Enhanced Selenate Removal in Aqueous Phase by Copper-Coated Activated Carbon
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of Cu-Coated Activated Carbon
2.3. Characterization of Activated Carbon
2.4. Batch Experiments
2.5. Analytical Methods
3. Results and Discussion
3.1. Characteristics of the Adsorbents
3.2. Effect of Copper Coating Dosageon Selenate Removal
3.3. Effect of Ionic Strength
3.4. Effect of Initial pH
3.5. Adsorption Isotherm
3.6. Desorption and Reuse Study
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- He, Y.; Xiang, Y.; Zhou, Y.; Yang, Y.; Zhang, J.; Huang, H.; Shang, C.; Luo, L.; Gao, J.; Tang, L. Selenium contamination, consequences and remediation techniques in waterand soils: A review. Environ. Res. 2018, 164, 288–301. [Google Scholar] [CrossRef]
- Qin, H.B.; Zhu, J.M.; Liang, L.; Wang, M.S.; Su, H. The bioavailability of selenium and risk assessment for human selenium poisoning in high-Se areas China. Environ. Int. 2013, 52, 66–74. [Google Scholar] [CrossRef]
- Ullah, H.; Liu, G.; Yousaf, B.; Ali, M.U.; Irshad, S.; Abbas, Q.; Ahmad, R. A comprehensive review on environmental transformation of selenium: Recent advances and research perspectives. Environ. Geochem. Health 2019, 41, 1003–1035. [Google Scholar] [CrossRef]
- Santos, S.; Ungureanu, G.; Boaventura, R.; Botelho, C. Selenium contaminated waters: An overview of analytical methods, treatment options and recent advances in sorption methods. Sci. Total Environ. 2015, 521, 246–260. [Google Scholar] [CrossRef] [PubMed]
- Tan, L.C.; Nancharaiah, Y.V.; Hullebusch, E.D.; Lens, P.N.L. Selenium: Environmental significance, pollution, and biologicaltreatment technologies. Biotechnol. Adv. 2016, 34, 886–907. [Google Scholar] [CrossRef]
- Winkel, L.H.E.; Johson, C.A.; Lenz, M.; Grundl, T.; Leupin, O.X.; Amini, M.; Charlet, L. Environmental selenium research: From microscopic processes to global understanding. Environ. Sci. Technol. 2012, 46, 571–579. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.Y.; Kuroda, M.; Arai, S.; Kato, F.; Inoue, D.; Ike, M. Biological treatment of selenate-containing saline wastewater by activated sludge under oxygen-limiting conditions. Water Res. 2019, 154, 327–335. [Google Scholar] [CrossRef] [PubMed]
- Bailey, R.T. Review: Selenium contamination, fate, and reactive transportin groundwater in relation to human health. Hydrogeol. J. 2017, 25, 1191–1217. [Google Scholar] [CrossRef]
- Johnson, P.I.; Gersberg, R.M.; Rigby, M.; Roy, S. The fate of selenium in the Imperial and Brawley constructed wetlands in the Imperial Valley (California). Ecol. Eng. 2009, 35, 908–913. [Google Scholar] [CrossRef]
- Wong, S.; Ngadi, N.; Inuwa, I.M.; Hassan, O. Recent advances in applications of activated carbon from biowaste forwastewater treatment: A short review. J. Clean. Product. 2018, 175, 361–375. [Google Scholar] [CrossRef]
- Pui, W.K.; Yusoff, R.; Aroua, M.K. A review on activated carbon adsorption for volatile organic compounds (VOCs). Rev. Chem. Eng. 2019, 35, 649–668. [Google Scholar] [CrossRef]
- Korotta-Gamage, S.M.; Sathasivan, A. A review: Potential and challenges of biologically activated carbon toremove natural organic matter in drinking water purification process. Chemosphere 2017, 167, 120–138. [Google Scholar] [CrossRef] [PubMed]
