Direct Energy Deposition of TiAl for Hybrid Manufacturing and Repair of Turbine Blades
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Additive Manufacturing
2.2.1. Direct Energy Deposition (DED) of TiAl
2.2.2. Laser Powder Bed Fusion (LPBF) of TiAl
2.3. Heat Treatment
2.4. Analytical Methods
2.4.1. Chemical Composition
2.4.2. Microstructure and Phase Analysis
2.4.3. Mechanical Properties
3. Results
3.1. Chemical Composition
3.2. Microstructure and Phases
3.2.1. Microstructure
3.2.2. Phase Composition
3.3. Mechanical Properties
High-Temperature Compressive Strength
3.4. Repair and Hybrid Manufacturing
3.4.1. Feasibility
3.4.2. Microstructure of Hybrid Materials
3.4.3. Micro Indentation of Hybrid Materials
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Leyens, C.; Peters, M. Titan und Titanlegierungen, 3rd ed.; Wiley-VCH: Weinheim, Germany, 2002; ISBN 9783527305391. [Google Scholar]
- Wessel, W. Mikrostrukturelle Untersuchungen der Rissinitiierung und-Ausbreitung in Intermetallischen TiAl-Legierungen unter Zyklischer und Quasistatischer Belastung. Ph.D. Thesis, Kassel University, Kassel, Germany, 24 November 2011. [Google Scholar]
- Ferro, R.; Saccone, A. Intermetallic chemistry, 1st ed.; Pergamon: Oxford, UK, 2008; ISBN 9780080553351. [Google Scholar]
- Appel, F.; Paul, J.D.H.; Oehring, M. Gamma Titanium Aluminide Alloys: Science and Technology; Wiley-VCH: Weinheim, Germany, 2011; ISBN 9783527315253. [Google Scholar]
- Janschek, P. Wrought TiAl Blades. Mater. Today Proc. 2015, 2, 92–97. [Google Scholar] [CrossRef]
- γ-TiAl TNM® -B1 Ingots. Available online: https://www.gfe.com/produktbereiche/titanaluminide/produktuebersicht/ (accessed on 2 August 2019).
- Bolz, S.; Oehring, M.; Lindemann, J.; Pyczak, F.; Paul, J.; Stark, A.; Lippmann, T.; Schrüfer, S.; Roth-Fagaraseanu, D.; Schreyer, A.; et al. Microstructure and mechanical properties of a forged β-solidifying γ TiAl alloy in different heat treatment conditions. Intermetallics 2015, 58, 71–83. [Google Scholar] [CrossRef] [Green Version]
- Clemens, H.; Wallgram, W.; Kremmer, S.; Güther, V.; Otto, A.; Bartels, A. Design of Novel β-Solidifying TiAl Alloys with Adjustable β/B2-Phase Fraction and Excellent Hot-Workability. Adv. Eng. Mater. 2008, 8, 707–713. [Google Scholar] [CrossRef]
- Varetti, M. Design and Turbine Architectures: AM Enabling Technologies; ICTM: Aachen, Germany, 2015. [Google Scholar]
- Schloffer, M.; Iqbal, F.; Gabrisch, H.; Schwaighofer, E.; Schimansky, F.P.; Mayer, S.; Stark, A.; Lippmann, T.; Göken, M.; Pyczak, F.; et al. Microstructure development and hardness of a powder metallurgical multi phase γ-TiAl based alloy. Intermetallics 2012, 22, 231–240. [Google Scholar] [CrossRef] [Green Version]
- Gerling, R.; Aust, E.; Limberg, W.; Pfuff, M.; Schimansky, F.P. Metal injection moulding of gamma titanium aluminide alloy powder. Mater. Sci. Eng. A 2006, 423, 262–268. [Google Scholar] [CrossRef]
- Voisin, T.; Monchoux, J.-P.; Thomas, M.; Deshayes, C.; Couret, A. Mechanical Properties of the TiAl IRIS Alloy. Metall. Mater. Trans. A 2016, 12, 6097–6108. [Google Scholar] [CrossRef]
- Hauschildt, K.; Stark, A.; Schell, N.; Müller, M.; Pyczak, F. The transient liquid phase bonding process of a γ-TiAl alloy with brazing solders containing Fe or Ni. Intermetallics 2019, 106, 48–58. [Google Scholar] [CrossRef]
- Vilaro, T.; Kottman-Rexerodt, V.; Thomas, M.; Colin, C.; Bertrand, P.; Thivillon, L.; Abed, S.; Ji, V.; Aubry, P.; Peyre, P.; et al. Direct Fabrication of a Ti-47Al-2Cr-2Nb Alloy by Selective Laser Melting and Direct Metal Deposition Processes. AMR 2010, 89, 586–591. [Google Scholar] [CrossRef]
- Thomas, M.; Malot, T.; Aubry, P. Laser Metal Deposition of the Intermetallic TiAl Alloy. Metall. Mater. Trans. A 2017, 193, 519–537. [Google Scholar] [CrossRef]
