The Performance of Preloaded Bolts in Seismically Prequalified Steel Joints in a Fire Scenario
Abstract
:1. Introduction
2. Framework of the Activity and Methodology
2.1. Investigated Joints
2.2. Finite Element Modelling Assumptions
2.3. Validation of FE Models
3. Discussion of Results
4. Conclusions
- Consistently with recent studies, the shear forces in the bolts significantly increase in a fire scenario, which depends on the modification the rigidities of the structural system to which a variation of the distribution of internal forces is associated.
- The fire performances of the joints depend on the applied vertical loads, thus increasing the shear action on the beam which corresponds a reduction in the joints’ capacity under fire. However, the increase in shear action within the bolts is less affected by the applied vertical load because the shear force applied on the beam is also transferred by friction between the end-plate of the connection and the column flange on the compression side.
- In all investigated cases, the plastic deformations are mostly concentrated at the beam extremities, leaving connection (i.e., the bolts and the end-plate) in elastic range.
- Despite the large increase in the shear force in the bolts, their failure was not observed in any of the investigated cases. This result confirms the effectiveness of the design seismic rules that allow to attainment of over-resistant bolts also able to resist a fire scenario.
Author Contributions
Funding
Conflicts of Interest
References
- Costanzo, S.; Tartaglia, R.; Di Lorenzo, G.; De Martino, A. Seismic Behaviour of EC8-Compliant Moment Resisting and Concentrically Braced Frame. Buildings 2019, 9, 196. [Google Scholar] [CrossRef] [Green Version]
- Costanzo, S.; Landolfo, R. Concentrically braced frames: European vs North American seismic design provisions. Open Civ. Eng. J. 2017, 11, 453–463. [Google Scholar] [CrossRef] [Green Version]
- Costanzo, S.; D’Aniello, M.; Landolfo, R. The influence of moment resisting beam-to-column connections on seismic behavior of chevron concentrically braced frames. Soil Dyn. Earthq. Eng. 2018, 113, 136–147. [Google Scholar] [CrossRef]
- Costanzo, S.; D’Aniello, M.; Landolfo, R. Proposal of design rules for ductile X-CBFS in the framework of EUROCODE 8. Earthq. Eng. Struct. Dyn. 2019, 48, 124–151. [Google Scholar] [CrossRef] [Green Version]
- Costanzo, S.; D’Aniello, M.; Landolfo, R. Critical review of seismic design criteria for chevron concentrically braced frames: The role of the brace-intercepted beam. Ing. Sismica Int. J. Earthq. Eng. 2016, 33, 72–89. [Google Scholar]
- Macillo, V.; Campiche, A.; Shakeel, S.; Bucciero, B.; Pali, T.; Terracciano, M.T.; Fiorino, L.; Landolfo, R. Seismic Behaviour of Sheathed CFS Buildings: Shake-Table Testing and Numerical Modelling. Key Eng. Mater. 2018, 763, 584–591. [Google Scholar] [CrossRef]
- Campiche, A.; Shakeel, S.; Macillo, V.; Terracciano, M.T.; Bucciero, B.; Pali, T.; Fiorino, L.; Landolfo, R. Seismic Behaviour of Sheathed CFS Buildings: Shake Table Tests and Numerical Modelling. Ing. Sismica 2018, 2, 106–123. [Google Scholar]
- Campiche, A.; Fiorino, L.; Landolfo, R. Numerical modelling of CFS two-storey sheathing-braced building under shaking-table excitations. J. Constr. Steel Res. 2020, 170. [Google Scholar] [CrossRef]