- Gopinath, A.; Kadirvelu, K. Strategies to design modified activated carbon fibers for thedecontamination of water and air. Environ. Chem. Lett. 2019, 16, 1137–1168. [Google Scholar] [CrossRef]
- Pego, M.; Carvalho, J.; Guedes, D. Surface modification of activated carbon and its impact on application. Surf. Rev. Lett. 2019, 26, e1830006. [Google Scholar] [CrossRef]
- Altintig, E.; Arabaci, G.; Altundag, H. Preparation and characterization of the antibacterial efficiency of silver loaded activated carbon from corncobs. Surf. Coat. Technol. 2016, 304, 63–67. [Google Scholar] [CrossRef]
- Liu, Q.; Ke, M.; Yu, P.; Liu, F.; Hu, H.; Li, C. High performance removal of methyl mercaptan on metal modified activated carbon. Korean J. Chem. Eng. 2018, 35, 137–146. [Google Scholar] [CrossRef]
- Zhou, K.; Ma, W.; Zeng, Z.; Ma, X.; Xu, X.; Guo, Y.; Li, H.; Li, L. Experimental and DFT study on the adsorption of VOCs on activated carbon/metal oxides composites. Chem. Eng. J. 2019, 372, 1122–1133. [Google Scholar] [CrossRef]
- Wasewar, K.L.; Prasad, B.; Gulipalli, S. Removal of selenium by adsorption onto granular activated carbon (GAC) and powdered activated carbon (PAC). Clean 2009, 37, 872–883. [Google Scholar] [CrossRef]
- Jegadeesan, G.; Mondal, K.; Lalvani, S.B. Comparative study of selenite adsorption on carbon based adsorbents and activated alumina. Environ. Technol. 2003, 24, 1049–1059. [Google Scholar] [CrossRef]
- Kwon, J.H.; Wilson, L.D.; Sammynaiken, R. Sorptive uptake of selenium with magnetite and its supported materialsonto activated carbon. J. Colloid Interface Sci. 2015, 457, 388–397. [Google Scholar] [CrossRef]
- Zhang, N.; Gang, D.D.; McDonald, L.; Lin, L.S. Background electrolytes and pH effects on selenate adsorption usingiron-impregnated granular activated carbon and surface bindingmechanisms. Chemosphere 2018, 195, 166–174. [Google Scholar] [CrossRef] [PubMed]
- Dobrowolski, R.; Otto, M. Preparation and evaluation of Fe-loaded activated carbon for enrichment of selenium for analytical and environmental purposes. Chemosphere 2013, 90, 683–690. [Google Scholar] [CrossRef]
- Boutillara, Y.; Tombeur, J.L.; Weireld, G.D.; Lodewyckx, P. In-situ copper impregnation by chemical activation with CuCl2 and itsapplication to SO2 and H2S capture by activated carbons. Chem. Eng. J. 2019, 372, 631–637. [Google Scholar] [CrossRef]
- Hu, X.; Zhang, H.; Sun, Z.R. Adsorption of low concentration ceftazidime from aqueous solutionsusing impregnated activated carbon promoted by iron, copper andaluminum. Appl. Surf. Sci. 2017, 392, 332–341. [Google Scholar] [CrossRef]
- Li, C.; Xia, H.; Zhang, L.; Peng, J.; Cheng, S.; Shu, J.; Zhang, S. Kinetics, thermodynamics, and isotherm studyon the removal of methylene blue dye by adsorptionvia copper modifed activated carbon. Res. Chem. Intermed. 2018, 44, 2231–2250. [Google Scholar] [CrossRef]
- Peternela, J.; Silva, M.F.; Vieira, M.F.; Bergamasco, R.; Vieira, A.M.S. Synthesis and Impregnation of Copper Oxide Nanoparticles on Activated Carbon through Green Synthesis for Water Pollutant Removal. Mater. Res. 2018, 21, e20160460. [Google Scholar] [CrossRef] [Green Version]
