The Effect of Glue Cohesive Stiffness on the Elastic Performance of Bent Wood–CFRP Beams
Abstract
:1. Introduction
1.1. Adhesively Bonded Connections
1.2. Strengthening Solid Wood with FRP Strips
1.3. Strengthening GLT with FRP Strips
1.4. Introduction Summary
2. Preparation of the Composite Samples
3. Evaluation of the Cohesive Stiffness of a PUR Adhesive
4. Laboratory Tests—Bending
- 7 samples made of glue laminated timber (B);
- 7 samples with one CFRP strip (BW);
- 7 samples with two CFRP strips (BWW).
5. Comparison between Simplified Model and FE Analysis
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Lavisci, P.; Berti, S.; Pizzo, B.; Triboulot, P.; Zanuttini, R. A shear test for structural adhesives used in the consolidation of old timber. Holz als Roh- und Werkst. 2001, 59, 145–152. [Google Scholar] [CrossRef]
- Gereke, T.; Hering, S.; Niemz, P. Finite element analysis of wood adhesive joints. Ann. Warsaw Univ. Life Sci. -SGGW. For. Wood Technol. 2015, 89, 36–49. [Google Scholar]
- Henrique de Almeida, D.; Schmitt Cavalheiro, R.; Borges de Macêdo, L.; Calil Neto, C.; Luis Christoforo, A.; Calil Junior, C.; Antonio Rocco Lahr, F. Evaluation of Quality in the Adhesion of Glued Laminated Timber (Glulam) of Paricá and Lyptus Wood Species. Int. J. Mater. Eng. 2014, 4, 114–118. [Google Scholar] [CrossRef]
- Cavalheiro, R.S.; Neto, C.C.; Christoforo, A.L.; Junior, C.C.; Lahr, F.A.R. Evaluation of Shear Strength and Cyclic Delamination of Paricá (Schizolobium amazonicum) Glued Laminated Timber. Int. J. Mater. Eng. 2016, 6, 60–65. [Google Scholar] [CrossRef]
- Wang, V.Z.; Ginger, J.D.; Narayan, K. Intralaminar and interlaminar fracture characterization in glued-laminated timber members using image analysis. Eng. Fract. Mech. 2012, 82, 73–84. [Google Scholar] [CrossRef]
- Xu, B.H.; Zhao, Y.H.; Guo, J.H.; Wang, Y.X. Fracture toughnesses of interlaminar fracture of glued-laminated timber. Wood Res. 2016, 61, 951–958. [Google Scholar]
- Fortino, S.; Zagari, G.; Mendicino, A.L.; Dill-Langer, G. A simple approach for FEM simulation of Mode I cohesive crack growth in glued laminated timber under short-term loading. Raken. Mek. J. Struct. Mech. 2012, 45, 1–20. [Google Scholar]
- Vessby, J.; Serrano, E.; Enquist, B. Contact-free measurement and numerical and analytical evaluation of the strain distribution in a wood-FRP lap-joint. Mater. Struct. 2010, 43, 1085–1095. [Google Scholar] [CrossRef] [Green Version]
- Wan, J.; Smith, S.T.; Qiao, P.Z. FRP-to-Softwood Joints: Experimental Investigation. In Proceedings of the 5th International Conference on FRP Composites in Civil Engineering, Beijing, China, 27–29 September 2010; pp. 1–5. [Google Scholar]
- Wan, J.; Smith, S.T.; Qiao, P.; Chen, F. Experimental Investigation on FRP-to-Timber Bonded Interfaces. J. Compos. Constr. 2014, 18, 1–9. [Google Scholar] [CrossRef]
- Biscaia, H.C.; Cruz, D.; Chastre, C. Analysis of the debonding process of CFRP-to-timber interfaces. Constr. Build. Mater. 2016, 113, 96–112. [Google Scholar] [CrossRef]
- Subhani, M.; Globa, A.; Al-Ameri, R.; Moloney, J. Effect of grain orientation on the CFRP-to-LVL bond. Compos. Part B Eng. 2017, 129, 187–197. [Google Scholar] [CrossRef]
- Vahedian, A.; Shrestha, R.; Crews, K. Width effect of FRP externally bonded to timber. In Proceedings of the 9th International Conference on Fibre-Reinforced Polymer (FRP) Composites in Civil Engineering (CICE 2018), Paris, France, 17–19 July 2018; pp. 558–565. [Google Scholar]
