Insights into the Current Trends in the Utilization of Bacteria for Microbially Induced Calcium Carbonate Precipitation
Abstract
:1. Introduction
2. Bacteria Used in MICP
2.1. Sporosarcina pasteurii
2.2. Bacillus sphaericus
2.3. Bacillus megaterium
2.4. Bacillus subtilis
2.5. Bacillus mucilaginous
2.6. Cyanobacteria
2.7. Other Bacteria
2.8. Bacteria Isolated from Various Environments
2.9. Unidentified or Unknown Bacteria
3. Remarks and Aspects for Future Studies
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Seifan, M.; Sarabadani, Z.; Berenjian, A. Microbially induced calcium carbonate precipitation to design a new type of bio self-healing dental composite. Appl. Microbiol. Biotechnol. 2020, 104, 2029–2037. [Google Scholar] [CrossRef] [PubMed]
- Seifan, M.; Berenjian, A. Microbially induced calcium carbonate precipitation: A widespread phenomenon in the biological world. Appl. Microbiol. Biotechnol. 2019, 103, 4693–4708. [Google Scholar] [CrossRef] [PubMed]
- Zhu, X.; Wang, J.; De Belie, N.; Boon, N. Complementing urea hydrolysis and nitrate reduction for improved microbially induced calcium carbonate precipitation. Appl. Microbiol. Biotechnol. 2019, 103, 8825–8838. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Xie, L.; Huang, X.; Liang, Z.; Liu, B.; Han, N.; Xing, F.; Deng, X. Enhanced calcite precipitation for crack healing by bacteria isolated under low-nitrogen conditions. Appl. Microbiol. Biotechnol. 2019, 103, 7971–7982. [Google Scholar] [CrossRef] [PubMed]
- Ramachandran, A.L.; Polat, P.; Mukherjee, A.; Dhami, N.K. Understanding and creating biocementing beachrocks via biostimulation of indigenous microbial communities. Appl. Microbiol. Biotechnol. 2020, 104, 3655–3673. [Google Scholar] [CrossRef] [PubMed]
- Achal, V.; Mukherjee, A.; Zhang, Q. Unearthing ecological wisdom from natural habitats and its ramifications on development of biocement and sustainable cities. Landsc. Urban Plan. 2016, 155, 61–68. [Google Scholar] [CrossRef]
- Achal, V.; Mukherjee, A. A review of microbial precipitation for sustainable construction. Constr. Build. Mater. 2015, 93, 1224–1235. [Google Scholar] [CrossRef]
- Yaqoob, A.A.; Ibrahim, M.N.M.; Ahmad, A.; Reddy, A.V.B. Toxicology and Environmental Application of Carbon Nanocomposite. In Environmental Remediation through Carbon Based Nanocomposites. Green Energy and Technology; Springer: Singapore, 2020. [Google Scholar] [CrossRef]
- Gupta, S.; Pang, S.D.; Kua, H.W. Autonomous healing in concrete by bio-based healing agents—A review. Constr. Build. Mater. 2017, 146, 419–428. [Google Scholar] [CrossRef]
- Muhammad, N.Z.; Shafaghat, A.; Keyvanfar, A.; Majid, M.Z.A.; Ghoshal, S.; Yasouj, S.E.M.; Ganiyu, A.A.; Kouchaksaraei, M.S.; Kamyab, H.; Taheri, M.M.; et al. Tests and methods of evaluating the self-healing efficiency of concrete: A review. Constr. Build. Mater. 2016, 112, 1123–1132. [Google Scholar] [CrossRef]
- Aziz, Z.A.A.; Mohd-Nasir, H.; Ahmad, A.; Setapar, S.H.M.; Peng, W.L.; Chuo, S.C.; Khatoon, A.; Umar, K.; Yaqoob, A.A.; Ibrahim, M.N.M. Role of Nanotechnology for Design and Development of Cosmeceutical: Application in Makeup and Skin Care. Front. Chem. 2019, 7, 739. [Google Scholar] [CrossRef]
- Vijay, K.; Murmu, M.; Deo, S.V. Bacteria based self healing concrete—A review. Constr. Build. Mater. 2017, 152, 1008–1014. [Google Scholar] [CrossRef]
- Al-Salloum, Y.; Hadi, S.; Abbas, H.; Almusallam, T.; Moslem, M. Bio-induction and bioremediation of cementitious composites using microbial mineral precipitation—A review. Constr. Build. Mater. 2017, 154, 857–876. [Google Scholar] [CrossRef]
- Mugwar, A.J.; Harbottle, M. Toxicity effects on metal sequestration by microbially-induced carbonate precipitation. J. Hazard. Mater. 2016, 314, 237–248. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yaqoob, A.A.; Parveen, T.; Umar, K.; Ibrahim, M.N.M. Role of Nanomaterials in the Treatment of Wastewater: A Review. Water 2020, 12, 495. [Google Scholar] [CrossRef] [Green Version]
- Wong, L.S. Microbial cementation of ureolytic bacteria from the genus Bacillus: A review of the bacterial application on cement-based materials for cleaner production. J. Clean. Prod. 2015, 93, 5–17. [Google Scholar] [CrossRef]
- Kang, C.-H.; So, J.-S. Heavy metal and antibiotic resistance of ureolytic bacteria and their immobilization of heavy metals. Ecol. Eng. 2016, 97, 304–312. [Google Scholar] [CrossRef]
- Li, Q.; Zhang, B.; Ge, Q.; Yang, X. Calcium carbonate precipitation induced by calcifying bacteria in culture experiments: Influence of the medium on morphology and mineralogy. Int. Biodeterior. Biodegrad. 2018, 134, 83–92. [Google Scholar] [CrossRef]
- Cardoso, R.; Pires, I.; Duarte, S.; Monteiro, G.A. Effects of clay’s chemical interactions on biocementation. Appl. Clay Sci. 2018, 156, 96–103. [Google Scholar] [CrossRef]
- Bu, C.; Wen, K.; Liu, S.; Ogbonnaya, U.; Li, L. Development of bio-cemented constructional materials through microbial induced calcite precipitation. Mater. Struct. 2018, 51, 30. [Google Scholar] [CrossRef]
- Porter, H.; Dhami, N.K.; Mukherjee, A. Synergistic chemical and microbial cementation for stabilization of aggregates. Cem. Concr. Compos. 2017, 83, 160–170. [Google Scholar] [CrossRef]
- Choi, S.-G.; Wang, K.; Chu, J. Properties of biocemented, fiber reinforced sand. Constr. Build. Mater. 2016, 120, 623–629. [Google Scholar] [CrossRef]
- Xiao, P.; Liu, H.; Xiao, Y.; Stuedlein, A.W.; Evans, T.M. Liquefaction resistance of bio-cemented calcareous sand. Soil Dyn. Earthq. Eng. 2018, 107, 9–19. [Google Scholar] [CrossRef]
