compresión de Especímenes—Método de Ensayo; ONNCCE, Cd.: Mexico City, Mexico, 2014.
- Ali, B.; Qureshi, L.; Raza, A.; Nawaz, M.; Rehman, S.; Rashid, M. Influence of glass fibers on mechanical properties on concrete with recycled coarse aggregate. Civil Eng. J. 2019, 5, 1007–1019. [Google Scholar] [CrossRef] [Green Version]
- Kurda, R.; De Brito, J.; Silvestre, J. Combined economic and mechanical performance optimization of recycled aggregate concrete with high volume of fly ash. Appl. Sci. 2018, 8, 1189. [Google Scholar] [CrossRef] [Green Version]
- Castaldelli, N.; Moraes, J.C.B.; Akasaki, J.L.; Melges, J.L.P.; Monzó, J.; Borrachero, M.V.; Soriano, L.; Payá, J.; Tashima, M.M. Study of the binary system fly ash/sugarcane bagasse ash (FA/SCBA) in SiO2/K2O alkali-activated binders. Fuel 2016, 174, 307–316. [Google Scholar] [CrossRef] [Green Version]
- Li, W.; Xiao, J.; Shi, C.; Poon, C. Structural behaviour of composites members with recycled aggregate concrete—An overview. Adv. Struct. Eng. 2015, 18, 919–938. [Google Scholar] [CrossRef] [Green Version]
- Landa, A.E.; Croche, R.; Márquez, S.; Galván, R.; Gaona, C.; Almeraya, F.; Baltazar, M.A. Correlation of compression resistance and rupture module of a concrete of ratio w/c = 0.50 with the corrosion potential, electrical resistivity and ultrasonic pulse speed. ECS Trans. 2018, 84, 217–227. [Google Scholar] [CrossRef]
- Volpi-León, V.; López-Léon, L.D.; Hernández-Ávila, J.; Baltazar-Zamora, M.A.; Olguín-Coca, F.J.; López-León, A.L. Corrosion study in reinforced concrete made with mine waste as mineral additive. Int. J. Electrochem. Sci. 2017, 12, 22–31. [Google Scholar] [CrossRef]
- Santiago, G.; Baltazar, M.A.; Olguín, J.; López, L.; Galván, R.; Ríos, A.; Gaona, C.; Almeraya, F. Electrochemical evaluation of a stainless steel as reinforcement in sustainable concrete exposed to chlorides. Int. J. Electrochem. Sci. 2016, 11, 2994–3006. [Google Scholar] [CrossRef]
- ASTM C192/C192M–16a–Standard Practice for Making and Curing Concrete Test Specimens in the Laboratory; ASTM International: West Conshohocken, PA, USA, 2016.
- NMX-C-159-ONNCCE-2004, Industria de la Construcción—Concreto—Elaboración y Curado de Especímenes en ONNCCE S.C., Cd.; ONNCCE, Cd.: Mexico City, Mexico, 2004.
- Liang, M.; Lin, L.; Liang, C. Service Life Prediction of Existing Reinforced Concrete Bridges Exposed to Chloride Environment. J. Infrastruct. Syst. 2002, 8, 76–85. [Google Scholar] [CrossRef]
- Pradhan, B. Corrosion behavior of steel reinforcement in concrete exposed to composite chloride–sulfate environment. Constr. Build. Mater. 2014, 72, 398–410. [Google Scholar]
- ASTM G 59-97 (2014)–Standard Test Method for Conducting Potentiodynamic Polarization Resistance Measurements; ASTM International: West Conshohocken, PA, USA, 2014.
