Fumonisin B1 Interaction with Mg-Al and Mg-Fe Layered Double Hydroxides: Removal Efficiency and Mechanisms
Abstract
:1. Introduction
2. Experimental Methods
2.1. Materials
2.2. Synthesis of LDH
2.3. Adsorption Experiments
2.4. Analytical Methods for Solid Samples
3. Results and Discussion
3.1. Characterization of Adsorbents
3.1.1. XRD Results and Chemistry of Brucite-Like Layers
3.1.2. FTIR Results
3.1.3. SEM/TEM Results
3.2. Adsorption Experiments
3.3. Insight into Removal Mechanisms
3.3.1. XRD and FTIR Analysis
3.3.2. XPS Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Luo, Y.; Liu, X.; Li, J. Updating techniques on controlling mycotoxins—A review. Food Control 2018, 89, 123–132. [Google Scholar] [CrossRef]
- Anater, A.; Manyes, L.; Meca, G.; Ferrer, E.; Luciano, F.B.; Pimpão, C.T.; Font, G. Mycotoxins and their consequences in aquaculture: A review. Aquaculture 2016, 451, 1–10. [Google Scholar] [CrossRef]
- Vila-Donat, P.; Marin, S.; Sanchis, V.; Ramos, A.J. A review of the mycotoxin adsorbing agents, with an emphasis on their multi-binding capacity, for animal feed decontamination. Food Chem. Toxicol. 2018, 114, 246–259. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Avantaggiato, G.; Solfrizzo, M.; Visconti, A. Recent advances on the use of adsorbent materials for detoxification of Fusarium mycotoxins. Food Addit. Contam. 2005, 22, 379–388. [Google Scholar] [CrossRef] [PubMed]
- Wang, M.; Maki, C.R.; Deng, Y.; Tian, Y.; Phillips, T.D. Development of High Capacity Enterosorbents for Aflatoxin B1 and Other Hazardous Chemicals. Chem. Res. Toxicol. 2017, 30, 1694–1701. [Google Scholar] [CrossRef]
- Barrientos-Velázquez, A.L.; Marroquin Cardona, A.; Liu, L.; Phillips, T.; Deng, Y. Influence of layer charge origin and layer charge density of smectites on their aflatoxin adsorption. Appl. Clay Sci. 2016, 132–133, 281–289. [Google Scholar] [CrossRef]
- Barrientos-Velázquez, A.L.; Arteaga, S.; Dixon, J.B.; Deng, Y. The effects of pH, pepsin, exchange cation, and vitamins on aflatoxin adsorption on smectite in simulated gastric fluids. Appl. Clay Sci. 2016, 120, 17–23. [Google Scholar] [CrossRef]
- Alam, S.S.; Deng, Y. Protein interference on aflatoxin B1 adsorption by smectites in corn fermentation solution. Appl. Clay Sci. 2017, 144, 36–44. [Google Scholar] [CrossRef]
- Gan, F.; Hang, X.; Huang, Q.; Deng, Y. Assessing and modifying China bentonites for aflatoxin adsorption. Appl. Clay Sci. 2019, 168, 348–354. [Google Scholar] [CrossRef]
- Yuan, X.; Jing, Q.; Chen, J.; Li, L. Photocatalytic Cr(VI) reduction by mixed metal oxide derived from ZnAl layered double hydroxide. Appl. Clay Sci. 2017, 143, 168–174. [Google Scholar] [CrossRef]
- Mishra, G.; Dash, B.; Pandey, S. Layered double hydroxides: A brief review from fundamentals to application as evolving biomaterials. Appl. Clay Sci. 2018, 153, 172–186. [Google Scholar] [CrossRef]
- Mohapatra, L.; Parida, K. A review on the recent progress, challenges and perspective of layered double hydroxides as promising photocatalysts. J. Mater. Chem. A 2016, 4, 10744–10766. [Google Scholar] [CrossRef]
- Huang, P.-P.; Cao, C.-Y.; Wei, F.; Sun, Y.-B.; Song, W.-G. MgAl layered double hydroxides with chloride and carbonate ions as interlayer anions for removal of arsenic and fluoride ions in water. RSC Adv. 2015, 5, 10412–10417. [Google Scholar] [CrossRef]
- Jawad, A.; Peng, L.; Liao, Z.; Zhou, Z.; Shahzad, A.; Ifthikar, J.; Zhao, M.; Chen, Z.; Chen, Z. Selective removal of heavy metals by hydrotalcites as adsorbents in diverse wastewater: Different intercalated anions with different mechanisms. J. Clean. Prod. 2019, 211, 1112–1126. [Google Scholar] [CrossRef]