- Sasaki, T.; Kuwano, R. Undrained cyclic triaxial testing on sand with non-plastic fines content cemented with microbially induced CaCO3. Soils Found. 2016, 56, 485–495. [Google Scholar] [CrossRef]
- Salifu, E.; MacLachlan, E.; Iyer, K.R.; Knapp, C.W.; Tarantino, A. Application of microbially induced calcite precipitation in erosion mitigation and stabilisation of sandy soil foreshore slopes: A preliminary investigation. Eng. Geol. 2016, 201, 96–105. [Google Scholar] [CrossRef] [Green Version]
- Tang, Y.; Lian, J.; Xu, G.; Yan, Y.; Xu, H. Effect of Cementation on Calcium Carbonate Precipitation of Loose Sand Resulting from Microbial Treatment. Trans. Tianjin Univ. 2017, 23, 547–554. [Google Scholar] [CrossRef]
- Omoregie, A.I.; Khoshdelnezamiha, G.; Senian, N.; Ong, D.E.L.; Nissom, P.M. Experimental optimisation of various cultural conditions on urease activity for isolated Sporosarcina pasteurii strains and evaluation of their biocement potentials. Ecol. Eng. 2017, 109, 65–75. [Google Scholar] [CrossRef] [Green Version]
- Li, D.; Tian, K.-I.; Zhang, H.-I.; Wu, Y.-Y.; Nie, K.-Y.; Zhang, S.-C. Experimental investigation of solidifying desert aeolian sand using microbially induced calcite precipitation. Constr. Build. Mater. 2018, 172, 251–262. [Google Scholar] [CrossRef]
- Sharaky, A.M.; Mohamed, N.S.; Elmashad, M.E.; Shredah, N.M. Application of microbial biocementation to improve the physico-mechanical properties of sandy soil. Constr. Build. Mater. 2018, 190, 861–869. [Google Scholar] [CrossRef]
- Minto, J.M.; Tan, Q.; Lunn, R.J.; El Mountassir, G.; Guo, H.; Cheng, X. ‘Microbial mortar’-restoration of degraded marble structures with microbially induced carbonate precipitation. Constr. Build. Mater. 2018, 180, 44–54. [Google Scholar] [CrossRef]
- Rowshanbakht, K.; Khamehchiyan, M.; Sajedi, R.H.; Nikudel, M.R. Effect of injected bacterial suspension volume and relative density on carbonate precipitation resulting from microbial treatment. Ecol. Eng. 2016, 89, 49–55. [Google Scholar] [CrossRef]
- Kakelar, M.M.; Ebrahimi, S.; Hosseini, M. Improvement in soil grouting by biocementation through injection method. Asia Pac. J. Chem. Eng. 2016, 11, 930–938. [Google Scholar] [CrossRef]
- Minto, J.M.; Hingerl, F.F.; Benson, S.M.; Lunn, R.J. X-ray CT and multiphase flow characterization of a ‘bio-grouted’ sandstone core: The effect of dissolution on seal longevity. Int. J. Greenh. Gas Control 2017, 64, 152–162. [Google Scholar] [CrossRef] [Green Version]
- Tobler, D.J.; Cuthbert, M.O.; Phoenix, V.R. Transport of Sporosarcina pasteurii in sandstone and its significance for subsurface engineering technologies. Appl. Geochem. 2014, 42, 38–44. [Google Scholar] [CrossRef] [Green Version]
- Grabiec, A.M.; Starzyk, J.; Stefaniak, K.; Wierzbicki, J.; Zawal, D. On possibility of improvement of compacted silty soils using biodeposition method. Constr. Build. Mater. 2017, 138, 134–140. [Google Scholar] [CrossRef]
- Canakci, H.; Sidik, W.; Kılıç, I.H.; Canakci, H. Effect of bacterial calcium carbonate precipitation on compressibility and shear strength of organic soil. Soils Found. 2015, 55, 1211–1221. [Google Scholar] [CrossRef] [Green Version]
- Feng, K.; Montoya, B.M.; Evans, T. Discrete element method simulations of bio-cemented sands. Comput. Geotech. 2017, 85, 139–150. [Google Scholar] [CrossRef] [Green Version]
- Yaqoob, A.A.; Khatoon, A.; Setapar, S.H.M.; Umar, K.; Parveen, T.; Ibrahim, M.N.M.; Ahmad, A.; Rafatullah, M. Outlook on the Role of Microbial Fuel Cells in Remediation of Environmental Pollutants with Electricity Generation. Catalysts 2020, 10, 819. [Google Scholar] [CrossRef]
- Bernardi, D.; DeJong, J.; Montoya, B.; Martinez, B. Bio-bricks: Biologically cemented sandstone bricks. Constr. Build. Mater. 2014, 55, 462–469. [Google Scholar] [CrossRef]
- Cuzman, O.A.; Rescic, S.; Richter, K.; Wittig, L.; Tiano, P. Sporosarcina pasteurii use in extreme alkaline conditions for recycling solid industrial wastes. J. Biotechnol. 2015, 214, 49–56. [Google Scholar] [CrossRef]
- Okyay, T.O.; Rodrigues, D.F. Optimized carbonate micro-particle production by Sporosarcina pasteurii using response surface methodology. Ecol. Eng. 2014, 62, 168–174. [Google Scholar] [CrossRef]
- Zhang, Y.; Guo, H.; Cheng, X. Role of calcium sources in the strength and microstructure of microbial mortar. Constr. Build. Mater. 2015, 77, 160–167. [Google Scholar] [CrossRef]
- Amiri, A.; Bundur, Z.B. Use of corn-steep liquor as an alternative carbon source for biomineralization in cement-based materials and its impact on performance. Constr. Build. Mater. 2018, 165, 655–662. [Google Scholar] [CrossRef]
- Yoosathaporn, S.; Tiangburanatham, P.; Bovonsombut, S.; Chaipanich, A.; Pathom-Aree, W. A cost effective cultivation medium for biocalcification of Bacillus pasteurii KCTC 3558 and its effect on cement cubes properties. Microbiol. Res. 2016, 186, 132–138. [Google Scholar] [CrossRef]
- Williams, S.L.; Kirisits, M.J.; Ferron, R.D. Influence of concrete-related environmental stressors on biomineralizing bacteria used in self-healing concrete. Constr. Build. Mater. 2017, 139, 611–618. [Google Scholar] [CrossRef] [Green Version]
- Amiri, A.; Azima, M.; Bundur, Z.B. Crack remediation in mortar via biomineralization: Effects of chemical admixtures on biogenic calcium carbonate. Constr. Build. Mater. 2018, 190, 317–325. [Google Scholar] [CrossRef]
