Metal Accumulation Using a Bacterium (K-142) Identified from Environmental Microorganisms by the Screening of Au Nanoparticles Synthesis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Collection and Culture of Microorganisms
2.2. Screening by Adding Chloroauric Acid
2.2.1. Evaluation Based on the Coloration after Washing Out the Medium (Small Amount Synthesis)
2.2.2. Evaluation Based on the Coloration after Washing Out the Medium (Large Amount Synthesis)
2.3. Identification of the Selected Strain
2.4. Microscopic Observation and Other Analysis
2.5. Synthesis of Nanoparticles Using Metal Salt Solution Other Than Au
2.6. Measurement of Metal Concentration Efficiency
2.7. Confirmation of Survival State of Bacterial Cells by Fluorescence Observation
3. Results and Discussion
3.1. Screening, Identification, Observation and Analysis of Microbially Synthesized Nanoparticles
3.1.1. Strain Screening
3.1.2. Identification of Selected Strain
3.1.3. Observation and Analysis of Nanoparticles Synthesized by K-142 Cells
3.2. Synthesis of Nanoparticles with Metal Salt Solution Other Than Au
3.2.1. Visual Observation of Changes
3.2.2. Observation by TEM
3.3. Measurement of Metal Concentration Efficiency
3.4. Confirmation of Cell Viability by Fluorescence Observation
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Prathna, T.; Mathew, L.; Chandrasekaran, N.; Raichur, A.; Mukherjee, A. Biomimetic synthesis of nanoparticles: Science, technology and applicability. Biomim. Learn. Nat. 2010. [Google Scholar]
- Bazylinski, D.; Frankel, R.; Jannasch, H. Anaerobic magnetite production by a marine, magnetotactic bacterium. Nature 1988, 334, 518–519. [Google Scholar] [CrossRef]
- Klaus, T.; Joerger, R.; Olsson, E.; Granqvist, C. Silver-based crystalline nanoparticles, microbially fabricated. Proc. Natl. Acad. Sci. USA 1999, 96, 13611–13614. [Google Scholar] [CrossRef] [Green Version]
- Sweeney, R.; Mao, C.; Gao, X.; Burt, J.; Belcher, A.; Georgiou, G.; Iverson, B. Bacterial Biosynthesis of Cadmium Sulfide Nanocrystals. Chem. Biol. 2004, 11, 1553–1559. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Labrenz, M.; Druschel, G.; Thomsen-Ebert, T.; Gilbert, B.; Welch, S.; Kemner, K.; Logan, G.; Summons, R.; De Stasio, G.; Bond, P.; et al. Formation of sphalerite (ZnS) deposits in natural biofilms of sulfate-reducing bacteria. Science 2000, 290, 1744–1747. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Feng, Y.; Lin, X.; Wang, Y.; Hua, J. Diversity of Aurum bioreduction by Rhodobacter capsulatus. Mater. Lett. 2008, 62, 4299–4302. [Google Scholar] [CrossRef]
- Zhang, D.; Tang, D.; Yamamoto, T.; Kato, Y.; Horiuchi, S.; Ogawa, S.; Yoshimura, E.; Suzuki, M. Improving biosynthesis of Au-Pd core-shell nanoparticles through Escherichia coli with the assistance of phytochelatin for catalytic enhanced chemiluminescence and benzyl alcohol oxidation. J. Inorg. Biochem. 2019, 199, 110795. [Google Scholar] [CrossRef] [PubMed]
- Kato, Y.; Yoshimura, E.; Suzuki, M. Synthesis of Gold Nanoparticles by Extracellular Components of Lactobacillus casei. Chem. Select. 2019, 4, 7331–7337. [Google Scholar] [CrossRef]
- Qin, H.; Hu, T.; Zhai, Y.; Lu, N.; Aliyeva, J. Sonochemical synthesis of ZnS nanolayers on the surface of microbial cells and their application in the removal of heavy metals. J. Hazard. Mater. 2020, 400, 123161. [Google Scholar] [CrossRef]
