Alkali Activation of Waste Clay Bricks: Influence of The Silica Modulus, SiO2/Na2O, H2O/Na2O Molar Ratio, and Liquid/Solid Ratio
Abstract
:1. Introduction
2. Experimental and Methodology
2.1. Starting Materials
2.2. Preparation of Alkaline Activator Solutions
2.3. Geopolymer Synthesis and Characterization Procedures
2.4. Monitoring the Geopolymerization Rate
3. Results and Discussions
3.1. Starting Material Characterization
3.2. The Influence of Silica Modulus (Ms = SiO2/Na2O), H2O/Na2O Molar Ratio and L/S Ratio on Geopolymerization Rate
3.3. The Influence of Silica Modulus (Ms = SiO2/Na2O), H2O/Na2O Molar Ratio and L/S Ratio on the Physico–mechanical Properties of Geopolymers
3.4. FTIR of the Generated Geopolymers
3.5. XRD of the Synthesized Geopolymers
3.6. SEM of the Synthesized Geopolymers
3.7. Thermal Analysis of the Geopolymer Synthesized at Optimum Condition
4. Conclusions
- The optimum silica modulus and H2O/Na2O molar ratio of the alkaline solution were Ms = 1.25 and 12.5, respectively.
- The optimum liquid/solid ratio was in the range 0.25–0.30.
- The 28 days compressive strength of the Grog-based geopolymer sample generated under optimum conditions was 37.5 MPa in comparison with 5 MPa, which generated under random conditions.
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Farag, L.M.; Awad, H.M.; Reda, A.A. Assessing the Suitability of Selected Wastes as Additives to Clay Bodies in Brick Manufacture; AZI International [ZI Int]: Bauverlag, Germany, 2011; pp. 24–33. [Google Scholar]
- Zawrah, M.F.; Gado, R.A.; Feltin, N.; Ducourtieux, S.; Devoille, L. Recycling and utilization assessment of Grog with granulated blast-furnace slag for geopolymer production. Saf. Environ. Prot. 2016, 103, 237–251. [Google Scholar] [CrossRef]
- Nikolov, A.; Rostovsky, I.; Nugteren, H. Geopolymer materials based on natural zeolite. Case Stud. Constr. Mater. 2017, 6, 198–205. [Google Scholar] [CrossRef]
- Tchakoute, H.K.; Elimbi, A.; Yanne, E.; Djangang, C.N. Utilization of volcanic ashes for the production of geopolymers cured at ambient temperature. Cem. Concr. Compos. 2013, 38, 75–81. [Google Scholar] [CrossRef]
- Pacheco-Torgal, F.; Castro-Gomes, J.; Jalali, S. Alkali-activated binders: A review. Part 2. About materials and binders manufacture. Constr. Build. Mater. 2008, 22, 1315–1322. [Google Scholar] [CrossRef] [Green Version]
- bin Mohamed Rashid, M.R.; Mijarsh, M.J.A.; Seli, H.; Johari, M.A.M.; Ahmad, Z.A. Sago pith waste ash as a potential raw material for ceramic and geopolymer fabrication. J. Mater. Cycles Waste Manag. 2018, 20, 1090–1098. [Google Scholar] [CrossRef]
- Irshidat, M.R.; Abdel-Jawad, Y.A.; Al-Sughayer, R. Feasibility of producing sustainable geopolymer composites made of locally available natural pozzolan. J. Mater. Cycles Waste Manag. 2018, 20, 1751–1760. [Google Scholar] [CrossRef]
- Zawrah, M.F.; Gado, R.A.; Khattab, R.M. Optimization of slag content and properties improvement of metakaolin-slag geopolymer mixes. Open Mater. Sci. J. 2018, 12, 40–57. [Google Scholar] [CrossRef]
- Schmucker, M.; MacKenzie, K.J.D. Microstructure of sodium polysialate siloxo geopolymer. Ceram. Int. 2005, 31, 433–437. [Google Scholar] [CrossRef]
- Andini, S.; Cioffi, R.; Colangelo, F.; Grieco, T.; Montagnaro, F.; Santoro, L. Coal fly ash as raw material for the manufacture of geopolymer-based products. Waste Manag. 2008, 28, 416–423. [Google Scholar] [CrossRef]
- Gao, K.; Lin, K.L.; Wang, D.; Hwang, C.L.; Shiu, H.S.; Chang, Y.M.; Cheng, T.W. Effects SiO2/Na2O molar ratio on mechanical properties and the microstructure of nano-SiO2 metakaolin-based geopolymers. Constr. Build. Mater. 2014, 53, 503–510. [Google Scholar] [CrossRef]