- Choi, S.-G.; Wang, K.; Wen, Z.; Chu, J. Mortar crack repair using microbial induced calcite precipitation method. Cem. Concr. Compos. 2017, 83, 209–221. [Google Scholar] [CrossRef]
- Balam, N.H.; Mostofinejad, D.; Eftekhar, M. Use of carbonate precipitating bacteria to reduce water absorption of aggregates. Constr. Build. Mater. 2017, 141, 565–577. [Google Scholar] [CrossRef]
- Nosouhian, F.; Mostofinejad, D.; Hasheminejad, H. Influence of biodeposition treatment on concrete durability in a sulphate environment. Biosyst. Eng. 2015, 133, 141–152. [Google Scholar] [CrossRef]
- Verba, C.; Thurber, A.; Alleau, Y.; Koley, D.; Colwell, F.; Torres, M. Mineral changes in cement-sandstone matrices induced by biocementation. Int. J. Greenh. Gas Control 2016, 49, 312–322. [Google Scholar] [CrossRef] [Green Version]
- Cunningham, A.B.; Phillips, A.J.; Troyer, E.; Lauchnor, E.; Hiebert, R.; Gerlach, R.; Spangler, L. Wellbore leakage mitigation using engineered biomineralization. Energy Procedia 2014, 63, 4612–4619. [Google Scholar] [CrossRef] [Green Version]
- Phillips, A.J.; Troyer, E.; Hiebert, R.; Kirkland, C.; Gerlach, R.; Cunningham, A.; Spangler, L.; Kirksey, J.; Rowe, W.; Esposito, R. Enhancing wellbore cement integrity with microbially induced calcite precipitation (MICP): A field scale demonstration. J. Pet. Sci. Eng. 2018, 171, 1141–1148. [Google Scholar] [CrossRef]
- Yu, X.; Qian, C.; Sun, L. The influence of the number of injections of bio-composite cement on the properties of bio-sandstone cemented by bio-composite cement. Constr. Build. Mater. 2018, 164, 682–687. [Google Scholar] [CrossRef]
- Ruan, S.; Qiu, J.; Weng, Y.; Yang, Y.; Yang, E.-H.; Chu, J.; Unluer, C. The use of microbial induced carbonate precipitation in healing cracks within reactive magnesia cement-based blends. Cem. Concr. Res. 2019, 115, 176–188. [Google Scholar] [CrossRef]
- Kalantary, F.; Kahani, M. Evaluation of the Ability to Control Biological Precipitation to Improve Sandy Soils. Procedia Earth Planet. Sci. 2015, 15, 278–284. [Google Scholar] [CrossRef] [Green Version]
- Azadi, M.; Pouri, S. Estimation of Reconstructed Strength of Disturbed Biologically Cemented Sand Under Unconfined Compression Tests. Arab. J. Sci. Eng. 2016, 41, 4847–4854. [Google Scholar] [CrossRef]
- Wen, K.; Li, Y.; Liu, S.; Bu, C.; Li, L. Development of an Improved Immersing Method to Enhance Microbial Induced Calcite Precipitation Treated Sandy Soil through Multiple Treatments in Low Cementation Media Concentration. Geotech. Geol. Eng. 2018, 37, 1015–1027. [Google Scholar] [CrossRef]
- Balam, N.H.; Mostofinejad, D.; Eftekhar, M. Effects of bacterial remediation on compressive strength, water absorption, and chloride permeability of lightweight aggregate concrete. Constr. Build. Mater. 2017, 145, 107–116. [Google Scholar] [CrossRef]
- Al-Salloum, Y.; Abbas, H.; Sheikh, Q.; Hadi, S.; Alsayed, S.; Almusallam, T. Effect of some biotic factors on microbially-induced calcite precipitation in cement mortar. Saudi J. Biol. Sci. 2017, 24, 286–294. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bundur, Z.B.; Kirisits, M.J.; Ferron, R.D. Biomineralized cement-based materials: Impact of inoculating vegetative bacterial cells on hydration and strength. Cem. Concr. Res. 2015, 67, 237–245. [Google Scholar] [CrossRef]
- Xu, J.; Wang, X. Self-healing of concrete cracks by use of bacteria-containing low alkali cementitious material. Constr. Build. Mater. 2018, 167, 1–14. [Google Scholar] [CrossRef]
- Xu, J.; Wang, X.; Wang, B. Biochemical process of ureolysis-based microbial CaCO3 precipitation and its application in self-healing concrete. Appl. Microbiol. Biotechnol. 2018, 102, 3121–3132. [Google Scholar] [CrossRef] [PubMed]
- Bhaskar, S.; Hossain, K.; Lachemi, M.; Wolfaardt, G.; Kroukamp, M.O. Effect of self-healing on strength and durability of zeolite-immobilized bacterial cementitious mortar composites. Cem. Concr. Compos. 2017, 82, 23–33. [Google Scholar] [CrossRef]
- Jadhav, U.; Lahoti, M.; Chen, Z.; Qiu, J.; Cao, B.; Yang, E.-H. Viability of bacterial spores and crack healing in bacteria-containing geopolymer. Constr. Build. Mater. 2018, 169, 716–723. [Google Scholar] [CrossRef]
- Berry, C. The bacterium, Lysinibacillus sphaericus, as an insect pathogen. J. Invertebr. Pathol. 2012, 109, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Park, H.-W.; Bideshi, D.K.; Federici, B.A. Properties and applied use of the mosquitocidal bacterium, Bacillus sphaericus. J. Asia Pac. Entomol. 2010, 13, 159–168. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moravej, S.; Habibagahi, G.; Nikooee, E.; Niazi, A. Stabilization of dispersive soils by means of biological calcite precipitation. Geoderma 2018, 315, 130–137. [Google Scholar] [CrossRef]
- Gupta, S.; Kua, H.W.; Pang, S.D. Healing cement mortar by immobilization of bacteria in biochar: An integrated approach of self-healing and carbon sequestration. Cem. Concr. Compos. 2018, 86, 238–254. [Google Scholar] [CrossRef]
- Seifan, M.; Samani, A.K.; Berenjian, A. New insights into the role of pH and aeration in the bacterial production of calcium carbonate (CaCO3). Appl. Microbiol. Biotechnol. 2017, 101, 3131–3142. [Google Scholar] [CrossRef]
- Seifan, M.; Samani, A.K.; Berenjian, A. A novel approach to accelerate bacterially induced calcium carbonate precipitation using oxygen releasing compounds (ORCs). Biocatal. Agric. Biotechnol. 2017, 12, 299–307. [Google Scholar] [CrossRef]
- Seifan, M.; Ebrahiminezhad, A.; Ghasemi, Y.; Samani, A.K.; Berenjian, A. The role of magnetic iron oxide nanoparticles in the bacterially induced calcium carbonate precipitation. Appl. Microbiol. Biotechnol. 2018, 102, 3595–3606. [Google Scholar] [CrossRef]