- Zamani, H.; Jafari, A.; Mousavi, S.; Darezereshki, E. Biosynthesis of silica nanoparticle using Saccharomyces cervisiae and its application on enhanced oil recovery. J. Pet. Sci. Eng. 2020, 190, 107002. [Google Scholar] [CrossRef]
- Ordenes-Aenishanslins, N.; Anziani-Ostuni, G.; Monras, J.P.; Tello, A.; Bravo, D.; Toro-Ascuy, D.; Soto-Rifo, R.; Prasad, P.; Perez-Donoso, J. Bacterial Synthesis of Ternary CdSAg Quantum Dots through Cation Exchange: Tuning the Composition and Properties of Biological Nanoparticles for Bioimaging and Photovoltaic Applications. Microogranisms 2020, 8, 631. [Google Scholar] [CrossRef] [PubMed]
- Zeng, S.; Baillargeat, D.; Ho, H.; Yong, K. Nanomaterials enhanced surface plasmon resonance for biological and chemical sensing applications. Chem. Soc. Rev. 2014, 43, 3426–3452. [Google Scholar] [CrossRef] [PubMed]
- Abramoff, M.; Magelhaes, P.; Ram, S. Image Processing with ImageJ. Biophotonics Int. 2004, 11, 36–42. [Google Scholar]
- Harp, J.; Hanson, B.; Timm, D.; Bunick, G. Macromolecular crystal annealing: Evaluation of techniques and variables. ACTA Crystallo. Sec. D-Biol. Cryst. 1999, 55, 1329–1334. [Google Scholar] [CrossRef]
- Rio, L.; Kusiak-Nejman, E.; Kiwi, J.; Bétrisey, B.; Pulgarin, C.; Trampuz, A.; Bizzini, A. Comparison of methods for evaluation of the bactericidal activity of copper-sputtered surfaces against methicillin-resistant Staphylococcus aureus. Appl. Environ. Microbiol. 2012, 78, 8176–8182. [Google Scholar] [CrossRef] [Green Version]
- Tawakoli, P.; Al-Ahmad, A.; Hoth-Hannig, W.; Hannig, M.; Hannig, C. Comparison of different live/dead stainings for detection and quantification of adherent microorganisms in the initial oral biofilm. Clin. Oral. Investig. 2013, 17, 841–850. [Google Scholar] [CrossRef]
- Mandal, S.; Selvakannan, P.; Phadtare, S.; Pasricha, R.; Sastry, M. Synthesis of a stable gold hydrosol by the reduction of chloroaurate ions by the amino acid, aspartic acid. J. Chem. Sci. 2002, 114, 513–520. [Google Scholar] [CrossRef] [Green Version]
- Maruyama, T.; Fujimoto, Y.; Maekawa, T. Synthesis of gold nanoparticles using various amino acids. J. Colloid Interface Sci. 2015, 447, 254–257. [Google Scholar] [CrossRef]
- Ikeda, Y.; Kubota, D.; Nagasaki, Y. Design of sugar-oligonucleotide conjugates installed gold nanoparticle for effective delivery to hepatic parenchymal cells. Colloid Polym. Sci. 2013, 291, 2959–2964. [Google Scholar] [CrossRef]
- Narayanan, K.; Sakthivel, N. Biological synthesis of metal nanoparticles by microbes. Adv. Colloid Interface Sci. 2010, 156, 1–13. [Google Scholar] [CrossRef]
- Selvakumar, R.; Aravindh, S.; Ashok, A.; Balachandran, Y. A facile synthesis of silver nanoparticle with SERS and antimicrobial activity using Bacillus subtilis exopolysaccharides. J. Exp. Nanosci. 2014, 9, 1075–1087. [Google Scholar] [CrossRef]
- Elbeshehy, E.; Elazzazy, A.; Aggelis, G. Silver nanoparticles synthesis mediated by new isolates of Bacillus spp., nanoparticle characterization and their activity against Bean Yellow Mosaic Virus and human pathogens. Front. Microbiol. 2015, 6, 453. [Google Scholar] [CrossRef] [Green Version]
- Mathew, B.; Biju, V.; Beeregowda, K. Accumulation of lead (Pb II) metal ions by Bacillus toyonensis SCE1 species, innate to industrial-area ground water and nanoparticle synthesis. Appl. Nanosci. 2019, 9, 49–66. [Google Scholar] [CrossRef]
- Downs, R.; Hall-Wallace, M. The American mineralogist crystal structure database. Am. Miner. 2003, 88, 247–250. [Google Scholar]