- Brückner, F.; Finaske, T.; Willner, R.; Seidel, A.; Nowotny, S.; Leyens, C.; Beyer, E. Laser Additive Manufacturing with Crack-sensitive Materials. LTJ 2015, 2, 28–30. [Google Scholar] [CrossRef] [Green Version]
- Qu, H.P.; Li, P.; Zhang, S.Q.; Li, A.; Wang, H.M. Microstructure and mechanical property of laser melting deposition (LMD) Ti/TiAl structural gradient material. Mater. Design 2010, 31, 574–582. [Google Scholar] [CrossRef]
- Cárcel, B.; Serrano, A.; Zambrano, J.; Amigó, V.; Cárcel, A.C. Laser Cladding of TiAl Intermetallic Alloy on Ti6Al4V—Process Optimization and Properties. Phys. Procedia 2014, 56, 284–293. [Google Scholar] [CrossRef] [Green Version]
- Nacke, B.; Baake, E. (Eds.) Induktives Erwärmen: Wärmen, Härten, Glühen, Löten, Schweißen; Vulkan-Verlag: Essen, Germany, 2014; ISBN 978-3802723841. [Google Scholar]
- Qu, H.P.; Li, P.; Zhang, S.Q.; Li, A.; Wang, H.M. The effects of heat treatment on the microstructure and mechanical property of laser melting deposition γ-TiAl intermetallic alloys. Mater. Design 2010, 31, 2201–2210. [Google Scholar] [CrossRef]
- Srivastava, D.; Hu, D.; Chang, I.T.H.; Loretto, M.H. The influence of thermal processing route on the microstructure of some TiAl-based alloys. Intermetallics 1999, 7, 1107–1112. [Google Scholar] [CrossRef]
- Wilden, J.; Frank, H.; Theiler, C.; Seefeld, T.; Sepold, G. Rapid Prototyping gerichtet erstarrter Titanaluminidstrukturen. In Proceedings of the 47th Internationales Wissenschaftliches Kolloquium, Ilmenau, Germany, 23–26 September 2002; p. 1. [Google Scholar]
- Qu, H.P.; Wang, H.M. Microstructure and mechanical properties of laser melting deposited γ-TiAl intermetallic alloys. Mater. Sci. Eng. A 2007, 466, 187–194. [Google Scholar] [CrossRef]
- Ocylok, S.; Weisheit, A.; Kelbassa, I. Increased Wear and Oxidation Resistance of Titanium Aluminide Alloys by Laser Cladding. AMR 2011, 278, 515–520. [Google Scholar] [CrossRef] [Green Version]
- Rittinghaus, S.-K.; Weisheit, A.; Mathes, M.; Garcia Vargas, W. Laser Metal Deposition of Titanium Aluminides—A Future Repair Technology for Jet Engine Blades? In Proceedings of the 13th World Conference on Titanium, San Diego, CA, USA, 16–20 August 2015; pp. 1205–1211, ISBN 1119283264. [Google Scholar]
- Srivastava, D.; Chang, I.T.H.; Loretto, M.H. The optimisation of processing parameters and characterisation of microstructure of direct laser fabricated TiAl alloy components. Mater. Design 2000, 21, 425–433. [Google Scholar] [CrossRef]
- Srivastava, D.; Chang, I.T.H.; Loretto, M.H. The effect of process parameters and heat treatment on the microstructure of direct laser fabricated TiAl alloy samples. Intermetallics 2001, 9, 1003–1013. [Google Scholar] [CrossRef]
- Rittinghaus, S.-K.; Vogelpoth, A. Laser additive manufacturing of titanium aluminides. In Proceedings of the Intermetallics 2017—Abstracts, Intermetallics Conference 2017, Bad Staffelstein, Germany, 2–6 June 2017; pp. 73–74. [Google Scholar]
- Clemens, H.; Boeck, B.; Wallgram, W.; Schmoelzer, T.; Droessler, L.M.; Zickler, G.A.; Leitner, H.; Otto, A. Experimental Studies and Thermodynamic Simulations of Phase Transformations in Ti-(41-45) Al-4Nb-1Mo-0.1B Alloys. In Proceedings of the Materials Research Society MRS 2009, Materials Research Society MRS 2008 (Falls Meeting), Boston, MA, USA, 1–5 December 2008; pp. 115–120. [Google Scholar] [CrossRef]
- Rittinghaus, S.-K.; Hecht, U.; Werner, V.; Weisheit, A. Heat treatment of laser metal deposited TiAl TNM alloy. Intermetallics 2018, 95, 94–101. [Google Scholar] [CrossRef]
- Kim, Y.-W. Gamma Alloy Materials-Process-Microstructure Combinations for Greater Service Temperatures. In Proceedings of the TMS GAT-2017, San Diego, CA, USA, 26 February–2 March 2017. [Google Scholar]
