Effects of Monovacancy and Divacancies on Hydrogen Solubility, Trapping and Diffusion Behaviors in fcc-Pd by First Principles
Abstract
:1. Introduction
2. Computational Methodology
3. Results and Discussion
3.1. Dissolution Behavior of H in Interstitial Sites, Monovacancies and Divacancies
Sites | ES (DFT) (eV) | ES (Experiments) (eV) | |
---|---|---|---|
This Work (eV) | Others a (eV) | ||
O-site | −0.129 | −0.11 | −0.10 b |
T-site | −0.099 | −0.09 | 0.31 c |
1vac-3f | −0.352 | −0.20 | - |
1vac-4f | −0.295 | −0.16 | - |
1vac-top | −0.109 | 0.04 | - |
1vac-NOS | −0.133 | - | - |
2vac-3f−1 | −0.382 | −0.23 | - |
2vac-3f−2 | −0.382 | −0.23 | - |
2vac-3f−3 | −0.377 | −0.22 | - |
2vac-4f−1 | −0.291 | −0.16 | - |
2vac-4f−2 | −0.324 | −0.16 | - |
2vac-4f−3 | −0.416 | −0.28 | - |
2vac-NOS | −0.133 | - | - |
3.2. Multiple H Atoms Trapping in Monovacancies and Divacancies
3.3. The Behavior of H Diffusion in Interstitial Sites, Monovacancies and Divacancies
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Anderson, I.; Andreani, C.; Carpenter, J.; Festa, G.; Gorini, G.; Loong, C.-K.; Senesi, R. Research opportunities with compact accelerator-driven neutron sources. Phys. Rep. 2016, 654, 1–58. [Google Scholar] [CrossRef] [Green Version]
- Barth, R.; Soloway, A.; Fairchild, R. Boron neutron capture therapy of cancer: New developments. Congr. Proc. 1992, 50, 623–628. [Google Scholar] [CrossRef]
- Astrelin, V.; Burdakov, A.; Bykov, P.; Ivanov, I.; Jongen, Y.; Konstantinov, S.; Kudryavtsev, A.; Kuklin, K.; Mekler, K.; Polosatkin, S.; et al. Blistering of the selected materials irradiated by intense 200 keV proton beam. J. Nucl. Mater. 2010, 396, 43–48. [Google Scholar] [CrossRef]
- Bruemmer, S.; Simonen, E.; Scott, P.; Andresen, P.; Was, G.; Nelson, J. Radiation-induced material changes and susceptibility to intergranular failure of light-water-reactor core internals. J. Nucl. Mater. 1999, 274, 299–314. [Google Scholar] [CrossRef]
- Cotterill, P. The hydrogen embrittlement of metals. Prog. Mater. Sci. 1961, 9, 205–301. [Google Scholar] [CrossRef]
- Cheng, L.; De Temmerman, G.; Morgan, T.; Schwarz-Selinger, T.; Yuan, Y.; Zhou, H.; Wang, B.; Zhang, Y.; Lu, G. Mitigated blistering and deuterium retention in tungsten exposed to high-flux deuterium–neon mixed plasmas. Nucl. Fusion 2017, 57, 046028. [Google Scholar] [CrossRef]
- Wang, S.; Zhu, X.; Cheng, L.; Guo, W.; Liu, M.; Xu, C.; Yuan, Y.; Fu, E.; Cao, X.; Lu, G.-H. Effect of heavy ion pre-irradiation on blistering and deuterium retention in tungsten exposed to high-fluence deuterium plasma. J. Nucl. Mater. 2018, 508, 395–402. [Google Scholar] [CrossRef]
- Zhu, X.-L.; Zhang, Y.; Kreter, A.; Shi, L.-Q.; Yuan, Y.; Cheng, L.; Linsmeier, C.; Lu, G.-H. Aggravated blistering and increased deuterium retention in iron-damaged tungsten after exposure to deuterium plasma with various surface temperatures. Nucl. Fusion 2018, 58, 106005. [Google Scholar] [CrossRef]
- Garner, F.; Simonen, E.; Oliver, B.; Greenwood, L.; Grossbeck, M.; Wolfer, W.; Scott, P. Retention of hydrogen in fcc metals irradiated at temperatures leading to high densities of bubbles or voids. J. Nucl. Mater. 2006, 356, 122–135. [Google Scholar] [CrossRef]