- Shirakawa, M.; John, V.M.; De Belie, N.; Alves, J.; Pinto, J.; Gaylarde, C.C. Susceptibility of biocalcite-modified fiber cement to biodeterioration. Int. Biodeterior. Biodegrad. 2015, 103, 215–220. [Google Scholar] [CrossRef]
- Jagannathan, P.; Narayanan, K.S.; Arunachalam, K.D.; Annamalai, S.K. Studies on the mechanical properties of bacterial concrete with two bacterial species. Mater. Today: Proc. 2018, 5, 8875–8879. [Google Scholar] [CrossRef]
- Kadapure, S.A.; Kulkarni, G.S.; Prakash, K.B. A Laboratory Investigation on the Production of Sustainable Bacteria-Blended Fly Ash Concrete. Arab. J. Sci. Eng. 2016, 42, 1039–1048. [Google Scholar] [CrossRef]
- Snoeck, D.; Wang, J.; Bentz, D.; De Belie, N. Applying a biodeposition layer to increase the bond of a repair mortar on a mortar substrate. Cem. Concr. Compos. 2018, 86, 30–39. [Google Scholar] [CrossRef] [PubMed]
- García-González, J.; Rodríguez-Robles, D.; Wang, J.; De Belie, N.; Del Pozo, J.M.M.; Guerra-Romero, M.I.; Juan-Valdés, A. Quality improvement of mixed and ceramic recycled aggregates by biodeposition of calcium carbonate. Constr. Build. Mater. 2017, 154, 1015–1023. [Google Scholar] [CrossRef]
- Eppinger, M.; Bunk, B.; Johns, M.A.; Edirisinghe, J.N.; Kutumbaka, K.K.; Koenig, S.S.K.; Creasy, H.H.; Rosovitz, M.J.; Riley, D.R.; Daugherty, S.; et al. Genome Sequences of the Biotechnologically Important Bacillus megaterium Strains QM B1551 and DSM319. J. Bacteriol. 2011, 193, 4199–4213. [Google Scholar] [CrossRef] [Green Version]
- Dhami, N.K.; Reddy, M.S.; Mukherjee, A. Significant indicators for biomineralisation in sand of varying grain sizes. Constr. Build. Mater. 2016, 104, 198–207. [Google Scholar] [CrossRef]
- Jiang, N.-J.; Yoshioka, H.; Yamamoto, K.; Soga, K. Ureolytic activities of a urease-producing bacterium and purified urease enzyme in the anoxic condition: Implication for subseafloor sand production control by microbially induced carbonate precipitation (MICP). Ecol. Eng. 2016, 90, 96–104. [Google Scholar] [CrossRef] [Green Version]
- Bains, A.; Dhami, N.K.; Mukherjee, A.; Reddy, M.S. Influence of Exopolymeric Materials on Bacterially Induced Mineralization of Carbonates. Appl. Biochem. Biotechnol. 2015, 175, 3531–3541. [Google Scholar] [CrossRef]
- Dhami, N.K.; Reddy, M.S.; Mukherjee, A. Synergistic Role of Bacterial Urease and Carbonic Anhydrase in Carbonate Mineralization. Appl. Biochem. Biotechnol. 2014, 172, 2552–2561. [Google Scholar] [CrossRef]
- Dhami, N.K.; Mukherjee, A.; Reddy, M.S. Micrographical, minerological and nano-mechanical characterisation of microbial carbonates from urease and carbonic anhydrase producing bacteria. Ecol. Eng. 2016, 94, 443–454. [Google Scholar] [CrossRef]
- Singh, L.; Bisht, V.; Aswathy, M.; Chaurasia, L.; Gupta, S. Studies on performance enhancement of recycled aggregate by incorporating bio and nano materials. Constr. Build. Mater. 2018, 181, 217–226. [Google Scholar] [CrossRef]
- Kaur, G.; Dhami, N.K.; Goyal, S.; Mukherjee, A.; Reddy, M.S. Utilization of carbon dioxide as an alternative to urea in biocementation. Constr. Build. Mater. 2016, 123, 527–533. [Google Scholar] [CrossRef]
- Yaqoob, A.A.; Ibrahim, M.N.M.; Rodriguez-Couto, S. Development And modification of materials to build cost-effective Anodes for microbial fuel cells (MFCs): An overview. Biochem. Eng. J. 2020, 3, 107779. [Google Scholar] [CrossRef]
- Yaqoob, A.A.; Ibrahim, M.N.M.; Rafatullah, M.; Chua, Y.S.; Ahmad, A.; Umar, K. Recent Advances in Anodes for Microbial Fuel Cells: An Overview. Materials 2020, 13, 2078. [Google Scholar] [CrossRef] [PubMed]
- Gu, Y.; Xu, X.; Wu, Y.; Niu, T.; Liu, Y.; Li, J.; Du, G.; Liu, L. Advances and prospects of Bacillus subtilis cellular factories: From rational design to industrial applications. Metab. Eng. 2018, 50, 109–121. [Google Scholar] [CrossRef]
- Wang, T.; Liang, Y.; Wu, M.; Chen, Z.; Lin, J.; Yang, L. Natural products from Bacillus subtilis with antimicrobial properties. Chin. J. Chem. Eng. 2015, 23, 744–754. [Google Scholar] [CrossRef]
- Mondal, S.; Ghosh, A. Investigation into the optimal bacterial concentration for compressive strength enhancement of microbial concrete. Constr. Build. Mater. 2018, 183, 202–214. [Google Scholar] [CrossRef]
- Perito, B.; Marvasi, M.; Barabesi, C.; Mastromei, G.; Bracci, S.; Vendrell, M.; Tiano, P. A Bacillus subtilis cell fraction (BCF) inducing calcium carbonate precipitation: Biotechnological perspectives for monumental stone reinforcement. J. Cult. Herit. 2014, 15, 345–351. [Google Scholar] [CrossRef]
- Yu, X.; Qian, C.; Xue, B.; Wang, X. The influence of standing time and content of the slurry on bio-sandstone cemented by biological phosphates. Constr. Build. Mater. 2015, 82, 167–172. [Google Scholar] [CrossRef]
- Vijay, K.; Murmu, M. Effect of calcium lactate on compressive strength and self-healing of cracks in microbial concrete. Front. Struct. Civ. Eng. 2018, 13, 515–525. [Google Scholar] [CrossRef]
- Kalhori, H.; Bagherpour, R. Application of carbonate precipitating bacteria for improving properties and repairing cracks of shotcrete. Constr. Build. Mater. 2017, 148, 249–260. [Google Scholar] [CrossRef]
- Yaqoob, A.A.; Ahmad, H.; Parveen, T.; Ahmad, A.; Oves, M.; Ismail, I.M.I.; Qari, H.A.; Umar, K.; Ibrahim, M.N.M. Recent Advances in Metal Decorated Nanomaterials and Their Various Biological Applications: A Review. Front. Chem. 2020, 8, 341. [Google Scholar] [CrossRef] [PubMed]