- Liew, Y.M.; Kamarudin, H.; Al Bakri, A.M.; Binhussain, M.; Luqman, M.; Nizar, I.K.; Ruzaidi, C.M.; Heaha, C.Y. Influence of solids-to-liquid and activator ratios on calcined kaolin cement powder. Phys. Procedia 2011, 22, 312–317. [Google Scholar] [CrossRef] [Green Version]
- Zhang, F.; Zhang, L.; Liu, M.; Mu, C.; Liang, Y.N.; Hu, X. Role of alkali cation in compressive strength of metakaolin based geopolymers. Ceram. Int. 2017, 43, 3811–3817. [Google Scholar] [CrossRef]
- Yahya, Z.; Abdullah, M.; Hussin, K.; Ismail, K.; Razak, R.; Sandu, A. Effect of Solids-To-Liquids, Na2SiO3-To-NaOH and Curing Temperature on the Palm Oil Boiler Ash (Si + Ca) Geopolymerisation System. Materials 2015, 8, 2227–2242. [Google Scholar] [CrossRef]
- Karakoç, M.B.; Türkmen, İ.; Maraş, M.M.; Kantarci, F.; Demirboğa, R.; Toprak, M.U. Mechanical properties and setting time of ferrochrome slag based geopolymer paste and mortar. Constr. Build. Mater. 2014, 72, 283–292. [Google Scholar] [CrossRef]
- Cheng, H. Reuse research progress on waste clay brick. Procedia Environ. Sci. 2016, 31, 218–226. [Google Scholar] [CrossRef] [Green Version]
- Duxson, P.; Provis, J.L.; Lukey, G.C.; Mallicoat, S.W.; Kriven, W.M.; Van Deventer, J.S. Understanding the relationship between geopolymer composition, microstructure and mechanical properties. Colloids Surf. A Physicochem. Eng. Asp. 2005, 269, 47–58. [Google Scholar] [CrossRef]
- Papa, E.; Medri, V.; Landi, E.; Ballarin, B.; Miccio, F. Production and characterization of geopolymers based on mixed compositions of metakaolin and coal ashes. Mater. Des. 2014, 56, 409–415. [Google Scholar] [CrossRef]
- Yusuf, M.O.; Johari, M.A.M.; Ahmad, Z.A.; Maslehuddin, M. Effects of H2O/Na2O molar ratio on the strength of alkaline activated ground blast furnace slag-ultrafine palm oil fuel ash-based concrete. Mater. Des. 2014, 56, 158–164. [Google Scholar] [CrossRef]
- Standard Test Method for Compressive Strength of Hydraulic Cement Mortars (Using 2-in [50 mm] Cube Specimen; ASTM International: West Conshohocken, PA, USA, 2001; ASTM C109/C109M.
- Standard Test Methods for Determination of Water Absorption and Associated Properties by Vacuum Method for Pressed Ceramic Tiles and Glass Tiles and Boil Method for Extruded Ceramic Tiles and Non-Tile Fired Ceramic Whiteware Products; ASTM International: West Conshohocken, PA, USA, 2018; ASTM C-373.
- Standard Test Methods for Apparent Porosity, Water Absorption, Apparent Specific Gravity and Bulk Density of Burned Refractory Brick Shapes by Boiling Water; ASTM International: West Conshohocken, PA, USA, 2015; ASTM C-20.
- Li, J.; Ma, H.; Huang, W. Effect of V2O5 on the properties of mullite ceramics synthesized from high-aluminum fly ash and bauxite. J. Hazard. Mater. 2009, 166, 1535–1539. [Google Scholar] [CrossRef]
- Lach, M.; Mikuła, J.; Hebda, M. Thermal analysis of the by-products of waste combustion. J. Therm. Anal. Calorim. 2016, 125, 1035–1045. [Google Scholar] [CrossRef] [Green Version]
- Grela, A.; Łach, M.; Mikuła, J.; Hebda, M. Thermal analysis of the products of alkali activation of fly ash from CFB boilers. J. Therm. Anal. Calorim. 2016, 124, 1609–1621. [Google Scholar] [CrossRef] [Green Version]
- Poulesquen, A.; Frizon, F.; Lambertin, D. Rheological behavior of alkali-activated metakaolin during geopolymerization. J. Non-Cryst. Solids 2011, 357, 3565–3571. [Google Scholar] [CrossRef]
- Standard Test Methods for Time of Setting of Hydraulic Cement by Vicat Needle; ASTM International: West Conshohocken, PA, USA, 2019; ASTM C-191.