- Venezuela, J.; Liu, Q.; Zhang, M.; Zhou, Q.; Atrens, A. A review of hydrogen embrittlement of martensitic advanced high-strength steels. Corros. Rev. 2016, 34, 153–186. [Google Scholar] [CrossRef]
- Murty, K.L.; Charit, I. Structural materials for Gen-IV nuclear reactors: Challenges and opportunities. J. Nucl. Mater. 2008, 383, 189–195. [Google Scholar] [CrossRef]
- Zhang, P.; Zhao, J.; Wen, B. Vacancy trapping mechanism for multiple hydrogen and helium in beryllium: A first-principles study. J. Phys. Condens. Matter 2012, 24, 95004. [Google Scholar] [CrossRef] [PubMed]
- Sun, L.; Jin, S.; Li, X.-C.; Zhang, Y.; Lu, G.-H. Hydrogen behaviors in molybdenum and tungsten and a generic vacancy trapping mechanism for H bubble formation. J. Nucl. Mater. 2013, 434, 395–401. [Google Scholar] [CrossRef]
- Kumada, H.; Kurihara, T.; Yoshioka, M.; Kobayashi, H.; Matsumoto, H.; Sugano, T.; Sakurai, H.; Sakae, T.; Matsumura, A. Development of beryllium-based neutron target system with three-layer structure for accelerator-based neutron source for boron neutron capture therapy. Appl. Radiat. Isot. 2015, 106, 78–83. [Google Scholar] [CrossRef]
- Bayanov, B.; Belov, V.; Taskaev, S. Neutron producing target for accelerator based neutron capture therapy. J. Phys. Conf. Ser. 2006, 41, 460–465. [Google Scholar] [CrossRef] [Green Version]
- Badrutdinov, A.; Bykov, T.; Gromilov, S.; Higashi, Y.; Kasatov, D.; Kolesnikov, I.; Koshkarev, A.; Makarov, A.; Miyazawa, T.; Shchudlo, I.; et al. In Situ Observations of Blistering of a Metal Irradiated with 2-MeV Protons. Metals 2017, 7, 558. [Google Scholar] [CrossRef] [Green Version]
- Lee, K.; Yuan, M.; Wilcox, J. Understanding Deviations in Hydrogen Solubility Predictions in Transition Metals through First-Principles Calculations. J. Phys. Chem. C 2015, 119, 19642–19653. [Google Scholar] [CrossRef]
- Myers, S.M.; Baskes, M.I.; Birnbaum, H.K.; Corbett, J.W.; DeLeo, G.G.; Estreicher, S.K.; Haller, E.E.; Jena, P.; Johnson, N.M.; Kirchheim, R.; et al. Hydrogen interactions with defects in crystalline solids. Rev. Mod. Phys. 1992, 64, 559–617. [Google Scholar] [CrossRef]
- Nørskov, J.K.; Besenbacher, F.; Bøttiger, J.; Nielsen, B.B.; Pisarev, A.A. Interaction of Hydrogen with Defects in Metals: Interplay between Theory and Experiment. Phys. Rev. Lett. 1982, 49, 1420–1423. [Google Scholar] [CrossRef]
- Besenbacher, F.; Myers, S.; Nørskov, J. Interaction of hydrogen with defects in metals. Nucl. Instruments Methods Phys. Res. Sect. B Beam Interact. Mater. Atoms. 1985, 7, 55–66. [Google Scholar] [CrossRef]
- Deng, Y.; Hajilou, T.; Barnoush, A. Hydrogen-enhanced cracking revealed by in situ micro-cantilever bending test inside environmental scanning electron microscope. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 2017, 375, 20170106. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Matsui, H.; Kimura, H.; Moriya, S. The effect of hydrogen on the mechanical properties of high purity iron I. Softening and hardening of high purity iron by hydrogen charging during tensile deformation. Mater. Sci. Eng. 1979, 40, 207–216. [Google Scholar] [CrossRef]