- Rittinghaus, S.-K. Laserauftragschweißen von γ-Titanaluminiden als Verfahren der Additiven Fertigung. Ph.D. Thesis, RWTH Aachen University, Aachen, Germany, 2020. [Google Scholar]
- Schloffer, M.; Rashkova, B.; Schöberl, T.; Schwaighofer, E.; Zhang, Z.; Clemens, H.; Mayer, S. Evolution of the ωo phase in a β-stabilized multi-phase TiAl alloy and its effect on hardness. Acta Mater. 2014, 64, 241–252. [Google Scholar] [CrossRef]
- Bolz, S. Eigenschaftsoptimierung und Prozessfensterbestimmung der γ-TiAl-Schmiedelegierung TNB-V4. Ph.D. Thesis, Universität Cottbus, Senftenberg, Germany, 2015. [Google Scholar]
- Clemens, H.; Schretter, P.; Glatz, W. Mikrostruktur und Eigenschaften von gamma-TiAl-Basislegierungen. Prakt. Metallogr. 1996, 33, 17–35. [Google Scholar]
- Jones, S.A.; Kaufman, M.J. Phase equilibria and transformations in intermediate titanium-aluminum alloys. Acta Metall. Mater. 1993, 41, 387–398. [Google Scholar] [CrossRef]
- Lefebvre, W.; Menand, A.; Loiseau, A. Influence of oxygen on phase transformations in a Ti-48 At. pct Al alloy. Metall. Mater. Trans. A 2003, 34, 2067–2075. [Google Scholar] [CrossRef]
- Ding, H.; Nie, G.; Chen, R.; Guo, J.; Fu, H. Influence of oxygen on microstructure and mechanical properties of directionally solidified Ti–47Al–2Cr–2Nb alloy. Mater. Design 2012, 41, 108–113. [Google Scholar] [CrossRef]
- Zollinger, J.; Lapin, J.; Daloz, D.; Combeau, H. Influence of oxygen on solidification behaviour of cast TiAl-based alloys. Intermetallics 2007, 15, 1343–1350. [Google Scholar] [CrossRef]
- Lamirand, M.; Bonnentien, J.-L.; Ferrière, G.; Guérin, S.; Chevalier, J.-P. Relative effects of chromium and niobium on microstructure and mechanical properties as a function of oxygen content in TiAl alloys. Scr. Mater. 2007, 56, 325–328. [Google Scholar] [CrossRef]
- Beschliesser, M.; Chatterjee, A.; Lorich, A.; Knabl, W.; Kestler, H.; Dehm, G.; Clemens, H. Designed fully lamellar microstructures in a γ-TiAl based alloy: Adjustment and microstructural changes upon long-term isothermal exposure at 700 and 800°C. Mater. Sci. Eng. A 2002, 329, 124–129. [Google Scholar] [CrossRef]
- Schwaighofer, E.; Schloffer, M.; Schmoelzer, T.; Mayer, S.; Lindemann, J.; Guether, V.; Klose, J.; Clemens, H. Influence of Heat Treatments on the Microstructure of a Multi-Phase Titanium Aluminide Alloy. Pract. Metallogr. 2012, 2012, 124–137. [Google Scholar] [CrossRef]
- Qin, G.W.; Oikawa, K.; Sun, Z.M.; Sumi, S.; Ikeshoji, T.; Wang, J.J.; Guo, S.W.; Hao, S. Discontinuous Coarsening of the Lamellar Structure of g -TiAl–based Intermetallic Alloys and Its Control. Metall. Mater. Trans. A 2001, 2001, 1927–1938. [Google Scholar] [CrossRef]
- Gabrisch, H.; Lorenz, U.; Pyczak, F.; Rackel, M.W.; Stark, A. Morphology and stability of orthorhombic and hexagonal phases in a lamellar γ-Ti-42Al-8.5Nb alloy-A transmission electron microscopy study. Acta Mater. 2017, 135, 304–313. [Google Scholar] [CrossRef]
- Rackel, M.W.; Stark, A.; Gabrisch, H.; Schell, N.; Schreyer, A.; Pyczak, F. Orthorhombic phase formation in a Nb-rich γ-TiAl based alloy—An in situ synchrotron radiation investigation. Acta Mater. 2016, 121, 343–351. [Google Scholar] [CrossRef]
- Aguilar, J.; Schievenbusch, A.; Kättlitz, O. Investment casting technology for production of TiAl low pressure turbine blades—Process engineering and parameter analysis. Intermetallics 2011, 19, 757–761. [Google Scholar] [CrossRef]
- Sizova, I.; Sviridov, A.; Bambach, M.; Eisentraut, M.; Hemes, S.; Hecht, U.; Marquardt, A.; Leyens, C. A study on hot-working as alternative post-processing method for titanium aluminides built by laser powder bed fusion and electron beam melting. J. Mater. Process. Technol. under review.