- Zubair, M.; Daud, M.; McKay, G.; Shehzad, F.; Al-Harthi, M.A. Recent progress in layered double hydroxides (LDH)-containing hybrids as adsorbents for water remediation. Appl. Clay Sci. 2017, 143, 279–292. [Google Scholar] [CrossRef]
- Chubar, N.; Gilmour, R.; Gerda, V.; Micusik, M.; Omastova, M.; Heister, K.; Man, P.; Fraissard, J.; Zaitsev, V. Layered double hydroxides as the next generation inorganic anion exchangers: Synthetic methods versus applicability. Adv. Colloid Interface Sci. 2017, 245, 62–80. [Google Scholar] [CrossRef] [PubMed]
- Forano, C.; Costantino, U.; Prévot, V.; Gueho, C.T. Layered Double Hydroxides (LDH). In Developments in Clay Science; Bergaya, F., Lagaly, G., Eds.; Elsevier: Amsterdam, The Netherlands, 2013; Volume 5, pp. 745–782. [Google Scholar]
- Goh, K.H.; Lim, T.T.; Dong, Z. Application of layered double hydroxides for removal of oxyanions: A review. Water Res. 2008, 42, 1343–1368. [Google Scholar] [CrossRef]
- Olszówka, J.E.; Karcz, R.; Bielańska, E.; Kryściak-Czerwenka, J.; Napruszewska, B.D.; Sulikowski, B.; Socha, R.P.; Gaweł, A.; Bahranowski, K.; Olejniczak, Z.; et al. New insight into the preferred valency of interlayer anions in hydrotalcite-like compounds: The effect of Mg/Al ratio. Appl. Clay Sci. 2018, 155, 84–94. [Google Scholar] [CrossRef]
- Dakovic, A.; Kragovic, M.; Rottinghaus, G.E.; Sekulic, Z.; Milicevic, S.; Milonjic, S.K.; Zaric, S. Influence of natural zeolitic tuff and organozeolites surface charge on sorption of ionizable fumonisin B1. Colloids Surf. B Biointerfaces 2010, 76, 272–278. [Google Scholar] [CrossRef]
- Daković, A.; Tomašević-Čanović, M.; Rottinghaus, G.E.; Matijašević, S.; Sekulić, Ž. Fumonisin B1 adsorption to octadecyldimethylbenzyl ammonium-modified clinoptilolite-rich zeolitic tuff. Microporous Mesoporous Mater. 2007, 105, 285–290. [Google Scholar] [CrossRef]
- Cavani, F.; Trifirò, A.V.; Vaccari, A. Hydrotalcite-type anionic clays: Preparation, properties and application. Catal. Today 1991, 11, 171–301. [Google Scholar] [CrossRef]
- Drits, V.A.; Bookin, A.S. Crystal structure and X-Ray Identification of Layered Double Hydroxides. In Layered Double Hydroxides: Present and Future; Rives, V., Ed.; Nova Science Publishers: Hauppauge, NY, USA, 2001; pp. 41–101. [Google Scholar]
- Wang, S.-L.; Wang, P.-C. In situ XRD and ATR-FTIR study on the molecular orientation of interlayer nitrate in Mg/Al-layered double hydroxides in water. Colloids Surf. A 2007, 292, 131–138. [Google Scholar] [CrossRef]
- Xu, Z.P.; Zeng, H.C. Abrupt Structural Transformation in Hydrotalcite-like Compounds Mg1-xAlx(OH)2(NO3)x·nH2O as a Continuous Function of Nitrate Anions. J. Phys. Chem. B 2001, 105, 1743–1749. [Google Scholar] [CrossRef]
- Di Cosimo, J.I.; Díez, V.K.; Xu, M.; Iglesia, E.; Apesteguía, C.R. Structure and Surface and Catalytic Properties of Mg-Al Basic Oxides. J. Catal. 1998, 178, 499–510. [Google Scholar] [CrossRef] [Green Version]
- Kloprogge, J.T.; Wharton, D.; Hickey, L.; Frost, R.L. Infrared and Raman study of interlayer anions CO32−, NO3−, SO42−, and ClO4− in Mg/Al-hydrotalcite. Am. Mineral. 2002, 87, 623–629. [Google Scholar] [CrossRef]
- Momany, F.A.; Dombrink-Kurtzman, M.A. Molecular dynamics simulations on the mycotoxin fumonisin B1. J. Agric. Food Chem. 2001, 49, 1056–1061. [Google Scholar] [CrossRef]
- Beier, R.C.; Stanker, L.H. Molecular models for the stereochemical structures of fumonisin B1 and B2. Arch. Environ. Contam. Toxicol. 1997, 33, 1–8. [Google Scholar] [CrossRef]