- Cristiane, G.K.; Lima, G.S.T.; Marden, T.S.; Silvio, D.B.; Frota, V.I.; Perazzo, B.N. Iron distribution in geopolymer with ferromagnetic rich precursor. Mater. Sci. Forum 2010, 643, 131–138. [Google Scholar]
- Heikal, M.; Zohdy, K.M.; Abdelkreem, M. Mechanical, microstructure and rheological characteristics of high-performance self-compacting cement pastes and concrete containing ground clay bricks. Constr. Build. Mater. 2013, 38, 101–109. [Google Scholar] [CrossRef]
- Sun, Z.; Cui, H.; An, H.; Tao, D.; Xu, Y.; Zhai, J.; Li, Q. Synthesis and thermal behavior of geopolymer-type material from waste ceramic. Constr. Build. Mater. 2013, 49, 281–287. [Google Scholar]
- Rattanasak, U.; Chindaprasirt, P. Influence of NaOH solution on the synthesis of fly ash geopolymer. Miner. Eng. 2009, 22, 1073–1078. [Google Scholar] [CrossRef]
- Yang, T.R.; Chang, T.; Chen, B.; Jeng, Y.; Wei-Lun, L. Effect of Alkaline Solutions on Engineering Properties of Alkali-Activated GGBFS Paste. J. Mar. Sci. Technol. 2012, 20, 311–318. [Google Scholar]
- Karakoç, M.B.; Kantarci, F.; Türkmen, İ.; Demirboğa, R.; Maraş, M.M.; Toprak, M.U. Mechanical Properties and Setting Time of Geopolymer Paste and Mortar Produced from Ferrochrome Slag. In Proceedings of the International Conference on Renewable Energy Research and Applications, Madrid, Spain, 20–23 October 2013. [Google Scholar]
- Cho, Y.K.; Yoo, S.W.; Jung, S.H.; Lee, K.M.; Kwon, S.J. Effect of Na2O content, SiO2/Na2O molar ratio, and curing conditions on the compressive strength of FA-based geopolymer. Constr. Build. Mater. 2017, 145, 253–260. [Google Scholar] [CrossRef]
- Heah, C.Y.; Kamarudin, H.; Al Bakri, A.M.; Bnhussain, M.; Luqman, M.; Nizar, I.K.; Ruzaidia, C.M.; Liew, Y.M. Study on solids-to-liquid and alkaline activator ratios on kaolin based geopolymers. Constr. Build. Mater. 2012, 35, 912–922. [Google Scholar] [CrossRef]
- El-Naggar, M.R.; El-Dessouky, M.I. Re-use of waste glass in improving properties of metakaolin-based geopolymers: Mechanical and microstructure examinations. Constr. Build. Mater. 2017, 132, 543–555. [Google Scholar] [CrossRef]
- Chindaprasirt, P.; Jaturapitakkul, C.; Chalee, W.; Rattanasak, U. Comparative study on the characteristics of fly ash and bottom ash geopolymers. Waste Manag. 2009, 29, 539–543. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Yao, X.; Zhu, H. Effects of the modulus of sodium silicate solution on mechanical properties and microstructure of geopolymer. J. Nanjing Univ. Technol. 2011, 33, 54–56. [Google Scholar]
- Xu, H.; Li, Q.; Shen, L.; Wang, W.; Zhai, J. Synthesis of thermostable geopolymer from circulating fluidized bed combustion (CFBC) bottom ashes. J. Hazard. Mater. 2010, 175, 198–204. [Google Scholar] [CrossRef] [PubMed]
- Lemougna, P.N.; MacKenzie, K.J.; Melo, U.C. Synthesis and thermal properties of inorganic polymers (geopolymers) for structural and refractory applications from volcanic ash. Ceram. Int. 2011, 37, 3011–3018. [Google Scholar] [CrossRef]
- Verdolotti, L.; Iannace, S.; Lavorgna, M.; Lamanna, R. Geopolymerization reaction to consolidate incoherent pozzolanic soil. J. Mater. Sci. 2008, 43, 865–873. [Google Scholar] [CrossRef]
