Wood Bottom Ash and GeoSilex: A By-Product of the Acetylene Industry as Alternative Raw Materials in Calcium Silicate Units
Abstract
:1. Introduction
2. Materials and Methods
2.1. Raw Materials
2.2. Characterization of Raw Materials
2.3. Preparation of Wood Bottom Ash-GeoSilex Calcium Silicate Units
2.4. Characterization of Calcium-Silicate Units
3. Results and Discussion
3.1. Characterization of Raw Materials
3.2. Characterization of the Calcium-Silicate Units
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- European Commission. Eurostat Waste Statistics, 2016. Available online: https://ec.europa.eu/eurostat/statistics-explained/index.php/Waste_statistics#Total_waste_generation (accessed on 10 December 2019).
- Hoornweg, D.; Bhada-Tata, P. What a waste: A global review of solid waste management. In Urban Development Series; Knowledge Papers no. 15.; World Bank: Washington, DC, USA, 2012; Available online: https://openknowledge.worldbank.org/handle/10986/17388 (accessed on 10 December 2019).
- European Commission. Environment Action Programme to 2020. Available online: http://ec.europa.eu/environment/action-programme/index.htm (accessed on 10 December 2019).
- European Commission. Eurostat. Environmental Data Centre on Natural Resources 2016. Energy from Biomass, 2018. Available online: https://ec.europa.eu/eurostat/web/environmental-data-centre-on-natural-resources/ natural resources / energy-resources/energy-from-biomass (accessed on 10 December 2019).
- Modolo, R.C.E.; Tarelho, L.A.C.; Teixeira, E.R.; Ferreira, V.M.; Labrincha, J.A. Treatment and use of bottom bed waste in biomass fluidized bed combustors. Fuel Process. Technol. 2014, 125, 170–181. [Google Scholar] [CrossRef]
- Vassilev, S.V.; Baxter, D.; Andersen, L.K.; Vassileva, C.G. An overview of the chemical composition of biomass. Fuel 2010, 89, 913–933. [Google Scholar] [CrossRef]
- Picco, D. Technical Assistance for the Development and Improvement of Technologies, Methodologies and Tools for Enhanced Use of Agricultural Biomass Residues; Energy Plant Report; Central European Initiative: Trieste, Italy, 2010; p. 53. [Google Scholar]
- James, A.K.; Thring, R.W.; Rutherford, P.M.; Helle, S.S. Characterization of biomass bottom ash from an industrial scale fixed-bed boiler by fractionation. Energy Environ. Res. 2013, 3, 21–32. [Google Scholar] [CrossRef] [Green Version]
- Modolo, R.C.E.; Ferreira, V.M.; Tarelho, L.A.; Labrincha, J.A.; Senff, L.; Silva, L. Mortar formulations with bottom ash from biomass combustion. Constr. Build. Mater. 2013, 45, 275–281. [Google Scholar] [CrossRef]
- Maschio, S.; Tonello, G.; Piani, L.; Furlani, E. Fly and bottom ashes from biomass combustion as cement replacing components in mortars production: Rheological behaviour of the pastes and materials compression strength. Chemosphere 2011, 85, 666–671. [Google Scholar] [CrossRef]
- Agrela, F.; Cabrera, M.; Martín-Morales, M.; Zamorano, M.; Alshaaer, M. Biomass fly ash and biomass bottom ash. In New Trends in Eco-efficient and Recycled Concrete; Woodhead Publishing Series in Civil and Structural Engineering; Woodhead Publishing: Cambridge, UK, 2019; pp. 23–58. [Google Scholar]
- García Calvo, J.L.; Hidalgo, A.; Alonso, M.C.; Luxán, M.P.; Fernández Luco, L. Characterization of Waste from Biomass Combustion Processes, Viability of Use as Construction Materials; XI National Congress of Materials: Zaragoza, Spain, 2010. [Google Scholar]