- Zhang, C.; Song, W.; Zhang, X.; Li, R.; Zhao, S.; Fan, C. Synthesis and evaluation of activated carbon spheres with coppermodifcation for gaseous elemental mercury removal. J. Porous Mater. 2019, 26, 693–703. [Google Scholar] [CrossRef]
- Shu, J.H.; Cheng, S.; Xia, H.Y.; Zhang, L.; Peng, J.H.; Li, C.; Zhang, S. Copper loaded on activated carbon as an efficient adsorbent for removal of methylene blue. RSC Adv. 2017, 7, 14395–14405. [Google Scholar] [CrossRef] [Green Version]
- Dashamiri, S.; Ghaedi, M.; Asfaram, A.; Zare, F.; Wang, S.B. Multi-response optimization of ultrasound assisted competitiveadsorption of dyes onto Cu (OH)2-nanoparticle loaded activated carbon: Central composite design. Ultrason. Sonochem. 2017, 34, 343–353. [Google Scholar] [CrossRef] [Green Version]
- Zhang, X.; Gu, P.; Li, X.; Zhang, G. Efficient adsorption of radioactive iodide ion from simulated wastewaterby nano Cu2O/Cu modified activated carbon. Chem. Eng. J. 2017, 322, 129–139. [Google Scholar] [CrossRef]
- Jackson, B.P.; Miller, W.P. Effectiveness of phosphate and hydroxide for desorption of arsenic and selenium species from iron oxides. Soil Sci. Soc. Am. J. 2000, 64, 1616–1622. [Google Scholar] [CrossRef]
- Jegadeesan, G.; Mondal, K.; Lalvani, S.B. Adsorptive of Se(IV) and Se(VI) using copper-impregnated activated carbon and fly ash-extracted char carbon. Water Air Soil Pollut. 2015, 226, 234–246. [Google Scholar] [CrossRef]
- Moreno-Piraján, J.C.; Tirano, J.; Salamanca, B.; Giraldo, L. Activated carbon modified with copper for adsorption of propanethiol. Int. J. Mol. Sci. 2010, 11, 927–942. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Singh, N.; Balomajumder, C. Simultaneous removal of phenol and cyanide from aqueous solutionby adsorption onto surface modified activated carbon prepared fromcoconut shell. J. Water Process Eng. 2016, 9, 233–245. [Google Scholar] [CrossRef]
- Zhang, N.; Lin, L.S.; Gang, D. Adsorptive selenite removal from water using iron-coating GAC adsorbents. Water Res. 2008, 42, 3809–3816. [Google Scholar] [CrossRef] [PubMed]
- Park, S.J.; Jang, Y.S. Pore structure and surface properties of chemically modified activated carbon for adsorption mechanism and rate of Cr(VI). J. Colloid Interface Sci. 2002, 249, 458–463. [Google Scholar] [CrossRef]
- Norouzi, S.; Heidari, M.; Alipour, V.; Rahmanian, O.; Fazlzadeh, M.; Mohammadi-moghadam, F.; Nourmoradi, H.; Goudarzi, B. Preparation, characterization and Cr(VI) adsorption evaluation of NaOHactivated carbon produced from Date Press Cake; an agro-industrial waste. Bioresour. Technol. 2018, 258, 48–56. [Google Scholar] [CrossRef]
- Al-Lagtah, N.M.A.; Al-Muhtaseb, A.H.; Ahmad, M.N.M.; Salameh, Y. Chemical and physical characteristics of optimal synthesised activatedcarbons from grass-derived sulfonated lignin versus commercialactivated carbons. Microporous Mesoporous Mater. 2016, 225, 504–514. [Google Scholar] [CrossRef]
- Ma, F.; Li, P.; Zhang, B.; Wang, Z. The facile synthesis of a chitosan Cu(II) complex by solution plasmaprocess and evaluation of their antioxidant activities. Int. J. Biol. Macromol. 2017, 103, 501–507. [Google Scholar] [CrossRef]