- Campiche, A.; Shakeel, S.; Bucciero, B.; Pali, T.; Fiorino, L.; Landolfo, R. Seismic behaviour of strap-braced LWS structures: Shake table testing and numerical modelling. In IOP Conference Series: Materials Science and Engineering, Proceedings of the 2018 5th International Conference on Advanced Materials, Mechanics and Structural Engineering, Seoul, South Korea, 19–21 October 2018; IOP Publishing Ltd.: Bristol, UK, 2019; Volume 473, p. 12032. [Google Scholar]
- Campiche, A.; Shakeel, S.; Landolfo, R. Pre-tensioned UHS steel bracing system for CFS structures: Planning of research project. In Advances in Engineering Materials, Structures and Systems: Innovations, Mechanics and Applications; Taylor and Francis Group: Abingdon, UK, 2019; pp. 1318–1323. [Google Scholar]
- Campiche, A.; Shakeel, S. Effect of Architectural Non-Structural Components on Lateral Behaviour of CFS Structures: Shake-Table Tests and Numerical Modelling. Compdyn Proc. 2019, 3, 5791–5801. [Google Scholar]
- Campiche, A. Development of an innovative multi-performance system for LWS structures. Stability and Ductility of Steel Structures. In Proceedings of the International Colloquia on Stability and Ductility of Steel Structures, Prague, Czech Republic, 11–13 September 2019; pp. 213–220. [Google Scholar]
- Campiche, A.; Shakeel, S.; Fiorino, L.; Landolfo, R. Seismic design criteria for CFS steel-sheathed shear walls. Stability and Ductility of Steel Structures. In Proceedings of the International Colloquia on Stability and Ductility of Steel Structures, Prague, Czech Republic, 11–13 September 2019; pp. 221–228. [Google Scholar]
- Shakeel, S.; Campiche, A.; Landolfo, R. Numerical modelling of a two storey LWS building braced with gypsum-based panels. Stability and Ductility of Steel Structures. In Proceedings of the International Colloquia on Stability and Ductility of Steel Structures, Prague, Czech Republic, 11–13 September 2019; pp. 997–1004. [Google Scholar]
- Shakeel, S.; Campiche, A.; Landolfo, R. Behaviour factor evaluation of CFS shear walls with gypsum board sheathing according to FEMA P695. In Advances in Engineering Materials, Structures and Systems: Innovations, Mechanics and Applications, Proceedings of the 7th International Conference on Structural Engineering, Mechanics and Computation (SEMC 2019), Cape Town, South Africa, 2–4 September 2019; Zingoni, A., Ed.; CRC Press/Balkema: Leiden, The Netherlands, 2019. [Google Scholar]
- Di Lorenzo, G.; Formisano, A.; Landolfo, R.; Mazzolani, F.M.; Terracciano, G. On the use of cold-formed thin walled members for vertical addition of existing masonry buildings. In Proceedings of the SDSS’ Rio 2010: International Colloquium Stability and Ductility of Steel Structures, Rio de Janeiro, Brazil, 8–10 September 2010; Volume 2, pp. 945–952. [Google Scholar]
- Di Lorenzo, G.; Formisano, A.; Landolfo, R. On the origin of I beams and quick analysis on the structural efficiency of hot-rolled steel members. Open Civ. Eng. J. 2017, M3, 332–344. [Google Scholar] [CrossRef] [Green Version]
- Formisano, A.; Di Lorenzo, G.; Iannuzzi, I.; Landolfo, R. Seismic vulnerability and fragility of existing Italian industrial steel buildings. Open Civ. Eng. J. 2017, 11, 1122–1137. [Google Scholar] [CrossRef] [Green Version]