- Rajamma, R. Biomass Fly Ash Incorporation in Cement Based Materials. Ph.D. Thesis, Universidad de Aveiro, Aveiro, Portugal, 2011. [Google Scholar]
- Masia, A.T.; Buhre, B.J.P.; Gupta, R.P.; Wall, T.F. Characterising ash of biomass and waste. Fuel Proc. Technol. 2007, 88, 1071–1081. [Google Scholar] [CrossRef]
- Rajamma, R.; Ball, R.J.; Tarelho, L.A.; Allen, G.C.; Labrincha, J.A.; Ferreira, V.M. Characterisation and use of biomass fly ash in cement-based materials. J. Hazard. Mater. 2009, 172, 1049–1060. [Google Scholar] [CrossRef]
- Obernberger, I.; Brunner, T.; Bärnthaler, G. Chemical properties of solid biofuels—Significance and impact. Biomass Bioenergy 2006, 30, 973–982. [Google Scholar] [CrossRef]
- Obernberger, I.; Biedermann, F.; Widmann, W.; Riedl, R. Concentrations of inorganic elements in biomass fuels and recovery in the different ash fractions. Biomass Bioenergy 1997, 12, 211–224. [Google Scholar] [CrossRef]
- Van Lith, S.C.; Jensen, P.A.; Frandsen, F.; Glarborg, P. Release of Inorganic Elements during Wood-firing on a Grate. Impact of Fuel Quality on Power Production. In Proceedings: Impacts of Fuel Quality on Power Production; Electric Power Research Institute: Palo Alto, CA, USA, 2006; p. 1014551. [Google Scholar]
- Pels, J.R.; Sarabèr, A.J. Utilization of Biomass Ashes, Solid Biofuels for Energy: A Lower Greenhouse Gas Alternative. In Green Energy and Technology; Grammelis, P., Ed.; Springer: London, UK, 2011; pp. 219–235. [Google Scholar]
- Siddique, R. Utilization of wood ash in concrete manufacturing. Resour. Conserv. Recycl. 2012, 67, 27–33. [Google Scholar] [CrossRef]
- Pavlíková, M.; Zemanová, L.; Záleská, M.; Pokorný, J.; Lojka, M.; Jankovský, O.; Pavlík, Z. Ternary Blended Binder for Production of a Novel Type of Lightweight Repair Mortar. Materials 2019, 12, 996. [Google Scholar] [CrossRef] [Green Version]
- Tosti, L.; Van Zomeren, A.; Pels, J.R.; Dijkstra, J.J.; Comans, R.N.J. Assessment of biomass ash applications in soil and cement mortars. Chemosphere 2019, 223, 425–437. [Google Scholar] [CrossRef] [PubMed]
- Berra, M.; Mangialardi, T.; Paolini, A.E. Reuse of woody biomass fly ash in cement based materials. Constr. Build. Mater. 2015, 76, 286–296. [Google Scholar] [CrossRef]
- Cabrera, M.; Galvin, A.P.; Agrela, F.; Carvajal, M.D.; Ayuso, J. Characterisation and technical feasibility of using biomass bottom ash for civil infrastructures. Constr. Build. Mater. 2014, 58, 234–244. [Google Scholar] [CrossRef]
- Vassilev, S.V.; Baxter, D.; Andersen, L.K.; Vassileva, C.G. An overview of the composition and application of biomass ash: Part 2. Potential utilisation, technological and ecological advantages and challenges. Fuel 2013, 105, 19–39. [Google Scholar] [CrossRef]
- Richaud, R.; Herod, A.A.; Kandiyoti, R. Comparison of trace element contents in low temperature and high-temperature ash from coals and biomass. Fuel 2004, 83, 2001–2012. [Google Scholar] [CrossRef]
- Cabrera, M.; Galvin, A.P.; Agrela, F.; Beltrán, M.G.; Ayuso, J. Reduction of Leaching Impacts by Applying Biomass Bottom Ash and Recycled Mixed Aggregates in Structural Layers of Roads. Materials 2016, 9, 228. [Google Scholar] [CrossRef] [Green Version]