- Qian, C.; Ren, L.; Xue, B.; Cao, T. Bio-mineralization on cement-based materials consuming CO 2 from atmosphere. Constr. Build. Mater. 2016, 106, 126–132. [Google Scholar] [CrossRef]
- Chen, H.; Qian, C.; Huang, H. Self-healing cementitious materials based on bacteria and nutrients immobilized respectively. Constr. Build. Mater. 2016, 126, 297–303. [Google Scholar] [CrossRef]
- Wang, K.; Qian, C.; Wang, R. The properties and mechanism of microbial mineralized steel slag bricks. Constr. Build. Mater. 2016, 113, 815–823. [Google Scholar] [CrossRef]
- Yaqoob, A.A.; Ibrahim, M.N.M.; Umar, K.; Ahmad, A.; Setapar, S.H.M. Applications of Supercritical Carbon Dioxide in the Rubber Industry. In Advanced Nanotechnology and Application of Supercritical Fluids; Springer: Cham, Switzerland, 2020; pp. 199–218. [Google Scholar]
- Cam, N.; Benzerara, K.; Georgelin, T.; Jaber, M.; Lambert, J.-F.; Poinsot, M.; Skouri-Panet, F.; Moreira, D.; Lopez-Garcia, P.; Raimbault, E.; et al. Cyanobacterial formation of intracellular Ca-carbonates in undersaturated solutions. Geobiology 2017, 16, 49–61. [Google Scholar] [CrossRef] [Green Version]
- Zhu, T.; Lin, Y.; Lu, X.; Dittrich, M. Assessment of cyanobacterial species for carbonate precipitation on mortar surface under different conditions. Ecol. Eng. 2018, 120, 154–163. [Google Scholar] [CrossRef]
- Zhu, T.; Lu, X.; Dittrich, M. Calcification on mortar by live and UV-killed biofilm-forming cyanobacterial Gloeocapsa PCC73106. Constr. Build. Mater. 2017, 146, 43–53. [Google Scholar] [CrossRef]
- Zhu, T.; Paulo, C.; Merroun, M.L.; Dittrich, M. Potential application of biomineralization by Synechococcus PCC8806 for concrete restoration. Ecol. Eng. 2015, 82, 459–468. [Google Scholar] [CrossRef]
- Bundeleva, I.A.; Shirokova, L.S.; Pokrovsky, O.S.; Bénézeth, P.; Ménez, B.; Gérard, E.; Balor, S. Experimental modeling of calcium carbonate precipitation by cyanobacterium Gloeocapsa sp. Chem. Geol. 2014, 374, 44–60. [Google Scholar] [CrossRef]
- Kumari, S.; Sarkar, P.K. Bacillus cereus hazard and control in industrial dairy processing environment. Food Control 2016, 69, 20–29. [Google Scholar] [CrossRef]
- Li, M.; Zhu, X.; Mukherjee, A.; Huang, M.; Achal, V. Biomineralization in metakaolin modified cement mortar to improve its strength with lowered cement content. J. Hazard. Mater. 2017, 329, 178–184. [Google Scholar] [CrossRef]
- Rozenbaum, O.; Anne, S.; Rouet, J.-L. Modification and modeling of water ingress in limestone after application of a biocalcification treatment. Constr. Build. Mater. 2014, 70, 97–103. [Google Scholar] [CrossRef] [Green Version]
- Zhu, X.; Li, W.; Zhan, L.; Huang, M.; Zhang, Q.; Achal, V. The large-scale process of microbial carbonate precipitation for nickel remediation from an industrial soil. Environ. Pollut. 2016, 219, 149–155. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Liu, Y.; Feng, T.; Zhou, M.; Zhao, L.; Zhou, A.; Li, Z. Immobilizing bacteria in expanded perlite for the crack self-healing in concrete. Constr. Build. Mater. 2017, 148, 610–617. [Google Scholar] [CrossRef]
- Lors, C.; Ducasse-Lapeyrusse, J.; Gagné, R.; Damidot, D. Microbiologically induced calcium carbonate precipitation to repair microcracks remaining after autogenous healing of mortars. Constr. Build. Mater. 2017, 141, 461–469. [Google Scholar] [CrossRef]
- Sharma, T.; Alazhari, M.; Heath, A.; Paine, K.; Cooper, R. AlkaliphilicBacillusspecies show potential application in concrete crack repair by virtue of rapid spore production and germination then extracellular calcite formation. J. Appl. Microbiol. 2017, 122, 1233–1244. [Google Scholar] [CrossRef] [Green Version]
- Helmi, F.M.; Elmitwalli, H.R.; Elnagdy, S.M.; El-Hagrassy, A.F. Calcium carbonate precipitation induced by ureolytic bacteria Bacillus licheniformis. Ecol. Eng. 2016, 90, 367–371. [Google Scholar] [CrossRef]
- Zhan, Q.; Qian, C.; Yi, H. Microbial-induced mineralization and cementation of fugitive dust and engineering application. Constr. Build. Mater. 2016, 121, 437–444. [Google Scholar] [CrossRef]
- Erşan, Y.Ç.; Hernandez-Sanabria, E.; Boon, N.; De Belie, N. Enhanced crack closure performance of microbial mortar through nitrate reduction. Cem. Concr. Compos. 2016, 70, 159–170. [Google Scholar] [CrossRef]
- Bai, Y.; Guo, X.; Li, Y.; Huang, T. Experimental and visual research on the microbial induced carbonate precipitation by Pseudomonas aeruginosa. AMB Express 2017, 7, 57. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lin, C.Y.; Turchyn, A.V.; Steiner, Z.; Bots, P.; Lampronti, G.I.; Tosca, N.J. The role of microbial sulfate reduction in calcium carbonate polymorph selection. Geochim. Cosmochim. Acta 2018, 237, 184–204. [Google Scholar] [CrossRef] [Green Version]
- Li, M.; Fang, C.; Kawasaki, S.; Huang, M.; Achal, V. Bio-consolidation of cracks in masonry cement mortars by Acinetobacter sp. SC4 isolated from a karst cave. Int. Biodeterior. Biodegrad. 2019, 141, 94–100. [Google Scholar] [CrossRef]
- Zhang, J.L.; Wang, C.G.; Wang, Q.L.; Feng, J.L.; Pan, W.; Zheng, X.C.; Liu, B.; Han, N.X.; Xing, F.; Deng, X. A binary concrete crack self-healing system containing oxygen-releasing tablet and bacteria and its Ca2+-precipitation performance. Appl. Microbiol. Biotechnol. 2016, 100, 10295–10306. [Google Scholar] [CrossRef]
- Zhang, J.L.; Wu, R.S.; Li, Y.M.; Zhong, J.Y.; Deng, X.; Liu, B.; Han, N.X.; Xing, F. Screening of bacteria for self-healing of concrete cracks and optimization of the microbial calcium precipitation process. Appl. Microbiol. Biotechnol. 2016, 100, 6661–6670. [Google Scholar] [CrossRef]
