Evolution of Corrosion Products Formed during the Corrosion of MgZr Alloy in Poral Solutions Extracted from Na-Geopolymers Used as Conditioning Matrix for Nuclear Waste
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials and Solutions
2.2. Corrosion Experiments
2.3. Solid Characterizations
3. Results
3.1. Morphology and Composition of the CP Layers
3.1.1. MgZr Corroded in PS
3.1.2. MgZr Corroded in NaF-PS
3.2. Determination of the Evolution of Crystalline CP by GI-XRD
Nature of CP
3.3. Brucite Evolution during MgZr Corrosion
4. Discussion
4.1. Processes Occurring during MgZr Corrosion in Poral Solutions
4.2. Is There a Relation between the Passivating Properties of CP Layers and Their Morphology and Structure?
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Caillat, R.H.J.; Salesse, M. Raisons du choix de l’alliage Mg–Zr pour le gainage des elements combustibles. J. Nucl. Mater. 1963, 8, 1–2. [Google Scholar] [CrossRef]
- Benavent, V.; Frizon, F.; Poulesquen, A. Effect of composition and aging on the porous structure of metakaolin-based geopolymers. J. Appl. Crystallogr. 2016, 49, 2116–2128. [Google Scholar] [CrossRef]
- Perrault, G.G. The potential-pH diagram of the magnesium-water system. J. Electroanal. Chem. Interfacial Electrochem. 1974, 51, 107–119. [Google Scholar] [CrossRef]
- Li, S.; Bacco, A.C.; Birbilis, N.; Cong, H. Passivation and potential fluctuation of Mg alloy AZ31B in alkaline environments. Corros. Sci. 2016, 112, 596–610. [Google Scholar] [CrossRef] [Green Version]
- Lambertin, D.; Frizon, F.; Bart, F. Mg–Zr alloy behavior in basic solutions and immobilization in Portland cement and Na-geopolymer with sodium fluoride inhibitor. Surf. Coat. Technol. 2012, 206, 4567–4573. [Google Scholar] [CrossRef]
- Rooses, A.; Steins, P.; Dannoux-Papin, A.; Lambertin, D.; Poulesquen, A.; Frizon, F. Encapsulation of Mg–Zr alloy in metakaolin-based geopolymer. Appl. Clay Sci. 2013, 73, 86–92. [Google Scholar] [CrossRef]
- Hsiao, H.-Y.; Tsung, H.-C.; Tsai, W.-T. Anodization of AZ91D magnesium alloy in silicate-containing electrolytes. Surf. Coat. Technol. 2005, 199, 127–134. [Google Scholar] [CrossRef]
- Wang, J.-Y.; Liu, C.-M.; Chen, W.-K.; Liu, Y.-M.; Ger, M.-D. Microstructure and corrosion resistance of anodized Mg-9 mass% Li-1 mass% Zn alloy. Mater. Trans. 2008, 49, 1355–1358. [Google Scholar] [CrossRef] [Green Version]
- Wu, H.-L.; Cheng, Y.-L.; Li, L.-L.; Chen, Z.-H.; Wang, H.-M.; Zhang, Z. The anodization of ZK60 magnesium alloy in alkaline solution containing silicate and the corrosion properties of the anodized films. Appl. Surf. Sci. 2007, 253, 9387–9394. [Google Scholar] [CrossRef]
- Hu, J.; Huang, D.; Song, G.-L.; Guo, X. The synergistic inhibition effect of organic silicate and inorganic Zn salt on corrosion of Mg-10Gd-3Y magnesium alloy. Corros. Sci. 2011, 53, 4093–4101. [Google Scholar] [CrossRef]
- Supplit, R.; Koch, T.; Schubert, U. Evaluation of the anti-corrosive effect of acid pickling and sol–gel coating on magnesium AZ31 alloy. Corros. Sci. 2007, 49, 3015–3023. [Google Scholar] [CrossRef]