- Sharma, S.; Uttam, K.N. Rapid analyses of stress of copper oxide nanoparticles on wheat plants at an early stage by laser induced fluorescence and attenuated total reflectance Fourier transform infrared spectroscopy. Vib. Spectrosc. 2017, 92, 135–150. [Google Scholar] [CrossRef]
- Ho, H.P.; Kasinathan, P.; Kim, J.; Lee, D.; Woo, H.C. Deep desulfurization of fuel gas by adsorption on Cu-impregnated activated carbons in practical conditions. Korean J. Chem. Eng. 2016, 33, 1908–1916. [Google Scholar] [CrossRef]
- Szlachta, M.; Chubar, N. The application of Fe-Mn hydrous oxides based adsorbent for removing selenium species from water. Chem. Eng. J. 2013, 217, 159–168. [Google Scholar] [CrossRef]
- Zhang, N.; Gang, D.; Lin, L.S. Adsorptive removal of parts per million level selenate using iron-coated GAC adsorbents. J. Environ. Eng. 2010, 136, 1089–1095. [Google Scholar] [CrossRef]
- Hayes, K.F.; Papelis, C.; Leckie, J.O. Modeling ionic strength effects on anion adsorption at hydrous oxide/solution interfaces. J. Colloid Interface Sci. 1988, 125, 717–726. [Google Scholar] [CrossRef]
- Rovira, M.; Giménez, J.; Martínez, M.; Martínez-Lladó, X.; Pablo, J.; Duro, M.L. Sorption of selenium (IV) and selenium (VI) onto natural iron oxides: Goethite and hematite. J. Hazard. Mater. 2008, 150, 279–284. [Google Scholar] [CrossRef]
- Liu, W.; Zhang, J.; Zhang, C.; Wang, Y.; Li, Y. Adsorptive removal of Cr(VI) by Fe-modified activated carbon from Trapanatans husk. Chem. Eng. J. 2010, 162, 677–684. [Google Scholar] [CrossRef]
- Lo, L.; Chen, T.Y. Adsorption of Se(IV) and Se(VI) on an iron-coated sand from water. Chemosphere 1997, 35, 919–930. [Google Scholar] [CrossRef]
Adsorbent | SBET (m2/g) | Smicro (m2/g) | Vtotal (cm3/g) | Dp (nm) | Ezeta (mV) | Vmicro (cm3/g) |
---|---|---|---|---|---|---|
0 | 1335 | 1135 | 0.574 | 1.62 | −48.34 | 0.472 |
0.1 | 1254 | 1028 | 0.552 | 1.81 | −32.24 | 0.49 |
0.5 | 1246 | 1002 | 0.536 | 1.79 | −10.52 | 0.483 |
1.0 | 1132 | 885 | 0.490 | 1.85 | 5.48 | 0.452 |
5.0 | 679.1 | 475 | 0.326 | 1.92 | 24.80 | 0.274 |
Adsorbent | Langmuir | Freundlich | ||||
---|---|---|---|---|---|---|
(mmol Cu/g AC) | Q | b | R2 | Kf | 1/n | R2 |
0 | 1.36 | 0.136 | 0.998 | 0.585 | 0.2251 | 0.965 |
0.1 | 3.32 | 0.450 | 0.999 | 2.036 | 0.1202 | 0.978 |
0.5 | 3.56 | 0.524 | 0.999 | 2.215 | 0.1208 | 0.979 |
1.0 | 4.23 | 0.721 | 0.999 | 2.625 | 0.1213 | 0.979 |
5.0 | 4.48 | 0.801 | 0.997 | 2.815 | 0.1285 | 0.964 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, X.; Zhang, A.; Zhang, J.; Wang, Q.; Huang, X.; Wu, Y.; Tang, C. Enhanced Selenate Removal in Aqueous Phase by Copper-Coated Activated Carbon. Materials 2020, 13, 468. https://doi.org/10.3390/ma13020468
Zhao X, Zhang A, Zhang J, Wang Q, Huang X, Wu Y, Tang C. Enhanced Selenate Removal in Aqueous Phase by Copper-Coated Activated Carbon. Materials. 2020; 13(2):468. https://doi.org/10.3390/ma13020468
Chicago/Turabian StyleZhao, Xinhai, Aiqing Zhang, Jianhong Zhang, Qipeng Wang, Xuquan Huang, Yonghong Wu, and Cilai Tang. 2020. "Enhanced Selenate Removal in Aqueous Phase by Copper-Coated Activated Carbon" Materials 13, no. 2: 468. https://doi.org/10.3390/ma13020468
APA StyleZhao, X., Zhang, A., Zhang, J., Wang, Q., Huang, X., Wu, Y., & Tang, C. (2020). Enhanced Selenate Removal in Aqueous Phase by Copper-Coated Activated Carbon. Materials, 13(2), 468. https://doi.org/10.3390/ma13020468