- Achal, V.; Pan, X. Influence of Calcium Sources on Microbially Induced Calcium Carbonate Precipitation by Bacillus sp. CR2. Appl. Biochem. Biotechnol. 2014, 173, 307–317. [Google Scholar] [CrossRef]
- Lv, J.-J.; Ma, F.; Li, F.-C.; Zhang, C.-H.; Chen, J.-N. Vaterite induced by Lysinibacillus sp. GW-2 strain and its stability. J. Struct. Biol. 2017, 200, 97–105. [Google Scholar] [CrossRef]
- Lee, Y.S.; Kim, H.J.; Park, W. Non-ureolytic calcium carbonate precipitation by Lysinibacillus sp. YS11 isolated from the rhizosphere of Miscanthus sacchariflorus. J. Microbiol. 2017, 55, 440–447. [Google Scholar] [CrossRef]
- Xu, G.; Li, D.; Jiao, B.; Li, D.; Yin, Y.; Lun, L.; Zhao, Z.; Li, S. Biomineralization of a calcifying ureolytic bacterium Microbacterium sp. GM-1. Electron. J. Biotechnol. 2017, 25, 21–27. [Google Scholar] [CrossRef] [Green Version]
- Javadi, A.S.; Badiee, H.; Sabermahani, M. Mechanical properties and durability of bio-blocks with recycled concrete aggregates. Constr. Build. Mater. 2018, 165, 859–865. [Google Scholar] [CrossRef]
- Vashisht, R.; Attri, S.; Sharma, D.; Shukla, A.; Goel, G. Monitoring biocalcification potential of Lysinibacillus sp. isolated from alluvial soils for improved compressive strength of concrete. Microbiol. Res. 2018, 207, 226–231. [Google Scholar] [CrossRef] [PubMed]
- Siddique, R.; Nanda, V.; Kadri, E.-H.; Khan, M.I.; Singh, M.; Rajor, A. Influence of bacteria on compressive strength and permeation properties of concrete made with cement baghouse filter dust. Constr. Build. Mater. 2016, 106, 461–469. [Google Scholar] [CrossRef]
- Siddique, R.; Singh, K.; Singh, M.; Corinaldesi, V.; Rajor, A. Properties of bacterial rice husk ash concrete. Constr. Build. Mater. 2016, 121, 112–119. [Google Scholar] [CrossRef]
- Krishnapriya, S.; Babu, D.L.V.; Arulaj, P.G. Isolation and identification of bacteria to improve the strength of concrete. Microbiol. Res. 2015, 174, 48–55. [Google Scholar] [CrossRef] [PubMed]
- Hao, Y.; Cheng, L.; Hao, H.; Shahin, M.A. Enhancing fiber/matrix bonding in polypropylene fiber reinforced cementitious composites by microbially induced calcite precipitation pre-treatment. Cem. Concr. Compos. 2018, 88, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Montaño-Salazar, S.M.; Lizarazo-Marriaga, J.; Brandão, P.F. Isolation and Potential Biocementation of Calcite Precipitation Inducing Bacteria from Colombian Buildings. Curr. Microbiol. 2017, 75, 256–265. [Google Scholar] [CrossRef]
- Mwandira, W.; Nakashima, K.; Kawasaki, S. Bioremediation of lead-contaminated mine waste by Pararhodobacter sp. based on the microbially induced calcium carbonate precipitation technique and its effects on strength of coarse and fine grained sand. Ecol. Eng. 2017, 109, 57–64. [Google Scholar] [CrossRef]
- Erşan, Y.Ç.; De Belie, N.; Boon, N. Microbially induced CaCO3 precipitation through denitrification: An optimization study in minimal nutrient environment. Biochem. Eng. J. 2015, 101, 108–118. [Google Scholar] [CrossRef]
- Daskalakis, M.I.; Rigas, F.; Bakolas, A.; Magoulas, A.; Kotoulas, G.; Katsikis, I.; Karageorgis, A.P.; Mavridou, A. Vaterite bio-precipitation induced by Bacillus pumilus isolated from a solutional cave in Paiania, Athens, Greece. Int. Biodeterior. Biodegradation 2015, 99, 73–84. [Google Scholar] [CrossRef]
- Charpe, A.U.; Latkar, M.; Chakrabarti, T. Microbially assisted cementation—A biotechnological approach to improve mechanical properties of cement. Constr. Build. Mater. 2017, 135, 472–476. [Google Scholar] [CrossRef]
- Liu, Z.; Zhang, Y.; Fa, K.; Zhao, H.; Qin, S.; Yan, R.; Wu, B. Desert soil bacteria deposit atmospheric carbon dioxide in carbonate precipitates. Catena 2018, 170, 64–72. [Google Scholar] [CrossRef]
- Seifan, M.; Samani, A.K.; Berenjian, A. Induced calcium carbonate precipitation using Bacillus species. Appl. Microbiol. Biotechnol. 2016, 100, 9895–9906. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Joshi, S.; Goyal, S.; Reddy, M.S. Influence of nutrient components of media on structural properties of concrete during biocementation. Constr. Build. Mater. 2018, 158, 601–613. [Google Scholar] [CrossRef]
- Xu, J.; Yao, W. Multiscale mechanical quantification of self-healing concrete incorporating non-ureolytic bacteria-based healing agent. Cem. Concr. Res. 2014, 64, 1–10. [Google Scholar] [CrossRef]
- Chu, J.; Ivanov, V.; Naeimi, M.; Stabnikov, V.; Liu, H.-L. Optimization of calcium-based bioclogging and biocementation of sand. Acta Geotech. 2014, 9, 277–285. [Google Scholar] [CrossRef]
- Li, H.; Song, Y.; Li, Q.; He, J.; Song, Y. Effective microbial calcite precipitation by a new mutant and precipitating regulation of extracellular urease. Bioresour. Technol. 2014, 167, 269–275. [Google Scholar] [CrossRef]
- Rizwan, S.A.; Khan, H.; Bier, T.A.; Adnan, F. Use of Effective Micro-organisms (EM) technology and self-compacting concrete (SCC) technology improved the response of cementitious systems. Constr. Build. Mater. 2017, 152, 642–650. [Google Scholar] [CrossRef]
- Luo, M.; Qian, C.-X.; Li, R.-Y. Factors affecting crack repairing capacity of bacteria-based self-healing concrete. Constr. Build. Mater. 2015, 87, 1–7. [Google Scholar] [CrossRef]
- Luo, M.; Qian, C.; Li, R.; Rong, H. Efficiency of concrete crack-healing based on biological carbonate precipitation. J. Wuhan Univ. Technol. Sci. Ed. 2015, 30, 1255–1259. [Google Scholar] [CrossRef]