- Lamaka, S.V.; Vaghefinazari, B.; Mei, D.; Petrauskas, R.P.; Höche, D.; Zheludkevich, M.L. Comprehensive screening of Mg corrosion inhibitors. Corros. Sci. 2017, 128, 224–240. [Google Scholar] [CrossRef]
- El-Taib Heakal, F.; Tantawy, N.S.; Shehata, O.S. Impact of chloride and fluoride additions on surface reactivity and passivity of AM60 magnesium alloy in buffer solution. Corros. Sci. 2012, 64, 153–163. [Google Scholar] [CrossRef]
- El-Taib Heakal, F.; Fekry, A.M.; Fatayerji, M.Z. Influence of halides on the dissolution and passivation behavior of AZ91D magnesium alloy in aqueous solutions. Electrochim. Acta 2009, 54, 1545–1557. [Google Scholar] [CrossRef]
- Bradford, P.M.; Case, B.; Dearnaley, G.; Turner, J.F.; Woolsey, I.S. Ion beam analysis of corrosion films on a high magnesium alloy (Magnox Al 80). Corros. Sci. 1976, 16, 747–766. [Google Scholar] [CrossRef]
- Gulbrandsen, E.; Taftø, J.; Olsen, A. The passive behaviour of Mg in alkaline fluoride solutions. Electrochemical and electron microscopical investigations. Corros. Sci. 1993, 34, 1423–1440. [Google Scholar] [CrossRef]
- Gao, H.; Li, Q.; Chen, F.N.; Dai, Y.; Luo, F.; Li, L.Q. Study of the corrosion inhibition effect of sodium silicate on AZ91D magnesium alloy. Corros. Sci. 2011, 53, 1401–1407. [Google Scholar] [CrossRef]
- Barros, C.F.; Muzeau, B.; L’Hostis, V.; François, R. Impact of fluoride concentration on general corrosion of Mg–Zr alloy in a Na-geopolymer and alkaline solutions. Corros. Sci. 2020. accepted. [Google Scholar] [CrossRef]
- Rooses, A.; Lambertin, D.; Chartier, D.; Frizon, F. Galvanic corrosion of Mg–Zr fuel cladding and steel immobilized in Portland cement and geopolymer at early ages. J. Nucl. Mater. 2013, 435, 137–140. [Google Scholar] [CrossRef]
- Cyr, M.; Rivard, P.; Labrecque, F.; Daidié, A. High-pressure device for fluid extraction from porous materials: Application to cement-based materials. J. Am. Ceram. Soc. 2008, 91, 2653–2658. [Google Scholar] [CrossRef]
- Dahmen, U.; Kim, M.G.; Searcy, A.W. Microstructural evolution during the decomposition of Mg(OH)2. Ultramicroscopy 1987, 23, 365–370. [Google Scholar] [CrossRef]
- Song, G.-L.; Unocic, K.A. The anodic surface film and hydrogen evolution on Mg. Corros. Sci. 2015, 98, 758–765. [Google Scholar] [CrossRef] [Green Version]
- Maltseva, A.; Shkirskiy, V.; Lefèvre, G.; Volovitch, P. Effect of pH on Mg(OH)2 film evolution on corroding Mg by in situ kinetic Raman mapping (KRM). Corros. Sci. 2019, 153, 272–282. [Google Scholar] [CrossRef]
- Akao, M.; Iwai, S. The hydrogen bonding of hydromagnesite. Acta Crystallogr. Sect. B Struct. Crystallogr. Cryst. Chem. 1977, 33, 1273–1275. [Google Scholar] [CrossRef]
- Mellini, M.Z.; Zanazzi, P.F. Crystal structures of lizardite-1T and lizardite-2H1 from Coli, Italy. Am. Mineral. 1987, 72, 943–948. [Google Scholar]
- Wei, M.; Evans, J.H.; Bostrom, T.; Grondahl, L. Synthesis and characterization of hydroxyapatite, fluoride-substituted hydroxyapatite and fluorapatite. J. Mater. Sci. Mater. Med. 2003, 14, 311–320. [Google Scholar] [CrossRef]
- Ribet, S.; Gin, S. Role of neoformed phases on the mechanisms controlling the resumption of SON68 glass alteration in alkaline media. J. Nucl. Mater. 2004, 324, 152–164. [Google Scholar] [CrossRef]