- Vahedian, A.; Shrestha, R.; Crews, K. Bond strength model for externally bonded FRP-to-timber interface. Compos. Struct. 2018, 200, 328–339. [Google Scholar] [CrossRef]
- Vahedian, A.; Shrestha, R.; Crews, K. Analysis of externally bonded Carbon Fibre Reinforced Polymers sheet to timber interface. Compos. Struct. 2018, 191, 239–250. [Google Scholar] [CrossRef]
- Vahedian, A.; Shrstha, R.; Crews, K. Experimental Investigation on the Effect of Bond Thickness on the Interface Behaviour of Fibre Reinforced Polymer Sheet Bonded to Timber. Int. J. Struct. Constr. Eng. 2018, 12, 1157–1163. [Google Scholar]
- Vahedian, A.; Shrestha, R.; Crews, K. Effective bond length and bond behaviour of FRP externally bonded to timber. Constr. Build. Mater. 2017, 151, 742–754. [Google Scholar] [CrossRef]
- Biscaia, H.C.; Chastre, C.; Cruz, D.; Viegas, A. Prediction of the interfacial performance of CFRP laminates and old timber bonded joints with different strengthening techniques. Compos. Part B Eng. 2017, 108, 1–17. [Google Scholar] [CrossRef]
- Arriaga, F.; Íñiguez-Gonzales, G.; Esteban, M. Bonding shear strength in timber and gfrp glued with epoxy adhesives. Wood Res. 2011, 56, 297–310. [Google Scholar]
- Sena-Cruz, J.; Jorge, M.; Branco, J.M.; Cunha, V.M.C.F. Bond between glulam and NSM CFRP laminates. Constr. Build. Mater. 2013, 40, 260–269. [Google Scholar] [CrossRef] [Green Version]
- Fava, G.; Carvelli, V.; Poggi, C. Pull-out strength of glued-in FRP plates bonded in glulam. Constr. Build. Mater. 2013, 43, 362–371. [Google Scholar] [CrossRef]
- Lee, Y.; Park, J.; Hong, S.; Kim, S. A Study of Bond of Structural Timber and Carbon Fiber Reinforced Polymer Plate. Mater. Sci. 2015, 21, 563–567. [Google Scholar] [CrossRef] [Green Version]
- Fiorelli, J.; Dias, A.A. Analysis of the strength and stiffness of timber beams reinforced with carbon fiber and glass fiber. Mater. Res. 2003, 6, 193–202. [Google Scholar] [CrossRef] [Green Version]
- Kossakowski, P.G. Load—Bearing Capacity of Wooden Beams Reinforced with Composite Sheets. Structure 2011, 3, 1–9. [Google Scholar]
- Kim, Y.J.; Harries, K.A. Modeling of timber beams strengthened with various CFRP composites. Eng. Struct. 2010, 32, 3225–3234. [Google Scholar] [CrossRef]
- Kim, Y.J.; Hossain, M.; Harries, K.A. CFRP strengthening of timber beams recovered from a 32 year old quonset: Element and system level tests. Eng. Struct. 2013, 57, 213–221. [Google Scholar] [CrossRef]
- Corradi, M.; Borri, A.; Righetti, L.; Speranzini, E. Uncertainty analysis of FRP reinforced timber beams. Compos. Part B Eng. 2017, 113, 174–184. [Google Scholar] [CrossRef]
- de Jesus, A.M.P.; Pinto, J.M.T.; Morais, J.J.L. Analysis of solid wood beams strengthened with CFRP laminates of distinct lengths. Constr. Build. Mater. 2012, 35, 817–828. [Google Scholar] [CrossRef]
- Andor, K.; Lengyel, A.; Polgár, R.; Fodor, T.; Karácsonyi, Z. Experimental and statistical analysis of spruce timber beams reinforced with CFRP fabric. Constr. Build. Mater. 2015, 99, 200–207. [Google Scholar] [CrossRef]
- Borri, A.; Corradi, M.; Grazini, A. A method for flexural reinforcement of old wood beams with CFRP materials. Compos. Part B Eng. 2005, 36, 143–153. [Google Scholar] [CrossRef]