- Lu, G.; Zhang, Q.; Kioussis, N.; Kaxiras, E. Hydrogen-Enhanced Local Plasticity in Aluminum: AnAb InitioStudy. Phys. Rev. Lett. 2001, 87, 095501. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lynch, S. Hydrogen embrittlement (HE) phenomena and mechanisms. Stress Corros. Crack. 2011, 30, 90–130. [Google Scholar] [CrossRef]
- Fukai, Y. Superabundant Vacancies Formed in Metal—Hydrogen Alloys. Phys. Scr. 2003, 103, 11–14. [Google Scholar] [CrossRef]
- Fukai, Y.; Ōkuma, N. Formation of Superabundant Vacancies in Pd Hydride under High Hydrogen Pressures. Phys. Rev. Lett. 1994, 73, 1640–1643. [Google Scholar] [CrossRef]
- Louthan, M.R. Hydrogen Embrittlement of Metals: A Primer for the Failure Analyst. J. Fail. Anal. Prev. 2008, 8, 289–307. [Google Scholar] [CrossRef] [Green Version]
- Rogers, H.C. Hydrogen Embrittlement of Metals: Atomic hydrogen from a variety of sources reduces the ductility of many metals. Science 1968, 159, 1057–1064. [Google Scholar] [CrossRef]
- Lu, G.; Kaxiras, E. Hydrogen Embrittlement of Aluminum: The Crucial Role of Vacancies. Phys. Rev. Lett. 2005, 94, 155501. [Google Scholar] [CrossRef] [Green Version]
- Robertson, I.M.; Sofronis, P.; Nagao, A.; Martin, M.L.; Wang, S.; Gross, D.W.; Nygren, K.E. Hydrogen Embrittlement Understood. Met. Mater. Trans. A 2015, 46, 1085–1103. [Google Scholar] [CrossRef]
- Liu, Y.-L.; Zhang, Y.; Zhou, H.-B.; Lu, G.-H.; Liu, F.; Luo, G.-N. Vacancy trapping mechanism for hydrogen bubble formation in metal. Phys. Rev. B 2009, 79, 172103. [Google Scholar] [CrossRef] [Green Version]
- Vekilova, O.Y.; Bazhanov, D.I.; Simak, S.I.; Abrikosov, I.A. First-principles study of vacancy-hydrogen interaction in Pd. Phys. Rev. B 2009, 80, 024101. [Google Scholar] [CrossRef] [Green Version]
- Ren, F.; Yin, W.; Yu, Q.; Jia, X.; Zhao, Z.; Wang, B. Solution and diffusion of hydrogen isotopes in tungsten-rhenium alloy. J. Nucl. Mater. 2017, 491, 206–212. [Google Scholar] [CrossRef]
- Hawthorne, J.R.; Watson, H.E. Properties of Reactor Structural Alloys after Neutron or Particle Irradiation; ASTM STP 570; American Society for Testing and Materials: West Conshohocken, PA, USA, 1975; pp. 103–105. [Google Scholar]
- Kresse, G.; Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 1996, 54, 11169–11186. [Google Scholar] [CrossRef]
- Perdew, J.P.; Burke, K.; Ernzerhof, M. Generalized Gradient Approximation Made Simple. Phys. Rev. Lett. 1996, 77, 3865–3868. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Methfessel, M.; Paxton, A.T. High-precision sampling for Brillouin-zone integration in metals. Phys. Rev. B 1989, 40, 3616–3621. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Henkelman, G.; Uberuaga, B.P.; Jónsson, H. A climbing image nudged elastic band method for finding saddle points and minimum energy paths. J. Chem. Phys. 2000, 113, 9901–9904. [Google Scholar] [CrossRef] [Green Version]
- McKeehan, L.W. The Crystal Structures of the System Palladium-Hydrogen. Phys. Rev. 1923, 21, 334–342. [Google Scholar] [CrossRef]
