Experimental Investigation of Delamination in Composite Continuous Fiber-Reinforced Plastic Laminates with Elastic Couplings
Abstract
:1. Introduction
2. Elastic Coupling Phenomenon in Composites
3. Experimental Procedures
3.1. DCB Specimens
3.2. Test Procedure
3.3. Data Reduction Schemes
3.3.1. Classical Methods
3.3.2. Compliance-Based Beam Method (CBBM)
4. Effect of Elastic Couplings on Composite Laminates
5. Experimental Results
5.1. Critical Strain Energy Release Rate (c-SERR)
5.2. Analysis of Delamination Initiation and Propagation
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
Nomenclature
a | crack length |
aeq | equivalent crack length |
a0 | initial crack length |
h | half thickness of specimen |
n | correction parameter |
A | extensional stiffness matrix |
Aij | component of the extensional stiffness matrix |
A1 | correction parameter |
B | coupling stiffness matrix |
B | specimen width |
Bij | component of the coupling stiffness matrix |
Bt | non-dimensional parameter |
C | compliance |
C0 | initial compliance |
D | bending stiffness matrix |
Dij | component of the bending stiffness matrix |
Dc | non-dimensional parameter |
E1 | longitudinal Young’s modulus |
E2 | transversal Young’s modulus |
Ef | flexural modulus |
G12 | shear modulus |
GIC | critical strain energy release rate |
L | specimen length |
M | moment vector |
N | force vector |
P | applied load |
ν12 | Poisson’s ratio |
δ | displacement |
Δ | correction parameter |
Γ | correction parameter |
List of acronyms | |
AE | acoustic emission |
BE | bending-extension coupled specimen |
BT | bending-twisting coupled specimen |
CBBM | Compliance-Based Beam Method |
DCB | Double Cantilever Beam |
MCC | Modified Compliance Calibration |
CCM | Compliance Calibration Method |
MBT | Modified Beam Theory |
SEM | scanning electron microscope |
References
- D5528 Standard Test. Method for Mode I Interlaminar Fracture Toughness of Unidirectional Fiber-Reinforced Polymer Matrix Composites; ASTM International: West Conshohocken, PA, USA, 2013.
- D7905 Standard Test. Method for Determination of the Mode II Interlaminar Fracture Toughness of Unidirectional Fiber-Reinforced Polymer Matrix Composites; ASTM International: West Conshohocken, PA, USA, 2018.
- De Gracia, J.; Boyano, A.; Arrese, A.; Mujika, F. Analysis of the DCB test of angle-ply laminates including residual stresses. Theor. Appl. Fract. Mech. 2018, 94, 197–204. [Google Scholar] [CrossRef]
- Pereira, A.B.; de Morais, A.B. Mode II interlaminar fracture of glass/epoxy multidirectional laminates. Compos. Part A 2004, 35, 265–272. [Google Scholar] [CrossRef]
- Alfano, G.; Crisfield, M.A. Finite element interface models for the delamination analysis of laminated composites: Mechanical and computational issues. Int. J. Numer. Meth. Eng. 2001, 50, 1701–1736. [Google Scholar] [CrossRef]
- de Borst, R. Numerical aspects of cohesive-zone models. Eng. Fract. Mech. 2003, 70, 1743–1757. [Google Scholar] [CrossRef]
- Gliszczynski, A.; Samborski, S.; Wiacek, N.; Rzeczkowski, J. Mode I Interlaminar Fracture of Glass/Epoxy Unidirectional Laminates. Part II: Numerical Analysis. Materials (Basel) 2019, 12, 1607. [Google Scholar] [CrossRef] [Green Version]