- de la Rosa García, P.; Escamilla, A.C.; Nieves González García, M. Bending reinforcement of timber beams with composite carbon fiber and basalt fiber materials. Compos. Part B Eng. 2013, 55, 528–536. [Google Scholar] [CrossRef] [Green Version]
- de la Rosa García, P.; Cobo Escamilla, A.; González García, M.N. Analysis of the flexural stiffness of timber beams reinforced with carbon and basalt composite materials. Compos. Part B Eng. 2016, 86, 152–159. [Google Scholar] [CrossRef]
- Rescalvo, F.; Valverde-Palacios, I.; Suarez, E.; Gallego, A. Experimental Comparison of Different Carbon Fiber Composites in Reinforcement Layouts for Wooden Beams of Historical Buildings. Materials (Basel) 2017, 10, 1113. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jankowski, L.J.; Jasieńko, J.; Nowak, T.P. Experimental assessment of CFRP reinforced wooden beams by 4-point bending tests and photoelastic coating technique. Mater. Struct. 2010, 43, 141–150. [Google Scholar] [CrossRef]
- Nowak, T.P.; Jasieńko, J.; Czepiżak, D. Experimental tests and numerical analysis of historic bent timber elements reinforced with CFRP strips. Constr. Build. Mater. 2013, 40, 197–206. [Google Scholar] [CrossRef]
- Schober, K.U.; Rautenstrauch, K. Post-strengthening of timber structures with CFRP’s. Mater. Struct. 2007, 40, 27–35. [Google Scholar] [CrossRef]
- Morales-Conde, M.J.; Rodríguez-Liñán, C.; Rubio-de Hita, P. Bending and shear reinforcements for timber beams using GFRP plates. Constr. Build. Mater. 2015, 96, 461–472. [Google Scholar] [CrossRef]
- Basterra, L.A.; Balmori, J.A.; Morillas, L.; Acuña, L.; Casado, M. Internal reinforcement of laminated duo beams of low-grade timber with GFRP sheets. Constr. Build. Mater. 2017, 154, 914–920. [Google Scholar] [CrossRef]
- Nadir, Y.; Nagarajan, P.; Ameen, M.; Arif M, M. Flexural stiffness and strength enhancement of horizontally glued laminated wood beams with GFRP and CFRP composite sheets. Constr. Build. Mater. 2016, 112, 547–555. [Google Scholar] [CrossRef]
- Vahedian, A.; Shrestha, R.; Crews, K. Experimental and analytical investigation on CFRP strengthened glulam laminated timber beams: Full-scale experiments. Compos. Part B Eng. 2019, 164, 377–389. [Google Scholar] [CrossRef]
- Thorhallsson, E.R.; Hinriksson, G.I.; Snæbjörnsson, J.T. Strength and stiffness of glulam beams reinforced with glass and basalt fibres. Compos. Part B Eng. 2017, 115, 300–307. [Google Scholar] [CrossRef]
- Brunetti, M.; Christovasilis, I.P.; Micheloni, M.; Nocetti, M.; Pizzo, B. Production feasibility and performance of carbon fibre reinforced glulam beams manufactured with polyurethane adhesive. Compos. Part B Eng. 2019, 156, 212–219. [Google Scholar] [CrossRef]
- Glišović, I.; Stevanović, B.; Todorović, M.; Stevanović, T. Glulam beams externally reinforced with cfrp plates. Wood Res. 2016, 61, 141–154. [Google Scholar]
- Glišović, I.; Stevanović, B.; Todorović, M. Flexural reinforcement of glulam beams with CFRP plates. Mater. Struct. 2016, 49, 2841–2855. [Google Scholar] [CrossRef]
- Glišović, I.; Pavlović, M.; Stevanović, B.; Todorović, M. Numerical Analysis of Glulam Beams Reinforced with CFRP Plates. J. Civ. Eng. Manag. 2017, 23, 868–879. [Google Scholar] [CrossRef] [Green Version]
- Khelifa, M.; Auchet, S.; Méausoone, P.-J.; Celzard, A. Finite element analysis of flexural strengthening of timber beams with Carbon Fibre-Reinforced Polymers. Eng. Struct. 2015, 101, 364–375. [Google Scholar] [CrossRef]