- Qian, C.; Yu, X.; Wang, X. A study on the cementation interface of bio-cement. Mater. Charact. 2018, 136, 122–127. [Google Scholar] [CrossRef]
- Mors, R.; Jonkers, H. Feasibility of lactate derivative based agent as additive for concrete for regain of crack water tightness by bacterial metabolism. Ind. Crop. Prod. 2017, 106, 97–104. [Google Scholar] [CrossRef]
- Gat, D.; Ronen, Z.; Tsesarsky, M. Long-term sustainability of microbial-induced CaCO3 precipitation in aqueous media. Chemosphere 2017, 184, 524–531. [Google Scholar] [CrossRef]
- Liu, W.-T.; Lan, G.; Zeng, P. Size-dependent calcium carbonate precipitation induced microbiologically in aerobic granules. Chem. Eng. J. 2016, 285, 341–348. [Google Scholar] [CrossRef] [Green Version]
- Okyay, T.O.; Nguyen, H.N.; Castro, S.L.; Rodrigues, D.F. CO2 sequestration by ureolytic microbial consortia through microbially-induced calcite precipitation. Sci. Total Environ. 2016, 572, 671–680. [Google Scholar] [CrossRef]
- Wiktor, V.; Jonkers, H. Field performance of bacteria-based repair system: Pilot study in a parking garage. Case Stud. Constr. Mater. 2015, 2, 11–17. [Google Scholar] [CrossRef] [Green Version]
- Jroundi, F.; Gonzalez-Muñoz, M.T.; Garcia-Bueno, A.; Rodriguez-Navarro, C. Consolidation of archaeological gypsum plaster by bacterial biomineralization of calcium carbonate. Acta Biomater. 2014, 10, 3844–3854. [Google Scholar] [CrossRef]
- Kumari, D.; Qian, X.-Y.; Pan, X.; Achal, V.; Li, Q.; Gadd, G.M. Microbially-induced Carbonate Precipitation for Immobilization of Toxic Metals. Adv. Appl. Microbiol. 2016, 94, 79–108. [Google Scholar] [CrossRef] [Green Version]
- Eltarahony, M.; Zaki, S.; Abd-El-Haleem, D. Aerobic and anaerobic removal of lead and mercury via calcium carbonate precipitation mediated by statistically optimized nitrate reductases. Sci. Rep. 2020, 10, 4029. [Google Scholar] [CrossRef] [Green Version]
- Jalilvand, N.; Akhgar, A.; Alikhani, H.A.; Rahmani, H.A.; Rejali, F. Removal of Heavy Metals Zinc, Lead, and Cadmium by Biomineralization of Urease-Producing Bacteria Isolated from Iranian Mine Calcareous Soils. J. Soil Sci. Plant Nutr. 2019, 20, 206–219. [Google Scholar] [CrossRef]
Ingredients | Structure and Properties after MICP | Reference |
---|---|---|
Sand, clay | Increased tensile strength (40.8 kPa) and compressibility, decreased permeability (0.53 × 10−7 m/s) | [19] |
Ottawa silica sand | Unconfined compressive strength (UCS) 1.3 MPa, flexure strength 0.95 MPa | [20] |
Sand, metakaolin, OPC | OPC-MICP has best properties with UCS 1.2 MPa, water absorption 8% | [21] |
Sand, PVA fiber | Highest UCS 1.6 MPa, highest splitting tensile strength 440 kPa, lowest permeability 1.05 × 10−5 m/s | [22] |
Sand | Highest CS 3.29 MPa | [26] |
Desert aeolian sand | Highest UCS 18 MPa, lowest permeability 0.92 × 10−8 m/s | [28] |
Medium/fine sand | UCS 1.74 MPa, durability and water stability increased | [29] |
Poorly graded course sand | UCS 525 kPa | [32] |
Poorly graded sandy soil | UCS 400 kPa | [55] |
Sandy soil | UCS 625 kPa, permeability 1.8 × 10−7 m/s | [56] |
Sandy soil | Highest 6.4 MPa after 4 treatments, permeability 1.0 × 10−5 m/s | [57] |
Materials | Structure and Properties after MICP | Reference |
---|---|---|
Bio-brick from silica rich masonry sand | Highest CS 2.2 MPa | [37] |
Red brick (treatment) | CS 7.54 MPa, reduce water absorption by 49% after treatment | [39] |
Concrete with light weight aggregates | Highest CS 40 MPa, lowest water absorption 5% | [58] |
Bio-mortar | Highest CS 39.6 MPa, tensile strength 37% higher than normal mortar | [59] |
Bio-mortar | Highest UCS 43 MPa, lowest water absorption 2.5% | [42] |
Bio-mortar | Highest UCS 44 MPa | [60] |
Bio-mortar | Highest CS 54/70 MPa at 7/28 days curing | [43] |
Bio-mortar with superplasticizers | Crack width healed 0.35 mm | [44] |
Bio-cement | CS 42 MPa, water absorption 21% | [45] |
Bio-mortar | Crack width healed 0.41 mm, water adsorption restored 95%, CS restored 84% | [61] |
Bio-mortar | Crack width healed 0.27 mm, CS restored 63% | [62] |
Bio-mortar with fiber and zeolite as bacteria carriers | CS 70/100 MPa at 7/270 days | [63] |
Geopolymer | Self-healing observed in 1 month old sample | [64] |
Material | Structure Properties after MICP | Reference |
---|---|---|
Bio-mortar with biochar, superabsorbent polymer, polypropylene fiber | CS 35–60 MPa, flexure strength 9–12 MPa Crack width healed up to 0.9 mm, water penetration restored 70% | [68] |
Bio-concrete with fly ash | Highest CS 32.5 MPa, highest tensile strength 4.1 MPa, highest flexure strength 3.5 MPa | [73] |
Bio-concrete with fly ash | CS 30–40 MPa, tensile strength 2.9–5.0 MPa | [74] |
Bonding repair mortar | Highest slant shear strength 17 MPa | [75] |
Industrial ceramic aggregates (treatment) | Water absorption 6–16%, weight gained 3–7% | [76] |
Material | Structure and Properties after MICP | Reference |
---|---|---|
Treat sand column with varying grain size | Up to 30% CaCO3 formation | [82] |
Bio-concrete with recycled aggregates, nanosilica | Water absorption 5%, void volume 10% | [83] |
Bio-mortar | Highest CS 36 MPa, permeability 5 × 10−5 m/s | [84] |
Material | Structure and Properties after MICP | Reference |
---|---|---|
Bio-mortar | Highest CS 50 MPa, lowest water absorption 5% Crack width healed up to 1.2 mm | [89] |
Bio-concrete | Highest CS 44 MPa Self-healing observed | [90] |
Bio-shotcrete | Highest CS 34 MPa, highest tensile strength 3.4 MPa, lowest water absorption 6.2% Self-healing observed | [92] |