- Obonyo, E.; Kamseu, E.; Lemougna, P.; Tchamba, A.; Melo, U.; Leonelli, C. A sustainable approach for the geopolymerization of natural iron-rich aluminosilicate materials. Sustainability 2014, 6, 5535–5553. [Google Scholar] [CrossRef] [Green Version]
- Gomes, K.C.; Torres, S.M.; De Barros, S.; Barbosa, N.P. Geopolymer Bonded Steel Plates. In Proceedings of the ETDCM 8–8th Seminar on Experimental Techniques and Design in Composite Materials, Castiadas, Italy, 3–6 October 2007. [Google Scholar]
- Komnitsas, K.; Zaharaki, D. Structure, processing, properties and industrial applications PART II: Manufacture and properties of geopolymers. In Title of Geopolymers; Provis, J.L., van Deventer, J.S.J., Eds.; CRC Press, Woodhead Publishing Ltd.: Shaston, UK, 2009; p. 343. [Google Scholar]
- Subear. Influence of aggregates on the microstructure of geopolymer. J. Eng. Mater. 2014, 32, 237–247. [Google Scholar]
- Rattanasak, U.; Pankhet, K.; Chindaprasirt, P. Effect of chemical admixtures on properties of high-calcium fly ash geopolymer. Int. J. Min. Met. Mater. 2011, 18, 364. [Google Scholar] [CrossRef]
- Selmani, S.; Sdiri, A.; Bouaziz, S.; Joussein, E.; Rossignol, S. Effects of metakaolin addition on geopolymer prepared from natural kaolinitic clay. Appl. Clay Sci. 2017, 146, 457–467. [Google Scholar] [CrossRef]
- Chin, C.L.; Ahmad, Z.A.; Sow, S.S. Relationship between the thermal behavior of the clays and their mineralogical and chemical composition: Example of Ipoh, Kuala Rompin and Mersing (Malaysia). Appl. Clay Sci. 2017, 143, 327–335. [Google Scholar] [CrossRef]
- Zouaoui, H.; Bouaziz, J. Physical and mechanical properties improvement of a porous clay ceramic. Appl. Clay Sci. 2017, 150, 131–137. [Google Scholar] [CrossRef]
- Rahier, H.; Van Mele, B.; Wastiels, J. Low-temperature synthesized aluminosilicate glasses .2. Rheological transformations during low-temperature cure and high-temperature properties of a model compound. J. Mater. Sci. 1996, 31, 80–85. [Google Scholar] [CrossRef]
Oxides | SiO2 | Al2O3 | Fe2O3 | CaO | Na2O | K2O | TiO2 | MnO | MgO | SO3 | BaO | P2O5 | Cl | LOI a |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Grog | 50.16 | 15.95 | 15.09 | 4.39 | 2.43 | 1.48 | 2.10 | 0.16 | 2.13 | 2.78 | 0.06 | 0.24 | 0.46 | 2.15 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gado, R.A.; Hebda, M.; Łach, M.; Mikuła, J. Alkali Activation of Waste Clay Bricks: Influence of The Silica Modulus, SiO2/Na2O, H2O/Na2O Molar Ratio, and Liquid/Solid Ratio. Materials 2020, 13, 383. https://doi.org/10.3390/ma13020383
Gado RA, Hebda M, Łach M, Mikuła J. Alkali Activation of Waste Clay Bricks: Influence of The Silica Modulus, SiO2/Na2O, H2O/Na2O Molar Ratio, and Liquid/Solid Ratio. Materials. 2020; 13(2):383. https://doi.org/10.3390/ma13020383
Chicago/Turabian StyleGado, R. A., Marek Hebda, Michal Łach, and Janusz Mikuła. 2020. "Alkali Activation of Waste Clay Bricks: Influence of The Silica Modulus, SiO2/Na2O, H2O/Na2O Molar Ratio, and Liquid/Solid Ratio" Materials 13, no. 2: 383. https://doi.org/10.3390/ma13020383
APA StyleGado, R. A., Hebda, M., Łach, M., & Mikuła, J. (2020). Alkali Activation of Waste Clay Bricks: Influence of The Silica Modulus, SiO2/Na2O, H2O/Na2O Molar Ratio, and Liquid/Solid Ratio. Materials, 13(2), 383. https://doi.org/10.3390/ma13020383