- Löber, L.; Biamino, S.; Ackelid, U.; Sabbadini, S.; Epicoco, P.; Fino, P.; Eckert, J. Comparison of selective laser and electron beam melted titanium aluminides. In Proceedings of the Conference Paper of 22nd International Solid Freeform Fabrication Symposium, Austin, TX, USA, 8–10 August 2011; pp. 547–556. [Google Scholar]
- Schwerdtfeger, J.; Körner, C. Selective electron beam melting of Ti–48Al–2Nb–2Cr: Microstructure and aluminium loss. Intermetallics 2014, 49, 29–35. [Google Scholar] [CrossRef]
Beam Diameter | Laser Power | Scanning Velocity | Offset (z) |
---|---|---|---|
0.6 mm | 66 W | 500 mm/min | 0.25 mm |
Beam Diameter | Laser Power | Scanning Velocity | Layer Thickness |
---|---|---|---|
0.09 mm | 200 W | 1200 mm/s | 0.03 mm |
Sample | Ti | Al | Nb | Mo | B | O 1 |
---|---|---|---|---|---|---|
DED | 58.59 | 29.14 | 9.6 | 2.15 | 0.038 | 2130 |
LPBF | 60.38 | 28.67 | 8.26 | 2.06 | 0.036 | 1770 |
Cast | 60.41 | 28.19 | 8.85 | 2.24 | 0.021 | 1750 |
Forging | 60.32 | 28.35 | 8.73 | 2.19 | 0.025 | 2070 |
Sample | α2/(O) | γ | β0/(ω0) |
---|---|---|---|
DED | 22.9 | 75.8 | 1.3 |
LPBF | 40.6 | 57.4 | 2.0 |
Cast | 29.5 | 63.9 | 6.6 |
Forging | 34.7 | 57.7 | 7.6 |
Sample | Compressive Yield Strength Sd0.2 | Fracture Strength SB | Compression at Break At |
---|---|---|---|
DED | 566 MPa ± 23 | 1190 MPa ± 44 | 24.0 % |
LPBF | 465 MPa ± 49 | 1237 MPa ± 10 | 15.1 % |
Cast | 551 MPa ± 22 | 1219 MPa ± 15 | 15.4 % |
Forging | 567 MPa ± 15 | 1210 MPa ± 15 | 15.4 % |
Zone | Mean Value | Standard Deviation |
---|---|---|
DED | 347 | 22 |
Hybrid | 387 | 28 |
Cast | 383 | 27 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rittinghaus, S.-K.; Schmelzer, J.; Rackel, M.W.; Hemes, S.; Vogelpoth, A.; Hecht, U.; Weisheit, A. Direct Energy Deposition of TiAl for Hybrid Manufacturing and Repair of Turbine Blades. Materials 2020, 13, 4392. https://doi.org/10.3390/ma13194392
Rittinghaus S-K, Schmelzer J, Rackel MW, Hemes S, Vogelpoth A, Hecht U, Weisheit A. Direct Energy Deposition of TiAl for Hybrid Manufacturing and Repair of Turbine Blades. Materials. 2020; 13(19):4392. https://doi.org/10.3390/ma13194392
Chicago/Turabian StyleRittinghaus, Silja-Katharina, Janett Schmelzer, Marcus Willi Rackel, Susanne Hemes, Andreas Vogelpoth, Ulrike Hecht, and Andreas Weisheit. 2020. "Direct Energy Deposition of TiAl for Hybrid Manufacturing and Repair of Turbine Blades" Materials 13, no. 19: 4392. https://doi.org/10.3390/ma13194392
APA StyleRittinghaus, S. -K., Schmelzer, J., Rackel, M. W., Hemes, S., Vogelpoth, A., Hecht, U., & Weisheit, A. (2020). Direct Energy Deposition of TiAl for Hybrid Manufacturing and Repair of Turbine Blades. Materials, 13(19), 4392. https://doi.org/10.3390/ma13194392