- Herráez, M.; González, C.; Lopes, C.S. A numerical framework to analyze fracture in composite materials: From R-curves to homogenized softening laws. Int. J. Solids Struct. 2018, 134, 216–228. [Google Scholar] [CrossRef]
- Orifici, A.C.; Krueger, R. Benchmark assessment of automated delamination propagation capabilities in finite element codes for static loading. Finite Elem. Anal. Des. 2012, 54, 28–36. [Google Scholar] [CrossRef] [Green Version]
- Rybicki, E.F.; Kanninen, M.F. A finite element calculation of stress intensity factors by a modified crack closure integral. Eng. Fract. Mech. 1977, 9, 931–938. [Google Scholar] [CrossRef]
- Turon, A.; Dávila, C.G.; Camanho, P.P.; Costa, J. An engineering solution for mesh size effects in the simulation of delamination using cohesive zone models. Eng. Fract. Mech. 2007, 74, 1665–1682. [Google Scholar] [CrossRef]
- Gong, Y.; Zhang, B.; Zhao, L.; Zhang, J.; Hu, N.; Zhang, C. R-curve behaviour of the mixed-mode I/II delamination in carbon/epoxy laminates with unidirectional and multidirectional interfaces. Compos. Struct. 2019, 223, 110949. [Google Scholar] [CrossRef]
- Gong, Y.; Zhang, B.; Mukhopadhyay, S.; Hallett, S.R. Experimental study on delamination migration in multidirectional laminates under mode II static and fatigue loading, with comparison to mode I. Compos. Struct. 2018, 261, 683–698. [Google Scholar] [CrossRef] [Green Version]
- Shokrieh, M.M.; Heidari-Rarani, M. Effect of stacking sequence on R-curve behavior of glass/epoxy DCB laminates with 0°//0° crack interface. Mater. Sci. Eng. A 2011, 529, 265–269. [Google Scholar] [CrossRef]
- Schön, J.; Nyman, T.; Blom, A.; Ansell, H. A numerical and experimental investigation of delamination behaviour in the DCB specimen. Compos. Sci. Technol. 2000, 60, 173–184. [Google Scholar] [CrossRef]
- Davidson, B.D. Three Dimensional Analysis and Resulting Design Recommendations for Unidirectional and Multidirectional End-Notched Flexure Tests. J. Compos. Mater. 1995, 29, 2018–2033. [Google Scholar] [CrossRef]
- Olsson, R.A. Simplified improved beam analysis of the DCB specimen. Compos. Sci. Technol. 1992, 43, 329–338. [Google Scholar] [CrossRef]
- Shokrieh, M.M.; Heidari-Rarani, M.; Rahimi, S. Influence of curved delamination front on toughness of multidirectional DCB specimens. Compos. Struct. 2012, 94, 1359–1365. [Google Scholar] [CrossRef]
- York, C.B.; de Almeida, S.F.M. On Extension-Shearing Bending-Twisting coupled laminates. Compos. Struct. 2017, 164, 10–22. [Google Scholar] [CrossRef] [Green Version]
- Rzeczkowski, J.; Samborski, S.; Valvo, P.S. Effect of stiffness matrices terms on delamination front shape in laminates with elastic couplings. Compos. Struct. 2020, 23, 111547. [Google Scholar] [CrossRef]
- Jiang, Z.; Wan, S.; Keller, T.; Fang, Z.; Vassilopoulos, A.P. Vassilopoulos. Influence of curved delamination front on R-curve of DCB specimen. Compos. Struct. 2019, 223, 111311. [Google Scholar] [CrossRef]
- Jiang, Z.; Wan, S.; Zhong, Z.; Li, S.; Shen, K. Effect of curved delamination front on mode-I fracture toughness of adhesively bonded joints. Eng. Fract. Mech. 2015, 138, 73–91. [Google Scholar] [CrossRef]
- Amrutharaj, G.S.; Lam, K.Y.; Cotterell, B. Fracture process zone concept and delamination of composite laminates. Theor. Appl. Fract. Mech. 1995, 24, 57–64. [Google Scholar] [CrossRef]