- Michelin, A.; Burger, E.; Rebiscoul, D.; Neff, D.; Bruguier, F.; Drouet, E.; Dillmann, P.; Gin, S. Silicate glass alteration enhanced by iron: Origin and long-term implications. Environ. Sci. Technol. 2013, 47, 750–756. [Google Scholar] [CrossRef] [PubMed]
- Aréna, H.; Godon, N.; Rébiscoul, D.; Podor, R.; Garcès, E.; Cabie, M.; Mestre, J.P. Impact of Zn, Mg, Ni and Co elements on glass alteration: Additive effects. J. Nucl. Mater. 2016, 470, 55–67. [Google Scholar] [CrossRef]
- Aréna, H.; Godon, N.; Rébiscoul, D.; Frugier, P.; Podor, R.; Garcès, E.; Cabie, M.; Mestre, J.P. Impact of iron and magnesium on glass alteration: Characterization of the secondary phases and determination of their solubility constants. Appl. Geochem. 2017, 82, 119–133. [Google Scholar] [CrossRef]
- Rébiscoul, D.; Tormos, V.; Godon, N.; Mestre, J.P.; Cabie, M.; Amiard, G.; Foy, E.; Frugier, P.; Gin, S. Reactive transport processes occurring during nuclear glass alteration in presence of magnetite. Appl. Geochem. 2015, 58, 26–37. [Google Scholar] [CrossRef]
- Hsu, W.P.; Zhong, Q.; Matijević, E. The Formation of uniform colloidal particles of magnesium fluoride and sodium magnesium fluoride. J. Colloid Interface Sci. 1996, 181, 142–148. [Google Scholar] [CrossRef]
- Zuleta, A.A.; Correa, E.; Castaño, J.G.; Echeverría, F.; Baron-Wiecheć, A.; Skeldon, P.; Thompson, G.E. Study of the formation of alkaline electroless Ni–P coating on magnesium and AZ31B magnesium alloy. Surf. Coat. Technol. 2017, 321, 309–320. [Google Scholar] [CrossRef]
- Sevonkaev, I.; Goia, D.V.; Matijevic, E. Formation and structure of cubic particles of sodium magnesium fluoride (neighborite). J. Colloid Interface Sci. 2008, 317, 130–136. [Google Scholar] [CrossRef]
- Nandiyanto, A.B.; Iskandar, F.; Ogi, T.; Okuyama, K. Nanometer to submicrometer magnesium fluoride particles with controllable morphology. Langmuir Acs J. Surf. Colloids 2010, 26, 12260–12266. [Google Scholar] [CrossRef]
- Xu, Y.-W.; Wang, H.-Z. Preparation of sodium magnesium fluoride particles of different morphologies by EDTA-assisted hydrothermal method. J. Inorg. Mater. 2019, 34, 933–937. [Google Scholar] [CrossRef]
- Ono, S.; Asami, K.; Masuko, N. Mechanism of chemical conversion coating film growth on magnesium and magnesium alloys. Mater. Trans. 2001, 42, 1225–1231. [Google Scholar] [CrossRef] [Green Version]
- Taheri, M.; Phillips, R.C.; Kish, J.R.; Botton, G.A. Analysis of the surface film formed on Mg by exposure to water using a FIB cross-section and STEM–EDS. Corros. Sci. 2012, 59, 222–228. [Google Scholar] [CrossRef]
- Brady, M.P.; Rother, G.; Anovitz, L.M.; Littrell, K.C.; Unocic, K.A.; Elsentriecy, H.H.; Song, G.L.; Thomson, J.K.; Gallego, N.C.; Davis, B. Film breakdown and nano-porous Mg(OH)2 formation from corrosion of magnesium alloys in salt solutions. J. Electrochem. Soc. 2015, 162, C140–C149. [Google Scholar] [CrossRef]
- Das, P.S.; Dey, A.; Mandal, A.K.; Dey, N.; Mukhopadhyay, A.K. Synthesis of Mg(OH)2 micro/nano flowers at room temperature. J. Adv. Ceram. 2013, 2, 173–179. [Google Scholar] [CrossRef] [Green Version]