- Grau, F.; Choo, H.; Wan Hu, J.; Jung, J. Engineering Behavior and Characteristics of Wood Ash and Sugarcane Bagasse Ash. Materials 2015, 8, 6962–6977. [Google Scholar] [CrossRef] [Green Version]
- El Moudni El Alami, S.; Moussaoui, R.; Monkade, M.; Lahlou, K.; Hasheminejad, N.; Margaritis, A.; Van den bergh, W.; Vuye, C. Lime Treatment of Coal Bottom Ash for Use in Road Pavements: Application to El Jadida Zone in Morocco. Materials 2019, 12, 2674. [Google Scholar] [CrossRef] [Green Version]
- Rosales, J.; Cabrera, M.; Beltrán, M.G.; López, M.; Agrela, F. Effects of treatments on biomass bottom ash applied to the manufacture of cement mortars. J. Clean. Prod. 2017, 154, 424–435. [Google Scholar] [CrossRef]
- Pavlíková, M.; Zemanová, L.; Pokorný, J.; Záleská, M.; Jankovský, O.; Lojka, M.; Pavlík, Z. Influence of Wood-Based Biomass Ash Admixing on the Structural, Mechanical, Hygric, and Thermal Properties of Air Lime Mortars. Materials 2019, 12, 2227. [Google Scholar]
- Beltrán, M.G.; Agrela, F.; Barbudo, A.; Ayuso, J.; Ramírez, A. Mechanical and durability properties of concretes manufactured with biomass bottom ash and recycled coarse aggregates. Constr. Build. Mater. 2014, 72, 231–238. [Google Scholar] [CrossRef]
- Modolo, R.C.E.; Silva, T.; Senff, L.; Tarelho, L.A.C.; Labrincha, J.A.; Ferreira, V.M.; Silva, L. Bottom ash from biomass combustion in BFB and its use in adhesive-mortars. Fuel Process. Technol. 2005, 129, 192–202. [Google Scholar] [CrossRef]
- Anh Vu, V.; Cloutier, A.; Bissonnette, B.; Blanchet, P.; Duchesne, J. The Effect of Wood Ash as a Partial Cement Replacement Material for Making Wood-Cement Panels. Materials 2019, 12, 2766. [Google Scholar]
- Eliche-Quesada, D.; Felipe-Sesé, M.A.; López-Pérez, J.A.; Infantes-Molina, A. Characterization and evaluation of rice husk ash and wood ash in sustainable clay matrix bricks. Ceram. Int. 2017, 43, 463–475. [Google Scholar] [CrossRef]
- Eliche-Quesada, D.; Felipe-Sesé, M.A.; Moreno-Molina, A.J.; Franco, F.; Infantes-Molina, A. Investigation of using bottom or fly pine-olive pruning ash to produce environmental friendly ceramic materials. Appl. Clay Sci. 2017, 135, 333–346. [Google Scholar] [CrossRef]
- Demis, S.; Tapali, J.G.; Papadakis, V.G. An investigation of the effectiveness of the utilization of biomass ashes as pozzolanic materials. Constr. Build. Mater. 2014, 68, 291–300. [Google Scholar] [CrossRef]
- Carrasco-Hurtado, B.; Corpas-Iglesias, F.A.; Cruz-Pérez, N.; Terrados-Cepeda, J.; Pérez-Villarejo, L. Addition of bottom ash from biomass in calcium silicate masonry units for use as construction material with thermal insulating properties. Contr. Build. Mater. 2014, 52, 155–165. [Google Scholar] [CrossRef]
- León, N.A.; Rojas-Reyes, N.R.; Umbarilla-Suárez, B.; Bustamante, R.M.O. Experimental Evaluation of silicon-calcareous units from blast furnace slags and hydraulic lime for masonry. Dyna 2009, 76, 247–254. [Google Scholar]
- Turgut, T. Manufacturing of building bricks without Portland cement. J. Clean. Prod. 2012, 37, 361–367. [Google Scholar] [CrossRef]
- Filipponi, P.; Polettini, A.; Pomi, R.; Sirini, P. Physical and mechanical properties of cement-based products containing incineration bottom ash. Waste Manag. 2003, 23, 145–156. [Google Scholar] [CrossRef]