Sand column (mixture of B. subtilis and S. pasteurii) | UCS 1.69 MPa, permeability 1.06 × 10−5 m/s | [93] |
Bacteria (Initial Concentration) | Sand/Soil | Cementation Solution | Performance | Reference |
---|---|---|---|---|
Sporosarcina pasteurii + Bacillus subtilis (OD600 = 1.2) | Sandy soil | 2 M urea + 1 M CaCl2 | UCS = 1.69 MPa Permeability = 1.06 × 10−5 m/s | [93] |
Sporosarcina pasteurii (OD600 = 0.6) | Ottawa silica sand | 0.5 M (urea + CaCl2) | UCS = 1.30 MPa | [20] |
Sporosarcina pasteurii (OD600 = 1.0) | Commercial sand + white kaolin clay | 0.5 M (urea + CaCl2) | Tensile strength = 0.04 MPa Permeability = 0.53 × 10−7 m/s | [19] |
Sporosarcina pasteurii (OD600 = 1.9–2.4) | Desert aeolian sand | 2.5 M (urea + CaCl2) | UCS = 18 MPa Permeability = 0.92 × 10−7 m/s | [28] |
Sporosarcina pasteurii (OD600 = 2.3) | Natural SiO2 sand | 1.0 M (urea + CaCl2) | UCS 1.74 MPa | [29] |
Sporosarcina pasteurii (OD600 = 0.6) | Ottawa silica sand | 0.75 M (urea + CaCl2) | UCS = 6.4 MPa Permeability = 1.00 × 10−5 m/s | [40] |
Sporosarcina pasteurii (Not provided) | Poorly graded medium sand | 1.0 M (urea + CaCl2) | Surface strength = 4.83 MPa | [27] |
Sporosarcina pasteurii (OD600 = 2.0) | Loose sand | 0.5 M (urea + CaCl2) | UCS (MICP) = 0.10 MPa UCS (MICP + OPC) = 1.10 MPa Water adsorption (MICP) = 11% Water adsorption (MICP + OPC) = 8% | [21] |
Sporosarcina pasteurii (OD600 = 3.5) | Standard sand | 0.5 M (urea + CaCl2) | UCS = 3.29 MPa | [26] |
Sporosarcina pasteurii (OD600 = 1.5) | Sandy soil | 3 mM urea + 2 mM CaCl2 | UCS = 0.63 MPa Permeability = 1.80 × 10−5 m/s | [39] |
Sporosarcina pasteurii (1.5 g/L) | Ottawa silica sand + PVA fiber | 0.5 M (urea + CaCl2) | UCS = 2.20 MPa Splitting tensile strength = 0.60 MPa Permeability = 4.00 × 10−7 m/s | [22] |
Sporosarcina pasteurii (OD600 = 2.5) | Poorly graded SiO2 sand | 1.0 M (urea + CaCl2) | UCS = 0.53 MPa | [32] |
Sporosarcina pasteurii (OD600 > 2) | Poorly graded sandy silica | 1.0 M (urea + CaCl2) | UCS = 0.50 MPa Permeability = 0.85 × 10−6 m/s | [31] |
Bacteria (Initial Concentration) | Other Additives | Performance | Reference |
---|---|---|---|
Bacillus sphaericus (1010 cell/mL) | Biochar, PP fiber, SAP | Compressive strength = 53.0 MPa Water penetration = 9.0 mm Crack width healed = 0.9 mm | [68] |
Bacillus sphaericus (Not provided) | Fly ash | Compressive strength = 32.5 MPa | [73] |
Bacillus sp. CT5 (OD600 = 0.5) | - | Compressive strength = 46.0 MPa Water penetration = 14.2 mm | [135] |
Bacillus subtilis (103–107 cell/mL) | - | Compressive strength = 54.0 MPa Water adsorption = 4% Crack width healed = 1.2 mm | [89] |
Lysinibacillus sp. I13 (Not provided) | Fly ash | Compressive strength = 33.6 MPa *Able to heal cracks but no exact values provided | [123] |
Sporosarcina pasteurii (109 cell/mL) | Calcium sulpho-aluminate cement, silica fume | Compressive strength = 46.8 MPa Crack width healed = 0.4 mm | [55] |
Sporosarcina pasteurii (8 × 108 cfu/mL) | - | Compressive strength = 70.0 MPa | [50] |
Sporosarcina pasteurii (106 cell/mL) | Zeolite, fiber reinforced | Compressive strength = 84.0 MPa Water penetration = 1.5 mm Crack width healed = 0.1 mm | [57] |
Sporosarcina pasteurii (108–109 cell/mL) | - | Compressive strength = 39.6 MPa | [47] |
Bacillus cohnii (5.2 × 108 cell/mL) | Expanded pearlite | Crack width healed = 0.8 mm | [108] |
Bacillus sphaericus (105 cell/mL) | Fly ash | Compressive strength = 40.4 MPa | [72] |
Bacillus cereus (5 × 108 cfu/mL) | Metakaolin | Compressive strength = 40.2 MPa | [105] |
Bacillus aerius (105 cell/mL) | Cement baghouse filter dust | Compressive strength = 36.3 MPa Water adsorption = 1.2% | [125] |
Bacillus aerius (105 cell/mL) | Rice husk ash | Compressive strength = 35.0 MPa Water adsorption = 1.1% | [126] |
Bacillus mucilaginous (108–109 cell/mL) | Ceramsite | Crack width healed = 0.5 mm Water permeability = 0.8 × 10−7 m/s | [96] |
Bacillus megaterium (OD600 = 1.5) | - | Compressive strength = 35.0 MPa | [81] |
Pseudomonas aeruginosa Diaphorobacter nitroreducens (Not provided) | Granular activated carbon | Crack width healed = 0.5 mm | [113] |
Soil bacteria (OD600 = 0.866) | - | Compressive strength = 48.0 MPa Water adsorption = 5.8% | [132] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chuo, S.C.; Mohamed, S.F.; Mohd Setapar, S.H.; Ahmad, A.; Jawaid, M.; Wani, W.A.; Yaqoob, A.A.; Mohamad Ibrahim, M.N. Insights into the Current Trends in the Utilization of Bacteria for Microbially Induced Calcium Carbonate Precipitation. Materials 2020, 13, 4993. https://doi.org/10.3390/ma13214993
Chuo SC, Mohamed SF, Mohd Setapar SH, Ahmad A, Jawaid M, Wani WA, Yaqoob AA, Mohamad Ibrahim MN. Insights into the Current Trends in the Utilization of Bacteria for Microbially Induced Calcium Carbonate Precipitation. Materials. 2020; 13(21):4993. https://doi.org/10.3390/ma13214993
Chicago/Turabian StyleChuo, Sing Chuong, Sarajul Fikri Mohamed, Siti Hamidah Mohd Setapar, Akil Ahmad, Mohammad Jawaid, Waseem A. Wani, Asim Ali Yaqoob, and Mohamad Nasir Mohamad Ibrahim. 2020. "Insights into the Current Trends in the Utilization of Bacteria for Microbially Induced Calcium Carbonate Precipitation" Materials 13, no. 21: 4993. https://doi.org/10.3390/ma13214993
APA StyleChuo, S. C., Mohamed, S. F., Mohd Setapar, S. H., Ahmad, A., Jawaid, M., Wani, W. A., Yaqoob, A. A., & Mohamad Ibrahim, M. N. (2020). Insights into the Current Trends in the Utilization of Bacteria for Microbially Induced Calcium Carbonate Precipitation. Materials, 13(21), 4993. https://doi.org/10.3390/ma13214993