- Subhani, M.; Globa, A.; Al-Ameri, R.; Moloney, J. Flexural strengthening of LVL beam using CFRP. Constr. Build. Mater. 2017, 150, 480–489. [Google Scholar] [CrossRef]
- Fiorelli, J.; Dias, A.A. Glulam beams reinforced with FRP externally-bonded: Theoretical and experimental evaluation. Mater. Struct. 2011, 44, 1431–1440. [Google Scholar] [CrossRef]
- Raftery, G.M.; Harte, A.M. Low-grade glued laminated timber reinforced with FRP plate. Compos. Part B Eng. 2011, 42, 724–735. [Google Scholar] [CrossRef]
- Raftery, G.M.; Harte, A.M. Nonlinear numerical modelling of FRP reinforced glued laminated timber. Compos. Part B Eng. 2013, 52, 40–50. [Google Scholar] [CrossRef]
- Raftery, G.M.; Rodd, P.D. FRP reinforcement of low-grade glulam timber bonded with wood adhesive. Constr. Build. Mater. 2015, 91, 116–125. [Google Scholar] [CrossRef]
- Osmannezhad, S.; Faezipour, M.; Ebrahimi, G. Effects of GFRP on bending strength of glulam made of poplar (Populus deltoids) and beech (Fagus orientalis). Constr. Build. Mater. 2014, 51, 34–39. [Google Scholar] [CrossRef]
- Shi, H.; Liu, W.; Fang, H.; Bai, Y.; Hui, D. Flexural responses and pseudo-ductile performance of lattice-web reinforced GFRP-wood sandwich beams. Compos. Part B Eng. 2017, 108, 364–376. [Google Scholar] [CrossRef]
- Bal, B.C. Flexural properties, bonding performance and splitting strength of LVL reinforced with woven glass fiber. Constr. Build. Mater. 2014, 51, 9–14. [Google Scholar] [CrossRef]
- Yang, H.; Liu, W.; Lu, W.; Zhu, S.; Geng, Q. Flexural behavior of FRP and steel reinforced glulam beams: Experimental and theoretical evaluation. Constr. Build. Mater. 2016, 106, 550–563. [Google Scholar] [CrossRef]
- Tsai, M.Y.; Oplinger, D.W.; Morton, J. Improved theoretical solutions for adhesive lap joints. Int. J. Solids Struct. 1998, 35, 1163–1185. [Google Scholar] [CrossRef]
- Tsai, M.Y.; Morton, J. An investigation into the stresses in double-lap adhesive joints with laminated composite adherends. Int. J. Solids Struct. 2010, 47, 3317–3325. [Google Scholar] [CrossRef] [Green Version]
- Xiao, X.S.; Foss, P.H.; Schroeder, J.A. Stiffness prediction of the double lap shear joint. Part 1: Analytical solution. Int. J. Adhes. Adhes. 2004, 24, 229–237. [Google Scholar] [CrossRef]
- Camanho, P.P.; Davila, C.G.; de Moura, M.F. Numerical Simulation of Mixed-mode Progressive Delamination in Composite Materials. J. Compos. Mater. 2003, 37, 1415–1438. [Google Scholar] [CrossRef]
- Hemanth, R.H.; Ruchin, P.; Gourav, G.; Venkatesha, K.S.; Ravi Kumar, G.V.V.; Sklyut, H.; Kulak, M.; Heinimann, M. Performance Evaluation of Finite Elements for Analysis of Advanced Hybrid Laminates. In Proceedings of the ABAQUS User’s Conference, Yilan, Taiwan, 4–5 November 2010; pp. 1–15. [Google Scholar]
- Kawecki, B.; Podgórski, J. 3D ABAQUS Simulation of Bent Softwood Elements. Arch. Civ. Eng. 2020, 66, 323–337. [Google Scholar] [CrossRef]
- Vu-Quoc, L.; Tan, X.G. Optimal solid shells for non-linear analyses of multilayer composites. I. Statics. Comput. Methods Appl. Mech. Eng. 2003, 192, 975–1016. [Google Scholar] [CrossRef]
- Simulia ABAQUS, User’s Guide. Available online: https://www.3ds.com/products-services/simulia/services-support/support/documentation/ (accessed on 10 January 2019).