- Fajardo, S.; Bastidas, D.M.; Criado, M.; Romero, M.; Bastidas, J.M. Corrosion behaviour of a new low-nickel stainless steel in saturated calcium hydroxide solution. Constr. Build. Mater. 2011, 25, 4190–4196. [Google Scholar]
- Baltazar, M.A.; Maldonado, M.; Tello, M.; Santiago, G.; Coca, F.; Cedano, A.; Barrios, C.P.; Nuñez, R.; Zambrano, P.; Gaona, C.; et al. Efficiency of galvanized steel embedded in concrete previously contaminated with 2, 3 and 4% of NaCl. Int. J. Electrochem. Sci. 2012, 7, 2997–3007. [Google Scholar]
- Andrade, C.; Alonso, C. Corrosion rate monitoring in the laboratory and on-site. Constr. Build Mater. 1996, 10, 315–328. [Google Scholar]
- Feliu, S.; González, J.A.; Andrade, C. Electrochemical Methods for On-Site Determinations of Corrosion Rates of Rebars. In Techniques to Assess the Corrosion Activity of Steel Reinforced Concrete Structures; ASTM STP 1276; Berke, N.S., Escalante, E., Nmai, C.K., Whiting, D., Eds.; ASTM International: West Conshohocken, PA, USA, 1996; pp. 107–118. [Google Scholar]
- González, J.A.; Ramírez, E.; Bautista, A.; Feliú, S. The behaviour of pre-rusted steel in concrete. Cem. Concr. Res. 1996, 26, 501–511. [Google Scholar] [CrossRef]
- ASTM C 876-15 (2015)–Standard Test Method for Corrosion Potentials of Uncoated Reinforcing Steel in Concrete; ASTM International: West Conshohocken, PA, USA, 2015.
- Al-Yaqout, A.; El-Hawary, M.; Nouh, K.; Khan, P. Corrosion resistance of recycled aggregate concrete incorporating slag. ACI-Mater. J. 2020, 117, 111–122. [Google Scholar]
- Baltazar, M.A.; Landa, A.; Landa, L.; Ariza, H.; Gallego, P.; Ramírez, A.; Croche, R.; Márquez, S. Corrosion of AISI 316 stainless steel embedded in sustainable concrete made with sugar cane bagasse ash (SCBA) exposed to marine environment. Eur. J. Eng. Res. Sci. 2020, 5, 127–131. [Google Scholar]
- García-Alonso, M.C.; González, J.A.; Miranda, J.; Escudero, M.L.; Correia, M.J.; Salta, M.; Bennani, A. Corrosion behaviour of innovative stainless steels in mortar. Cem. Concr. Res. 2007, 37, 1562–1569. [Google Scholar] [CrossRef] [Green Version]
- Lovato, P.; Possan, E.; Coitinho, D.; Masuero, A. Modeling of mechanical properties and durability of recycled aggregate concretes. Constr. Build. Mater. 2012, 26, 437–447. [Google Scholar]
- Bautista, A.; Blanco, G.; Velasco, F. Corrosion behaviour of low-nickel austenitic stainless steels reinforcements: A comparative study in simulated pore solutions. Cem. Concr. Res. 2006, 36, 1922–1930. [Google Scholar]
- Alonso, M.C.; Luna, F.J.; Criado, M. Corrosion behavior of duplex stainless steel reinforcement in ternary binder concrete exposed to natural chloride penetration. Constr. Build. Mater. 2019, 385–395. [Google Scholar] [CrossRef]
- Kurda, R.; De Brito, J.; Silvestre, J. Water absorption and electrical resistivity of concrete with recycled concrete aggregates and fly ash. Cem. Concr. Compos. 2019, 95, 169–182. [Google Scholar] [CrossRef]
- Hren, M.; Kosec, T.; Legat, A. Characterization of stainless steel corrosion processes in mortar using various monitoring techniques. Constr. Build. Mater. 2019, 221, 604–613. [Google Scholar] [CrossRef]
- Serdar, M.; Valek, L.; Bjegovic, D. Long-term corrosion behaviour of stainless reinforcing steel in mortar exposed to chloride environment. Corros. Sci. 2013, 69, 149–157. [Google Scholar] [CrossRef]