- Liu, D.S.; Wang, C.Q.; Mei, X.D.; Zhang, C. Environmental performance, mechanical and microstructure analysis of non-fired bricks containing water-based drilling cuttings of shale gas. Constr. Build. Mater. 2018, 183, 215–225. [Google Scholar] [CrossRef]
- Eliche-Quesada, D.; Sandalio-Pérez, J.A.; Martínez-Martínez, S.; Pérez-Villarejo, L.; Sánchez-Soto, P.J. Investigation of use of coal fly ash in eco-friendly construction materials: Fired clay bricks and silica-calcareous non fired bricks. Ceram. Int. 2018, 44, 4400–4412. [Google Scholar] [CrossRef]
- ASTM D-2974. Standard Test Method for Moisture, Ash, Organic Matter of Peat and Other Organic Soils; American Society for Testing and Material: West Conshohocken, PA, USA, 1997. [Google Scholar]
- Cebrián, J.L.; Pisonero, F. Determinación de la superficie específica por el método Blaine en cenizas volantes y cementos puzolánicos. Mater. Constr. 1987, 142, 81–91. [Google Scholar]
- UNE-EN 12390-2. Testing Hardened Concrete—Part 2: Making and Curing Specimens for Strength Tests; Asociación Española de Normalización (AENOR): Madrid, Spain, 2009. [Google Scholar]
- UNE-EN 772-16. Methods of Test for Masonry Units—Part 16: Determination of Dimensions; Asociación Española de Normalización (AENOR): Madrid, Spain, 2011. [Google Scholar]
- UNE-EN 772-21. Methods of Test for Masonry Units—Part 21: Determination of Water Absorption of Clay and Calcium Silicate Masonry Units by Cold Water Absorption; Asociación Española de Normalización (AENOR): Madrid, Spain, 2011. [Google Scholar]
- UNE-EN 772-1. Methods of Test for Masonry Units—Part 1: Determination of Compressive Strength; Asociación Española de Normalización (AENOR): Madrid, Spain, 2011. [Google Scholar]
- ISO 8302:1991. Thermal Insulation—Determination of Steady-State Thermal Resistance and Related Properties—Guarded Hot Plate Apparatus; Asociación Española de Normalización (AENOR): Madrid, Spain, 1991. [Google Scholar]
- Restrepo, J.C.; Restrepo, O.J.; Tobón, J.I. Effects of the addition of metakaolin in Portland cement. Dyna 2006, 150, 131–141. [Google Scholar]
- Qin, L.; Gao, X.; Zhang, A. Potential application of portland cement-calcium sulfoaluminate cement blends to avoid early age frost damage. Constr. Build. Mater. 2018, 190, 363–372. [Google Scholar] [CrossRef]
- García Lodeiro, I.; Macphee, D.E.; Palomo, A.; Fernández-Jiménez, A. Effect of alkalis on fresh C-S-H gels. FTIR analysis. Cement Concr. Res. 2009, 3, 147–153. [Google Scholar] [CrossRef]
- Lecome, I.; Henrist, C.; Liégeois, M.; Maseri, F.; Rulmont, A.; Cloots, R. Microstructural comparison between gepolymers, alkali-activated slag cement and Portland cement. J. Eur. Ceram. Soc. 2006, 16, 3789–3797. [Google Scholar] [CrossRef]
- Qin, L.; Gao, X.; Li, Q. Upcycling carbon dioxide to improve mechanical strength of Portland cement. J. Clean. Prod. 2018, 196, 726–738. [Google Scholar] [CrossRef]
- Ylmén, R.; Wadsö, L.; Panas, I. Insights into early hydration of Portland limestone cement from infrared spectroscopy and isothermal calorimetry. Cem. Concr. Res. 2010, 40, 1541–1546. [Google Scholar] [CrossRef]
- Geng, L.Y.; Pei, W.M.; Xiaohua, Z. Mechanical behavior and microstructure of cement composites incorporating surface-treated multi-walled carbon nanotubes. Carbon 2005, 43, 1239–1245. [Google Scholar]