- Kaw, A.K. Mechanics of Composite Materials, 2nd ed.; CRC press: Boca Raton, FL, USA, 2006; ISBN 0-8493-1343-0. [Google Scholar]
- Gere, J.M.; Goodno, B.J. Mechanics of Materials, 2nd ed.; Cengage Learning: Cambridge, UK, 2013. [Google Scholar]
- Jones, R.M. Mechanics of Composite Materials, 2nd ed.; Taylor & Francis: New York, NY, USA, 1999. [Google Scholar]
- S&P C-LAMINATE —Technical Information. Available online: https://www.sp-reinforcement.pl/sites/default/files/field_product_col_doc_file/c-laminates_polska_ver012019-low.pdf (accessed on 15 January 2019).
- S&P Resin 220—Technical Information. Available online: https://www.sp-reinforcement.pl/sites/default/files/field_product_col_doc_file/resin220_polska_ver20190523.pdf (accessed on 20 May 2019).
Beam Type | Average Stiffness of the “K” and “KW” Samples (kN/mm) | Comparison | |
---|---|---|---|
Experimental | FEM | ||
Ku,lab | Ku,FEM | ||
“K” | 269.87 | 270.36 | 1.00 |
“KW” | 170.29 | 173.18 | 1.02 |
Description | Parameter | Value |
---|---|---|
Elastic modules in a three-dimensional state (GPa) | E1 | 11.439 |
E2 | 0.732 | |
E3 | 0.458 | |
Shear modulus in a three-dimensional state (GPa) | G12 | 0.715 |
G13 | 0.529 | |
G23 | 0.069 | |
Poisson coefficients (/) | ν12 | 0.335 |
ν13 | 0.358 | |
ν23 | 0.416 |
Configuration Type | Height (mm) | Width (mm) |
---|---|---|
B | 159.4 | 93.4 |
BW | 160.8 | 93.5 |
BWW | 162.1 | 93.3 |
Description | Parameter | Value |
---|---|---|
Elastic modulus of S&P C-Laminate (GPa) | E1 = EW | 175 |
Elastic modulus of Resin 220 (GPa) | E2 = E3 | 7.10 |
Shear modulus of epoxy resin (GPa) | G12 = G13 = G23 = GW | 2.73 |
Poisson coefficients (/) | ν12 = ν13 = ν23 | 0.3 |
CFRP strip thickness (mm) | tW | 1.4 |
Beam Type | Average Stiffness of the Beams (kN/mm) | Comparison | |||
---|---|---|---|---|---|
Experimental | Equivalent Area | FEM | |||
Ku,lab | Ku,equiv | Ku,FEM | |||
B | 2.913 | 3.136 | 2.915 | 1.08 | 1.00 |
BW | 3.165 | 3.482 | 3.129 | 1.10 | 0.99 |
BWW | 3.278 | 3.907 | 3.307 | 1.19 | 1.01 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kawecki, B.; Podgórski, J. The Effect of Glue Cohesive Stiffness on the Elastic Performance of Bent Wood–CFRP Beams. Materials 2020, 13, 5075. https://doi.org/10.3390/ma13225075
Kawecki B, Podgórski J. The Effect of Glue Cohesive Stiffness on the Elastic Performance of Bent Wood–CFRP Beams. Materials. 2020; 13(22):5075. https://doi.org/10.3390/ma13225075
Chicago/Turabian StyleKawecki, Bartosz, and Jerzy Podgórski. 2020. "The Effect of Glue Cohesive Stiffness on the Elastic Performance of Bent Wood–CFRP Beams" Materials 13, no. 22: 5075. https://doi.org/10.3390/ma13225075
APA StyleKawecki, B., & Podgórski, J. (2020). The Effect of Glue Cohesive Stiffness on the Elastic Performance of Bent Wood–CFRP Beams. Materials, 13(22), 5075. https://doi.org/10.3390/ma13225075