- Rizzo, F.; Di Lorenzo, G.; Formisano, A.; Landolfo, R. Time-Dependent Corrosion Wastage Model for Wrought Iron Structures. J. Mater. Civ. 2019, 31, 4019165. [Google Scholar] [CrossRef]
- Di Lorenzo, G.; Babilio, E.; Formisano, A.; Landolfo, R. Innovative steel 3D trusses for preservating archaeological sites: Design and preliminary results. J. Constr. Steel Res. 2019, 154, 250–262. [Google Scholar] [CrossRef]
- Latour, M.; Rizzano, G. Cyclic behavior and modeling of a dissipative connector for cross-laminated timber panel buildings. J. Earthq. Eng. 2015, 19, 137–171. [Google Scholar] [CrossRef]
- Francavilla, A.B.; Latour, M.; Piluso, V.; Rizzano, G.; Jaspart, J.P.; Demonceau, J.F. On the Robustness of Earthquake-Resistant Moment-Resistant Frames: Influence of Innovative Beam-to-Column Joints. Open Constr. Build. Technol. J. 2018, 12, 101–111. [Google Scholar] [CrossRef]
- Latour, M.; Rizzano, G. Design of X-shaped double split tee joints accounting for moment-shear interaction. J. Constr. Steel Res. 2015, 104, 115–126. [Google Scholar] [CrossRef]
- Francavilla, A.B.; Latour, M.; Piluso, V.; Rizzano, G. Design of full-strength full-ductility extended end-plate beam-to-column joints. J. Constr. Steel Res. 2018, 148, 77–96. [Google Scholar] [CrossRef]
- Francavilla, A.B.; Latour, M.; Piluso, V.; Rizzano, G. Design criteria for beam-to-column connections equipped with friction devices. J. Constr. Steel Res. 2020, 172, 106240. [Google Scholar] [CrossRef]
- Cavallaro, G.F.; Francavilla, A.B.; Latour, M.; Piluso, V.; Rizzano, G. Cyclic response of low yielding connections using different friction materials. Soil Dyn. Earthq. Eng. 2018, 114, 404–423. [Google Scholar] [CrossRef]
- Lemos, A.; da Silva, L.S.; Latour, M.; Rizzano, G. Numerical modelling of innovative DST steel joint under cyclic loading. Arch. Civ. Mech. Eng. 2018, 18, 687–701. [Google Scholar] [CrossRef]
- Chisari, C.; Francavilla, A.B.; Latour, M.; Piluso, V.; Rizzano, G.; Amadio, C. Critical issues in parameter calibration of cyclic models for steel members. Eng. Struct. 2017, 132, 123–138. [Google Scholar] [CrossRef]
- Latour, M.; Rizzano, G. Mechanical modelling of exposed column base plate joints under cyclic loads. J. Constr. Steel Res. 2019, 162, 105726. [Google Scholar] [CrossRef]
- Iannone, F.; Latour, M.; Piluso, V.; Rizzano, G. Experimental analysis of bolted steel beam-to-column connections: Component identification. J. Earthq. Eng. 2011, 15, 214–244. [Google Scholar] [CrossRef]
- Latour, M.; Rizzano, G. Experimental behavior and mechanical modeling of dissipative T-stub connections. J. Struct. Eng. 2012, 138, 170–182. [Google Scholar] [CrossRef]
- ANSI/AISC 358-16, Prequalified Connections for Special and Intermediate Steel Moment Frames for Seismic Applications; ANSI: Washington, DC, USA, 2016.
- Building Standard Law of Japan (BSL), provided by The Building Center of Japan (BCJ). Available online: http://www.bcj.or.jp (accessed on 28 October 2020).
- EN 1993:1–8, Design of Steel Structures—Part 1–8: Design of Joints; CEN: Brussels, Belgium, 2005.
- EN 1998-1, Design of Structures for Earthquake Resistance—Part 1: General Rules, Seismic Actions and Rules for Buildings; CEN: Brussels, Belgium, 2005.