- Adams, B.D.; Wu, G.; Nigro, S.; Chen, A. Facile Synthesis of Pd−Cd Nanostructures with High Capacity for Hydrogen Storage. J. Am. Chem. Soc. 2009, 131, 6930–6931. [Google Scholar] [CrossRef]
- Nazarov, R.; Hickel, T.; Neugebauer, J. Ab initio study of H-vacancy interactions in fcc metals: Implications for the formation of superabundant vacancies. Phys. Rev. B 2014, 89, 144108.1–144108.8. [Google Scholar] [CrossRef]
- Carstanjen, H.D.; Dünstl, J.; Löbl, G.; Sizmann, R. Lattice location and determination of thermal amplitudes of deuterium in α-PdD0.007 by channeling. Phys. Status Solidi 1978, 45, 529–536. [Google Scholar] [CrossRef]
- Fukai, Y.; Ishii, Y.; Goto, Y.; Watanabe, K. Formation of superabundant vacancies in Pd–H alloys. J. Alloy. Compd. 2000, 313, 121–132. [Google Scholar] [CrossRef]
- Fukai, Y. The Metal-Hydrogen System. Metal Hydr. Syst. 2005, 172–174, 8–19. [Google Scholar] [CrossRef]
- Myers, S.; Wampler, W.; Besenbacher, F.; Robinson, S.; Moody, N. Ion beam studies of hydrogen in metals. Mater. Sci. Eng. 1985, 69, 397–409. [Google Scholar] [CrossRef]
- Puska, M.J.; Nieminen, R.M.; Manninen, M. Atoms embedded in an electron gas: Immersion energies. Phys. Rev. B 1981, 24, 3037–3047. [Google Scholar] [CrossRef] [Green Version]
- Liu, X.; Chen, H.; Tong, J.; He, W.; Li, X.; Liang, T.; Li, Y.; Yin, W. The Kinetic Behaviors of H Impurities in the Li/Ta Bilayer: Application for the Accelerator-Based BNCT. Nanomaterials 2019, 9, 1107. [Google Scholar] [CrossRef] [Green Version]
- Zhou, X.W.; Zimmerman, J.A.; Wong, B.M.; Hoyt, J.J. An embedded-atom method interatomic potential for Pd–H alloys. J. Mater. Res. 2008, 23, 704–718. [Google Scholar] [CrossRef] [Green Version]
- Kamakoti, P. A comparison of hydrogen diffusivities in Pd and CuPd alloys using density functional theory. J. Membr. Sci. 2003, 225, 145–154. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ma, B.-L.; Wu, Y.-Y.; Guo, Y.-H.; Yin, W.; Zhan, Q.; Yang, H.-G.; Wang, S.; Wang, B.-T. Effects of Monovacancy and Divacancies on Hydrogen Solubility, Trapping and Diffusion Behaviors in fcc-Pd by First Principles. Materials 2020, 13, 4876. https://doi.org/10.3390/ma13214876
Ma B-L, Wu Y-Y, Guo Y-H, Yin W, Zhan Q, Yang H-G, Wang S, Wang B-T. Effects of Monovacancy and Divacancies on Hydrogen Solubility, Trapping and Diffusion Behaviors in fcc-Pd by First Principles. Materials. 2020; 13(21):4876. https://doi.org/10.3390/ma13214876
Chicago/Turabian StyleMa, Bao-Long, Yi-Yuan Wu, Yan-Hui Guo, Wen Yin, Qin Zhan, Hong-Guang Yang, Sheng Wang, and Bao-Tian Wang. 2020. "Effects of Monovacancy and Divacancies on Hydrogen Solubility, Trapping and Diffusion Behaviors in fcc-Pd by First Principles" Materials 13, no. 21: 4876. https://doi.org/10.3390/ma13214876
APA StyleMa, B. -L., Wu, Y. -Y., Guo, Y. -H., Yin, W., Zhan, Q., Yang, H. -G., Wang, S., & Wang, B. -T. (2020). Effects of Monovacancy and Divacancies on Hydrogen Solubility, Trapping and Diffusion Behaviors in fcc-Pd by First Principles. Materials, 13(21), 4876. https://doi.org/10.3390/ma13214876