- Rai, U.S.; Singh, R.K. Effect of polyacrylamide on the different properties of cement and mortar. Mater. Sci. Eng. A 2005, 392, 42–50. [Google Scholar] [CrossRef]
- Russell, J.D. Infrared methods. In A Handbook of Determinative Methods in Clay Mineralogy; Wilson, M.J., Ed.; Chapman and Hall: London, UK, 1987. [Google Scholar]
- Cultrone, G.; Cazalla, O.; Rodríguez, C.; de la Torre, M.J.; Sebastián, E. Técnicas no destructivas aplicadas a la conservación del patrimonio arquitectónico. Colorimetría. PH Boletín del Instituto Andaluz del Patrimonio Histórico 2005, 53, 6–10. [Google Scholar] [CrossRef]
- ASTM C67–07. Standard Test Methods for Sampling and Testing Brick and Structural Clay Tile; American Society for Testing and Material: West Conshohocken, PA, USA, 2007. [Google Scholar]
- Demirboga, R. Influence of mineral admixtures on thermal conductivity and compressive strength of mortar. Energy Build. 2003, 35, 189–192. [Google Scholar] [CrossRef]
- Olmeda, J.; Sánchez de Roja, M.I.; Frías, M.; Donatello, S.; Cheeseman, C.R. Effect of petroleum (pet) coke addition on the density and thermal conductivity of cement pastes and mortars. Fuel 2003, 107, 138–146. [Google Scholar] [CrossRef]
Sample | WBA(g) | G(g) | Water (g) | WBA wt% | G wt% | Water wt% Total |
---|---|---|---|---|---|---|
90WBA-10G | 360 | 40 | 50 | 90 | 10 | 12.5 |
80WBA-20G | 320 | 80 | 48 | 80 | 20 | 12.0 |
70WBA-30G | 280 | 120 | 44 | 70 | 30 | 11.0 |
60WBA-40G | 240 | 160 | 40 | 60 | 40 | 10.0 |
50WBA-50G | 200 | 200 | 38 | 50 | 50 | 9.5 |
40WBA-60G | 160 | 240 | 36 | 40 | 60 | 9.0 |
30WBA-70G | 120 | 280 | 34 | 30 | 70 | 8.5 |
20WBA-80G | 80 | 320 | 32 | 20 | 80 | 8.0 |
Raw Material | Organic Matter (a) (%) | Carbonate Content (%) | pH | Specific Surface Area (cm2/g) | Relative Density (kg/m3) |
---|---|---|---|---|---|
WBA | 10.41 ± 0.09 | 17.25 ± 0.76 | 11.1 | 3600 | 2731 |
G | 3.12 ± 0.12 | 16.6 ±0.55 | 12.5 | 6224 | 2378 |
Oxide Content (%) | WBA | G |
---|---|---|
SiO2 | 48.6 | 1.9 |
Al2O3 | 5.9 | 1.1 |
Fe2O3 | 3.3 | 0.12 |
CaO | 18.1 | 67.2 |
MgO | 3.2 | 0.09 |
MnO | 0.05 | - |
Na2O | 0.92 | - |
K2O | 1.9 | - |
TiO2 | 1.4 | 0.04 |
P2O5 | 0.5 | 0.01 |
SO3 | 0.14 | 1.6 |
ZnO | 0.29 | - |
SrO | 0.04 | - |
Cl | 0.06 | 0.03 |
LOI | 15.6 | 27.8 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Felipe-Sesé, M.A.; Pérez-Villarejo, L.; Castro, E.; Eliche-Quesada, D. Wood Bottom Ash and GeoSilex: A By-Product of the Acetylene Industry as Alternative Raw Materials in Calcium Silicate Units. Materials 2020, 13, 489. https://doi.org/10.3390/ma13020489
Felipe-Sesé MA, Pérez-Villarejo L, Castro E, Eliche-Quesada D. Wood Bottom Ash and GeoSilex: A By-Product of the Acetylene Industry as Alternative Raw Materials in Calcium Silicate Units. Materials. 2020; 13(2):489. https://doi.org/10.3390/ma13020489
Chicago/Turabian StyleFelipe-Sesé, Manuel Angel, Luis Pérez-Villarejo, Eulogio Castro, and Dolores Eliche-Quesada. 2020. "Wood Bottom Ash and GeoSilex: A By-Product of the Acetylene Industry as Alternative Raw Materials in Calcium Silicate Units" Materials 13, no. 2: 489. https://doi.org/10.3390/ma13020489
APA StyleFelipe-Sesé, M. A., Pérez-Villarejo, L., Castro, E., & Eliche-Quesada, D. (2020). Wood Bottom Ash and GeoSilex: A By-Product of the Acetylene Industry as Alternative Raw Materials in Calcium Silicate Units. Materials, 13(2), 489. https://doi.org/10.3390/ma13020489