- Kou, S.; Poon, C.; Agrela, F. Comparasions of natural and recycled aggregate concretes prepared with addition of different mineral admixtures. Cem. Concr. Compos. 2011, 33, 788–795. [Google Scholar] [CrossRef]
- Alhawat, M.; Ashour, A. Bond strength between corroded steel reinforcement and recycled aggregate concrete. Structures 2019, 19, 369–385. [Google Scholar] [CrossRef] [Green Version]
- Bautista, A.; Velasco, F.; Torres-Carrasco, M. Influence of the alkaline reserve of chloride-contaminated mortars on the 6-year corrosion behavior of corrugated UNS S32304 and S32001 stainless steels. Metals 2019, 9, 686. [Google Scholar] [CrossRef] [Green Version]
- Baltazar, M.A.; Bastidas, D.M.; Santiago, G.; Mendoza, J.M.; Gaona, C.; Bastidas, J.M.; Almeraya, F. Effect of silica fume and fly ash admixtures on the corrosion behavior of AISI 304 embedded in concrete exposed in 3.5% NaCl solution. Materials 2019, 12, 4007. [Google Scholar] [CrossRef] [Green Version]
- Criado, M.; Bastidas, D.M.; Fajardo, S.; Fernández-Jiménez, A.; Bastidas, J.M. Corrosion behaviour of a new low-nickel stainless steel embedded in activated fly ash mortars. Cem. Concr. Compos. 2011, 33, 644–652. [Google Scholar] [CrossRef]
- Cakir, O. Experimental analysis of properties of recycled coarse aggregate (RCA) concrete with mineral additives. Constr. Build. Mater. 2014, 68, 17–25. [Google Scholar] [CrossRef]
- Li, X. Recycling and reuse of waste concrete in China: Part I. Material behaviour of recycled aggregate concrete. Resour. Conserv. Recycl. 2008, 53, 36–44. [Google Scholar] [CrossRef]
- Ma, Z.; Tang, Q.; Yang, D.; Ba, G. Durability studies on the recycled aggregate concrete in China over the past decade: A review. Adv. Civil Eng. 2019, 2019, 4073130. [Google Scholar] [CrossRef] [Green Version]
- Pacheco, F.; Miraldo, S.; Labrincha, J.; De Brito, J. An overview on conrete carbonation in the context of eco-efficient construction: Evaluation, Use of SCMs and/or RAC. Constr. Build. Mater. 2012, 36, 141–150. [Google Scholar] [CrossRef] [Green Version]
- Roa, A.; Jha, K.; Misra, S. Use of aggregates from recycled construction and demolition waste in concrete. Resour. Conserv. Recycl. 2007, 50, 71–81. [Google Scholar]
- Xie, J.; Zhao, J.; Wang, J.; Wasn, C.; Huang, P.; Fang, C. Sulfate resistance of recycled aggregate concrete with GGBS and fly ash-based geopolymer. Materials 2019, 12, 1247. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gurdian, H.; García, E.; Baeza, F.; Garcés, P.; Zornoza, E. Corrosion behavior of steel reinforcement in concrete with recycled aggregate, fly ash and spent cracking catalyst. Materials 2014, 7, 3176–3197. [Google Scholar] [CrossRef]
- Baltazar, M.A.; Mendoza, J.M.; Croche, R.; Gaona, C.; Hernández, C.; López, L.; Olguín, F.; Almeraya, F. Corrosion behavior of galvanized steel embedded in concrete exposed to soil type MH contaminated with chlorides. Front. Mater. 2019, 6, 257. [Google Scholar] [CrossRef]
- Saravanan, K.; Sathiyanarayanan, S.; Muralidharan, S.; Syed-Azim, S.; Venkatachari, G. Performance evaluation of polyaniline pigmented epoxy coating for corrosion protection of steel in concrete environment. Prog. Org. Coat. 2007, 59, 160–167. [Google Scholar] [CrossRef]
Type of Aggregates | Relative Density (Specific Gravity) | Bulk Density (Unit Weight, kg/m3) | Absorption (%) | Fineness Modulus | Maximum Aggregate Size (mm) |
---|---|---|---|---|---|
NCA | 2.62 | 1433 | 1.73 | - | 19 |
NFA | 2.24 | 1695 | 1.85 | 2.2 | - |
RCA | 2.20 | 1367 | 12.00 | - | 19 |