- de Moura, M.F.S.F.; de Morais, A.B. Equivalent crack based analyses of ENF and ELS tests. Eng. Fract. Mech. 2008, 75, 2584–2596. [Google Scholar] [CrossRef]
- Rzeczkowski, J. An experimental analysis of the end-notched flexure composite laminates beams with elastic couplings. Contin. Mech. 2020, 98, 210. [Google Scholar]
- Rzeczkowski, J.; Samborski, S.; Paśnik, J. Experimental Verification of the DCB Test Configuration Applicability to Mechanically Coupled Composite Laminates. IOP Conf. Ser. Mater. Sci. Eng. 2018, 416, 12055. [Google Scholar] [CrossRef]
- De Moura, M.F.S.F.; Campilho, R.D.S.G.; Gonçalves, J.P.M. Crack equivalent concept applied to the fracture characterization of bonded joints under pure mode I loading. Compos. Sci. Technol. 2008, 68, 2224–2230. [Google Scholar] [CrossRef] [Green Version]
- Lissek, F.; Haeger, A.; Knoblauch, V.; Hloch, S.; Pude, F.; Kaufeld, M. Acoustic emission for interlaminar toughness testing of CFRP: Evaluation of the crack growth due to burst analysis. Compos. Part B Eng. 2018, 136, 55–62. [Google Scholar] [CrossRef]
- Nikbakht, M.; Yousefi, J.; Hosseini-Toudeshky, H.; Minak, G. Delamination evaluation of composite laminates with different interface fiber orientations using acoustic emission features and micro visualization. Compos. Part. B Eng. 2017, 113, 185–196. [Google Scholar] [CrossRef]
- Saeedifar, M.; Fotouhi, M.; Najafabadi, M.A.; Toudeshky, H.H.; Minak, G. Prediction of quasi-static delamination onset and growth in laminated composites by acoustic emission. Compos. Part. B Eng. 2016, 85, 113–122. [Google Scholar] [CrossRef]
- Kaw, A.K. Mechanics of Composite Materials, 2nd ed.; CRC, Taylor & Francis: Boca Raton, FL, USA, 2006; ISBN 9780849313431. [Google Scholar]
- Hashemi, S.; Kinloch, A.J.; Williams, J.G. The analysis of interlaminar fracture in uniaxial fibre-polymer composites. Proc. R. Soc. A 1990, 427, 173–199. [Google Scholar]
- Samborski, S. Analysis of the end-notched flexure test configuration applicability for mechanically coupled fiber reinforced composite laminates. Compos. Struct. 2017, 163, 342–349. [Google Scholar] [CrossRef]
- Samborski, S. Numerical analysis of the DCB test configuration applicability to mechanically coupled Fiber Reinforced Laminated Composite beams. Compos. Struct. 2016, 152, 477–487. [Google Scholar] [CrossRef]
Laminate | Stacking Sequence (for One Sub-laminate) |
---|---|
BT | (45°/0°/45°/45°/0°/−45°/0°/−45°/−45°/−45°/−45°/0°/−45°/45°/0°/0°/45°/45°) |
BE | (45°/−45°/0°/−45°/0°/45°/90°/45°/−45°) |
E1 (GPa) | E2 (GPa) | ν12 (-) | G12 (GPa) |
---|---|---|---|
112.105 | 7.421 | 0.270 | 3.338 |
Interface | A (MPa × mm) × 105 | B (MPa × mm2) × 10−10 | D (MPa × mm3) × 105 | Dc | Bt | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|
0°//0° | 5.0174 | 0.0897 | 0 | −0.2910 | 0.0034 | 0 | 8.2946 | 0.1483 | 0 | 0.0048 | 0 |
0.0897 | 0.3321 | 0 | 0.0034 | 0.0045 | 0 | 0.1483 | 0.5491 | 0 | |||
0 | 0 | 0.1487 | 0 | 0 | −0.0011 | 0 | 0 | 0.2458 | |||
30°//30° | 4.8980 | 0.1401 | 0.0888 | −0.2910 | 0.0034 | 0 | 8.2939 | 0.1485 | 0.0005 | 0.0048 | 0 |
0.1401 | 0.3506 | 0.0305 | 0.0034 | 0.0045 | 0 | 0.1485 | 0.5492 | 0.0002 | |||
0.0888 | 0.0305 | 0.1991 | 0 | 0 | −0.0011 | 0.0005 | 0.0002 | 0.2461 | |||