- Ratte, H. Bioaccumulation and toxicity of silver compounds: A review. Environ. Toxicol. Chem. 1999, 18, 89–108. [Google Scholar] [CrossRef]
- Beer, C.; Foldbjerg, R.; Hayashi, Y.; Sutherland, D.; Autrup, H. Toxicity of silver nanoparticles-Nanoparticle or silver ion? Toxicol. Lett. 2012, 208, 286–292. [Google Scholar] [CrossRef]
- Tang, J.; Xiong, L.; Wang, S.; Wang, J.; Liu, L.; Li, J.; Yuan, F.; Xi, T. Distribution, Translocation and Accumulation of Silver Nanoparticles in Rats. J. Nanosci. Nanotechnol. 2009, 9, 4924–4932. [Google Scholar] [CrossRef] [PubMed]
- Apostoli, P.; Kiss, P.; Porru, S.; Bonde, J.; Vanhoorne, M. Male reproductive toxicity of lead in animals and humans. Occup. Environ. Med. 1998, 55, 364–374. [Google Scholar] [CrossRef] [Green Version]
- Brewer, G. Risks of Copper and Iron Toxicity during Aging in Humans. Chem. Res. Toxicol. 2010, 23, 319–326. [Google Scholar] [CrossRef]
- Seidal, K.; Jorgensen, N.; Elinder, C.; Sjogren, B.; Vahter, M. Fatal cadmium-induced pneumonitis. Scand. J. Work Environ. Health 1993, 19, 429–431. [Google Scholar] [CrossRef] [Green Version]
- Nordberg, G. Cadmium and health in the 21st century—Historical remarks and trends for the future. BioMetals 2004, 17, 485–489. [Google Scholar] [CrossRef]
- Barbier, O.; Jacquillet, G.; Tauc, M.; Cougnon, M.; Poujeol, P. Effect ofheavy metals on, and handling by, the kidney. Nephron Physiol. 2005, 99, 105–110. [Google Scholar] [CrossRef] [PubMed]
- Campbell, A.; Hamai, D.; Bondy, S. Differential toxicity of aluminum salts in human cell lines of neural origin: Implications for neurodegeneration. Neuro Toxicol. 2001, 22, 63–71. [Google Scholar] [CrossRef]
- Lubkowska, A.; Chlubek, D. Aluminum in the human environment—Absorption and toxicity. Trace Elem. Electrolytes 2015, 32, 52–59. [Google Scholar] [CrossRef]
- Chernousova, S.; Epple, M. Silver as Antibacterial Agent: Ion, Nanoparticle, and Metal. Angew. Chem. Int. Ed. 2013, 52, 1636–1653. [Google Scholar] [CrossRef]
- Taheri, S.; Cavallaro, A.; Christo, S.; Smith, L.; Majewski, P.; Barton, M.; Hayball, J.; Vasilev, K. Substrate independent silver nanoparticle based antibacterial coatings. Biomaterials 2014, 35, 4601–4609. [Google Scholar] [CrossRef]
- Shao, W.; Liu, X.; Min, H.; Dong, G.; Feng, Q.; Zuo, S. Preparation, Characterization, and Antibacterial Activity of Silver Nanoparticle-Decorated Graphene Oxide Nanocomposite. ACS Appl. Mater. Interfaces 2015, 7, 6966–6973. [Google Scholar] [CrossRef] [PubMed]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, Y.; Suzuki, M. Metal Accumulation Using a Bacterium (K-142) Identified from Environmental Microorganisms by the Screening of Au Nanoparticles Synthesis. Materials 2020, 13, 4922. https://doi.org/10.3390/ma13214922
Li Y, Suzuki M. Metal Accumulation Using a Bacterium (K-142) Identified from Environmental Microorganisms by the Screening of Au Nanoparticles Synthesis. Materials. 2020; 13(21):4922. https://doi.org/10.3390/ma13214922
Chicago/Turabian StyleLi, Yiting, and Michio Suzuki. 2020. "Metal Accumulation Using a Bacterium (K-142) Identified from Environmental Microorganisms by the Screening of Au Nanoparticles Synthesis" Materials 13, no. 21: 4922. https://doi.org/10.3390/ma13214922
APA StyleLi, Y., & Suzuki, M. (2020). Metal Accumulation Using a Bacterium (K-142) Identified from Environmental Microorganisms by the Screening of Au Nanoparticles Synthesis. Materials, 13(21), 4922. https://doi.org/10.3390/ma13214922