Materials | MC (100% CPC) | M50 (50% RCA) | M100 (100% RCA) |
---|---|---|---|
Kg/m3 | |||
Cement | 315 | 252 | 252 |
Water | 205 | 205 | 205 |
SCBA | 0 | 63 | 63 |
NCA | 917 | 458.5 | 0 |
NFA | 914 | 914 | 914 |
RCA | 0 | 458.5 | 917 |
Concrete Mixture | Slump (cm) | Temperature (°C) | Density (kg/m3) |
---|---|---|---|
MC | 10 cm | 24 | 2220 |
M50 | 3 cm | 19 | 2187 |
M100 | 2 cm | 22 | 2040 |
Concrete Mixture | Compressive Strength (MPa) | |
---|---|---|
14 Days | 28 Days | |
MC | 14.02 | 19.91 |
M50 | 7.71 | 11.54 |
M100 | 6.75 | 9.66 |
Material | Element, wt.% | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
C | Si | Mn | P | S | Cr | Ni | Mo | Cu | Fe | |
AISI 1018 | 0.20 | 0.22 | 0.72 | 0.02 | 0.02 | 0.13 | 0.06 | 0.02 | 0.18 | Balance |
AISI 304 | 0.04 | 0.32 | 1.75 | 0.03 | 0.001 | 18.20 | 8.13 | 0.22 | 0.21 | Balance |
Mixtures Concrete | Nomenclature of Specimens Exposed DI-Water (Control Medium) | Nomenclature Specimens Exposed to 3.5 wt.% Na2SO4 Solution (Aggressive Medium) | ||
---|---|---|---|---|
MC (Conventional Concrete: 100% NA and 100% CPC) | MC-W-18 | MC-W-304 | MC-S-18 | MC-S-304 |
M50 (Green Concrete: 50% RCA and 20% SBCA) | M50-W-18 | M50-W-304 | M50-S-18 | M50-S-304 |
M100 (Green Concrete: 100% RCA and 20% SBCA) | M100-W-18 | M100-W-304 | M100-S-18 | M100-S-304 |
Ecorr (mVCSE) | Corrosion Condition |
---|---|
Ecorr > −200 | Low (10% of risk corrosion) |
−200 > Ecorr > −350 | Intermediate corrosion risk |
−350 > Ecorr > −500 | High (<90% of risk corrosion) |
Ecorr < −500 | Severe corrosion |
icorr (µA/cm2) | vcorr (mm/d) | Corrosion Level |
---|---|---|
icorr ≤ 0.1 | vcorr ≤ 0.001 | Negligible (Passivity) |
0.1 < icorr < 0.5 | 0.001 < vcorr < 0.005 | Low Corrosion |
0.5 < icorr < 1 | 0.005 < vcorr < 0.010 | Moderate Corrosion |
icorr > 1 | vcorr > 0.010 | High Corrosion |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Landa-Sánchez, A.; Bosch, J.; Baltazar-Zamora, M.A.; Croche, R.; Landa-Ruiz, L.; Santiago-Hurtado, G.; Moreno-Landeros, V.M.; Olguín-Coca, J.; López-Léon, L.; Bastidas, J.M.; et al. Corrosion Behavior of Steel-Reinforced Green Concrete Containing Recycled Coarse Aggregate Additions in Sulfate Media. Materials 2020, 13, 4345. https://doi.org/10.3390/ma13194345
Landa-Sánchez A, Bosch J, Baltazar-Zamora MA, Croche R, Landa-Ruiz L, Santiago-Hurtado G, Moreno-Landeros VM, Olguín-Coca J, López-Léon L, Bastidas JM, et al. Corrosion Behavior of Steel-Reinforced Green Concrete Containing Recycled Coarse Aggregate Additions in Sulfate Media. Materials. 2020; 13(19):4345. https://doi.org/10.3390/ma13194345
Chicago/Turabian StyleLanda-Sánchez, Abigail, Juan Bosch, Miguel Angel Baltazar-Zamora, René Croche, Laura Landa-Ruiz, Griselda Santiago-Hurtado, Victor M. Moreno-Landeros, Javier Olguín-Coca, Luis López-Léon, José M. Bastidas, and et al. 2020. "Corrosion Behavior of Steel-Reinforced Green Concrete Containing Recycled Coarse Aggregate Additions in Sulfate Media" Materials 13, no. 19: 4345. https://doi.org/10.3390/ma13194345
APA StyleLanda-Sánchez, A., Bosch, J., Baltazar-Zamora, M. A., Croche, R., Landa-Ruiz, L., Santiago-Hurtado, G., Moreno-Landeros, V. M., Olguín-Coca, J., López-Léon, L., Bastidas, J. M., Mendoza-Rangel, J. M., Ress, J., & Bastidas, D. M. (2020). Corrosion Behavior of Steel-Reinforced Green Concrete Containing Recycled Coarse Aggregate Additions in Sulfate Media. Materials, 13(19), 4345. https://doi.org/10.3390/ma13194345