- Phillips, V.A.; Opperhauser, H.; Kolbe, J.L. Relations among particle size, shape, and surface area of Mg(OH)2 and its calcination product. J. Am. Ceram. Soc. 1978, 61, 75–81. [Google Scholar] [CrossRef]
- Ribbe, R.H. Titanium, fluorine, and hydroxyl in the humite minerals. Am. Miner. 1979, 64, 1027–1035. [Google Scholar]
- Vermilyea, D.A.; Kirk, C.F. Studies of inhibition of magnesium corrosion. J. Electrochem. Soc. 1969, 116, 1487. [Google Scholar] [CrossRef]
- Pokrovsky, O.S.; Schott, J.; Castillo, A. Kinetics of brucite dissolution at 25 °C in the presence of organic and inorganic ligands and divalent metals. Geochim. Et Cosmochim. Acta 2005, 69, 905–918. [Google Scholar] [CrossRef]
- Vineyard, H. Grazing-incidence diffraction and the distorted-wave approximation for the study of surfaces. Phys. Rev. B 1982, 26, 4146–4159. [Google Scholar] [CrossRef]
- Singh, M.; Manurung, P.; Low, I.M. Depth profiling of near-surface information in a functionally graded alumina/aluminium titanate composite using grazing-incidence synchrotron radiation diffraction. Mater. Lett. 2002, 55, 344–349. [Google Scholar] [CrossRef]
- Henke, B.L.; Gullikson, E.M.; Davis, J.C. X-ray interactions: Photoabsorption, scattering, transmission, and reflection at E = 50–30, 000 eV, Z = 1–92. At. Data Nucl. Data Tables 1993, 54, 181–342. [Google Scholar] [CrossRef] [Green Version]
- X-Ray Attenuation Length. Available online: http://henke.lbl.gov/optical_constants/atten2.html (accessed on 3 February 2020).
Impurities | Al | As | Co | Cr | Cu | Fe | Mn | Ni | Sb | Zn | Cl |
---|---|---|---|---|---|---|---|---|---|---|---|
Quantity (ppm) | <10 | <20 | <10 | 22 | 2 | 9 | 11 | 1 | <10 | 31 | 10 |
References | pH | [Na] mmol·L−1 | [Si] mmol·L−1 | [F] mmol·L−1 | [Cl] mmol·L−1 |
---|---|---|---|---|---|
PS | 12.37 | 418.9 ± 6.5 | 46.6 ± 15.8 | 19.0 ± 0.4 | 27.4 ± 0.5 |
NaF-PS | 12.40 | 1116.5 ± 237.8 | 32.9 ± 9.1 | 1855.9 ± 37.1 | 20.0 ± 0.4 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Boubon, R.; Deschanels, X.; Cabié, M.; Rébiscoul, D. Evolution of Corrosion Products Formed during the Corrosion of MgZr Alloy in Poral Solutions Extracted from Na-Geopolymers Used as Conditioning Matrix for Nuclear Waste. Materials 2020, 13, 4958. https://doi.org/10.3390/ma13214958
Boubon R, Deschanels X, Cabié M, Rébiscoul D. Evolution of Corrosion Products Formed during the Corrosion of MgZr Alloy in Poral Solutions Extracted from Na-Geopolymers Used as Conditioning Matrix for Nuclear Waste. Materials. 2020; 13(21):4958. https://doi.org/10.3390/ma13214958
Chicago/Turabian StyleBoubon, Rémi, Xavier Deschanels, Martiane Cabié, and Diane Rébiscoul. 2020. "Evolution of Corrosion Products Formed during the Corrosion of MgZr Alloy in Poral Solutions Extracted from Na-Geopolymers Used as Conditioning Matrix for Nuclear Waste" Materials 13, no. 21: 4958. https://doi.org/10.3390/ma13214958
APA StyleBoubon, R., Deschanels, X., Cabié, M., & Rébiscoul, D. (2020). Evolution of Corrosion Products Formed during the Corrosion of MgZr Alloy in Poral Solutions Extracted from Na-Geopolymers Used as Conditioning Matrix for Nuclear Waste. Materials, 13(21), 4958. https://doi.org/10.3390/ma13214958