- Landolfo, R. European Pre-Qualified Steel JOINTS—EQUALJOINTS: Final Report—European Commission Research Programme of the Research Fund for Coal and Steel; Technical Group: TG S8; European Commission: Brussels, Belgium, 2017; EUR 28903; ISSN 1831-9424. [Google Scholar]
- Landolfo, R. EQUALJOINTS-Plus: Final Report—European Commission Research Programme of the Research Fund for Coal and Steel; Technical Group: TG S8; European Commission: Brussels, Belgium, 2019. [Google Scholar]
- Scawthorn, C.; Eidinger, J.M.; Schiff, A.J. Fire Following Earthquake; ASCE Publications: Reston, VA, USA, 2005; ISBN 0784407398. [Google Scholar]
- Wang, Y.C.; Dai, X.H.; Bailey, C.G. An experimental study of relative structural fire behaviour and robustness of different types of steel joint in restrained steel frames. J. Constr. Steel Res. 2011, 67, 1149–1163. [Google Scholar] [CrossRef]
- Wald, F.; Sokol, Z.; Moore, D. Horizontal forces in steel structures tested in fire. J. Constr. Steel Res. 2009, 1896–1903. [Google Scholar] [CrossRef]
- Strejček, M.; Wald, F.; Sokol, Z. Column web panel at elevated temperature. Fire Technol. 2010, 46, 37–47. [Google Scholar] [CrossRef]
- Dai, X.H.; Wang, Y.C.; Bailey, C.G. Effects of partial fire protection on temperature developments in steel joints protected by intumescent coating. Fire Saf. J. 2009, 44, 376–386. [Google Scholar] [CrossRef]
- Tartaglia, R.; D’Aniello, M.; Zimbru, M.; Landolfo, R. Finite element simulations on the ultimate response of extended stiffened end-plate joints. Steel Compos. Struct. 2018, 27, 727–745. [Google Scholar]
- EN 1990, Basis of Structural Design; European Committee for Standardization: Brussels, Belgium, 2001.
- Dassault, Abaqus 6.14—Abaqus Analysis User’s Manual; Dassault Systèmes Simulia Corp.: Johnston, RI, USA, 2014.
- EN 1993-1-2, Design of Steel Structures. Part 1.2: General Rules—Structural Fire Design; European Committee for Standardization: Brussels, Belgium, 2005.
- Ding, J.; Wang, Y.C. Temperatures in unprotected joints between steel beams and concrete-filled tubular columns in fire. Fire Saf. J. 2009, 44, 16–32. [Google Scholar] [CrossRef]
- Dutta, A.; Dhar, S.; Acharyya, S.K. Material characterization of SS 316 in low-cycle fatigue loading. J. Mater. Sci. 2010, 45, 1782–1789. [Google Scholar] [CrossRef]
- Pavlovic, M.; Heistermann, C.; Veljkovic, M.; Pak, D.; Feldmann, M.; Rebelo, C.; Da Silva, L.S. Connections in towers for wind converters, part I: Evaluation of down-scaled experiments. J. Const. Steel Res. 2015, 115, 445–457. [Google Scholar] [CrossRef]
- Qiang, X.; Bijlaard, F.S.K.; Kolstein, H.; Jiang, X. Behaviour of beam-to-column high strength steel endplate connections under fire conditions—Part 1: Experimental study. Eng. Struct. 2014, 64, 23–38. [Google Scholar] [CrossRef]