- Matusik, J.; Hyla, J.; Maziarz, P.; Rybka, K.; Leiviska, T. Performance of Halloysite-Mg/Al LDH Materials for Aqueous As(V) and Cr(VI) Removal. Materials 2019, 12, 3569. [Google Scholar] [CrossRef] [Green Version]
- Hsu, C.C. Selecting and Modifying Smectites and Layered Double Hydroxides to Bind Fumonisin B1, Ochratoxin A, Zearalenone, and Deoxynivalenol. Ph.D. Thesis, Department of Soil and Crop Sciences, Texas A & M University, College Station, TX, USA, 2018. [Google Scholar]
- Beier, R.C.; Elissalde, M.H.; Stanker, L.H. Calculated three-dimensional structures of the fumonisin B1−4 mycotoxins. Bull. Environ. Conam. Toxicol. 1995, 54, 479–487. [Google Scholar] [CrossRef]
- Matusik, J. Arsenate, orthophosphate, sulfate, and nitrate sorption equilibria and kinetics for halloysite and kaolinites with an induced positive charge. Chem. Eng. J. 2014, 246, 244–253. [Google Scholar] [CrossRef]
- Chubar, N.; Gerda, V.; Megantari, O.; Mičušík, M.; Omastova, M.; Heister, K.; Man, P.; Fraissard, J. Applications versus properties of Mg–Al layered double hydroxides provided by their syntheses methods: Alkoxide and alkoxide-free sol–gel syntheses and hydrothermal precipitation. Chem. Eng. J. 2013, 234, 284–299. [Google Scholar] [CrossRef]
- Haycock, D.E.; Kasrai, M.; Nicholls, C.J.; Urch, D.S. The electronic structure of magnesium hydroxide (brucite) using X-ray emission, X-ray photoelectron, and auger spectroscopy. J. Chem. Soc. Dalton Trans. 1978, 12, 1791–1796. [Google Scholar] [CrossRef]
- Zhang, F.; Zhang, C.-L.; Song, L.; Zeng, R.-C.; Cui, L.-Y.; Cui, H.-Z. Corrosion Resistance of Superhydrophobic Mg–Al Layered Double Hydroxide Coatings on Aluminum Alloys. Acta Metall. Sin. Engl. Lett. 2015, 28, 1373–1381. [Google Scholar] [CrossRef] [Green Version]
- Jerome, R.; Teyssie, P.; Pireaux, J.J.; Verbist, J.J. Surface analysis of polymers end-capped with metal carboxylates using X-ray photoelectron spectroscopy. Appl. Surf. Sci. 1986, 27, 93–105. [Google Scholar] [CrossRef]
Chemistry | M(II)/M(III) Assumed Value | M(II)/M(III) Determined Value | Interlayer Anion | Symbol |
---|---|---|---|---|
Mg/Al | 2 | 1.94 ± 0.07 | Cl | Mg-Al-Cl-2 |
Mg/Al | 3 | 2.76 ± 0.07 | Cl | Mg-Al-Cl-3 |
Mg/Al | 4 | 3.24 ± 0.08 | Cl | Mg-Al-Cl-4 |
Mg/Al | 6 | 4.51 ± 0.04 | Cl | Mg-Al-Cl-6 |
Mg/Al | 8 | 5.26 ± 0.04 | Cl | Mg-Al-Cl-8 |
Mg/Al | 2 | 2.09 ± 0.09 | NO3 | Mg-Al-NO3-2 |
Mg/Al | 3 | 2.97 ± 0.06 | NO3 | Mg-Al-NO3-3 |
Mg/Al | 4 | 3.56 ± 0.06 | NO3 | Mg-Al-NO3-4 |
Mg/Fe | 2 | 1.72 ± 0.01 | Cl | Mg-Fe-Cl-2 |
Mg/Fe | 3 | 2.48 ± 0.01 | Cl | Mg-Fe-Cl-3 |
Mg/Fe | 4 | 3.32 ± 0.02 | Cl | Mg-Fe-Cl-4 |
Mg/Fe | 2 | 1.88 ± 0.01 | NO3 | Mg-Fe-NO3-2 |
Mg/Fe | 3 | 2.58 ± 0.02 | NO3 | Mg-Fe-NO3-3 |
Mg/Fe | 4 | 3.53 ± 0.03 | NO3 | Mg-Fe-NO3-4 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Matusik, J.; Deng, Y. Fumonisin B1 Interaction with Mg-Al and Mg-Fe Layered Double Hydroxides: Removal Efficiency and Mechanisms. Materials 2020, 13, 4344. https://doi.org/10.3390/ma13194344
Matusik J, Deng Y. Fumonisin B1 Interaction with Mg-Al and Mg-Fe Layered Double Hydroxides: Removal Efficiency and Mechanisms. Materials. 2020; 13(19):4344. https://doi.org/10.3390/ma13194344
Chicago/Turabian StyleMatusik, Jakub, and Youjun Deng. 2020. "Fumonisin B1 Interaction with Mg-Al and Mg-Fe Layered Double Hydroxides: Removal Efficiency and Mechanisms" Materials 13, no. 19: 4344. https://doi.org/10.3390/ma13194344
APA StyleMatusik, J., & Deng, Y. (2020). Fumonisin B1 Interaction with Mg-Al and Mg-Fe Layered Double Hydroxides: Removal Efficiency and Mechanisms. Materials, 13(19), 4344. https://doi.org/10.3390/ma13194344