45°//45° | 4.8123 | 0.1570 | 0.0689 | −0.2910 | 0.0034 | 0 | 8.2934 | 0.1486 | 0.0004 | 0.0048 | 0 |
0.1570 | 0.4026 | 0.0689 | 0.0034 | 0.0045 | 0 | 0.1486 | 0.5495 | 0.0004 | |||
0.0689 | 0.0689 | 0.2160 | 0 | 0 | 0.0011 | 0.0004 | 0.0004 | 0.2462 | |||
60°//60° | 4.7602 | 0.1401 | 0.0305 | −0.2910 | 0.0034 | 0 | 8.2931 | 0.1485 | 0.0002 | 0.0048 | 0 |
0.1401 | 0.4884 | 0.0888 | 0.0034 | 0.0045 | 0 | 0.1485 | 0.5500 | 0.0005 | |||
0.0305 | 0.0888 | 0.1991 | 0 | 0 | −0.0011 | 0.0002 | 0.0005 | 0.2461 |
Laminate | A (MPa × mm) × 105 | B (MPa × mm2) × 10−11 | D (MPa × mm3) × 104 | Dc | Bt | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|
BT | 1.4257 | 0.4512 | 0 | 0.0909 | 0 | 0.0909 | 6.6061 | 2.0906 | 1.5608 | 0.2384 | 0.2363 |
0.4512 | 0.5989 | 0 | 0 | −0.0909 | 0 | 2.0906 | 2.7751 | 1.5608 | |||
0 | 0 | 0.4824 | 0.0909 | 0 | 0.1819 | 1.5608 | 1.5608 | 2.2353 | |||
Laminate | A (MPa × mm) × 104 | B (MPa × mm2) × 103 | D (MPa × mm3) × 103 | Dc | Bt | ||||||
BE | 5.7506 | 2.2560 | 0 | −3.6104 | 0 | 0 | 5.1803 | 3.3060 | 0 | 0.4089 | 0 |
2.2560 | 4.3726 | 0 | 0 | 3.6104 | 0 | 3.3060 | 5.1606 | 0 | |||
0 | 0 | 2.4121 | 0 | 0 | 0 | 0 | 0 | 3.4870 |
Interface | CCM | MBT | MCC | CBBM | ||||
---|---|---|---|---|---|---|---|---|
GIC (N/mm) | Error (%) | GIC (N/mm) | Error (%) | GIC (N/mm) | Error (%) | GIC (N/mm) | Error (%) | |
0°//0° | 0.14 | 0.08 | 0.14 | 0.17 | 0.14 | 2.08 | 0.15 | 0.26 |
0°//30° | 0.18 | 2.50 | 0.19 | 2.61 | 0.19 | 1.95 | 0.21 | 6.28 |
0°//45° | 0.39 | 3.49 | 0.38 | 4.07 | 0.38 | 4.68 | 0.39 | 2.21 |
0°//60° | 0.53 | 4.33 | 0.51 | 1.16 | 0.50 | 1.93 | 0.74 | 10.08 |
0°//90° | 0.40 | 10.28 | 0.42 | 13.40 | 0.40 | 10.55 | 0.45 | 12.29 |
30°//30° | 0.16 | 1.68 | 0.17 | 2.25 | 0.17 | 2.11 | 0.17 | 2.37 |
30°//−30° | 0.49 | 11.54 | 0.5 | 11.92 | 0.51 | 11.04 | 0.56 | 16.66 |
45°//45° | 0.16 | 1.59 | 0.16 | 1.44 | 0.16 | 1.36 | 0.18 | 0.76 |
45°//−45° | 0.22 | 7.32 | 0.22 | 8.64 | 0.23 | 8.76 | 0.24 | 8.94 |
60°//60° | 0.67 | 3.10 | 0.66 | 4.11 | 0.63 | 5.26 | 0.79 | 4.64 |
60°//−60° | 0.46 | 4.21 | 0.46 | 4.87 | 0.42 | 3.59 | 0.45 | 3.75 |
90°//90° | 0.54 | 2.20 | 0.54 | 3.60 | 0.54 | 6.83 | 0.61 | 9.33 |
BE | 0.51 | 3.56 | 0.50 | 2.32 | 0.49 | 5.38 | 0.65 | 9.06 |
BT | 0.36 | 3.06 | 0.36 | 2.59 | 0.34 | 2.11 | 0.38 | 1.47 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rzeczkowski, J.; Samborski, S.; de Moura, M. Experimental Investigation of Delamination in Composite Continuous Fiber-Reinforced Plastic Laminates with Elastic Couplings. Materials 2020, 13, 5146. https://doi.org/10.3390/ma13225146
Rzeczkowski J, Samborski S, de Moura M. Experimental Investigation of Delamination in Composite Continuous Fiber-Reinforced Plastic Laminates with Elastic Couplings. Materials. 2020; 13(22):5146. https://doi.org/10.3390/ma13225146
Chicago/Turabian StyleRzeczkowski, Jakub, Sylwester Samborski, and Marcelo de Moura. 2020. "Experimental Investigation of Delamination in Composite Continuous Fiber-Reinforced Plastic Laminates with Elastic Couplings" Materials 13, no. 22: 5146. https://doi.org/10.3390/ma13225146
APA StyleRzeczkowski, J., Samborski, S., & de Moura, M. (2020). Experimental Investigation of Delamination in Composite Continuous Fiber-Reinforced Plastic Laminates with Elastic Couplings. Materials, 13(22), 5146. https://doi.org/10.3390/ma13225146