- Qiang, X.; Bijlaard, F.S.K.; Kolstein, H.; Jiang, X. Behaviour of beam-to-column high strength steel endplate connections under fire conditions—Part 2: Numerical study. Eng. Struct. 2014, 64, 39–51. [Google Scholar] [CrossRef]
Label | Design Performance | Shear Action | Beam Profile | Column Profile | Bolts | End-Plate | |||
---|---|---|---|---|---|---|---|---|---|
Rows | Diameter | H | b | t | |||||
- | mm | mm | mm | mm | |||||
BC1-F-0.25Vpl | Full strength | 0.25 Vpl | IPE360 | HEB280 | 6 | 30 | 870 | 280 | 25 |
BC1-F-0.5Vpl5 | 0.5 Vpl | ||||||||
BC1-F-0.75Vpl | 0.75 Vpl | ||||||||
BC1-E-0.25Vpl | Equal strength | 0.25 Vpl | IPE360 | HEB280 | 4 | 27 | 600 | 280 | 18 |
BC1-E-0.5Vpl5 | 0.5 Vpl | ||||||||
BC1-E-0.75Vpl | 0.75 Vpl | ||||||||
BC2-F-0.25Vpl | Full strength | 0.25 Vpl | IPE450 | HEB340 | 6 | 27 | 1100 | 300 | 30 |
BC2-F-0.5Vpl5 | 0.5 Vpl | ||||||||
BC2-F-0.75Vpl | 0.75 Vpl | ||||||||
BC2-E-0.25Vpl | Equal strength | 0.25 Vpl | IPE450 | HEB340 | 4 | 30 | 770 | 300 | 20 |
BC2-E-0.5Vpl5 | 0.5 Vpl | ||||||||
BC2-E-0.75Vpl | 0.75 Vpl | ||||||||
BC3-F-0.25Vpl | Full strength | 0.25 Vpl | IPE600 | HEB500 | 6 | 36 | 1100 | 300 | 22 |
BC3-F-0.5Vpl5 | 0.5 Vpl | ||||||||
BC3-F-0.75Vpl | 0.75 Vpl | ||||||||
BC3-E-0.25Vpl | Equal strength | 0.25 Vpl | IPE600 | HEB500 | 6 | 36 | 1100 | 300 | 18 |
BC3-E-0.5Vpl5 | 0.5 Vpl | ||||||||
BC3-E-0.75Vpl | 0.75 Vpl |
Elements | Material | Elastic Modulus | Yield Stress | Ultimate Stress |
---|---|---|---|---|
N/mm2 | N/mm2 | N/mm2 | ||
Bolts | 10.9 | 210,000 | 900 | 1000 |
Profiles and Plates | S355 | 210,000 | 355 | 510 |
Welds | S460 | 210,000 | 460 | 460 |
Specimens | Configuration | Bolt Resistance (Capacity “C”) | Bolts Forces (Demand “D”) | Verification | ||||
---|---|---|---|---|---|---|---|---|
Bolt Rows | NRd 1 | VRd 2 | NEd 3 | VEd 4 | D/C | C/D | ||
- | kN | kN | kN | kN | - | - | ||
BC1-F | 0.25 Vpl | 6 | 3054 | 1031 | 2358 | 11.56 | 0.56 | 1.78 |
0.5 Vpl | 6 | 3054 | 1031 | 2358 | 31.41 | 0.58 | 1.72 | |
0.75 Vpl | 6 | 3054 | 1031 | 2358 | 38.37 | 0.59 | 1.70 | |
BC1-E | 0.25 Vpl | 4 | 1649 | 687 | 1927 | 10.92 | 0.85 | 1.18 |
0.5 Vpl | 4 | 1649 | 687 | 1944 | 20.72 | 0.87 | 1.15 | |
0.75 Vpl | 4 | 1649 | 687 | 1974 | 26.3 | 0.89 | 1.12 | |
BC2-F | 0.25 Vpl | 6 | 3054 | 1031 | 2358 | 13.21 | 0.56 | 1.77 |
0.5 Vpl | 6 | 3054 | 1031 | 2358 | 14.79 | 0.57 | 1.77 | |
0.75 Vpl | 6 | 3054 | 1031 | 2360 | 48.73 | 0.60 | 1.67 | |
BC2-E | 0.25 Vpl | 4 | 2036 | 848 | 2360 | 8.91 | 0.84 | 1.19 |
0.5 Vpl | 4 | 2036 | 848 | 2370 | 18.7 | 0.85 | 1.17 | |
0.75 Vpl | 4 | 2036 | 848 | 2418 | 27.75 | 0.88 | 1.13 | |
BC3-F | 0.25 Vpl | 6 | 4397 | 1832 | 3432 | 23.7 | 0.57 | 1.75 |
0.5 Vpl | 6 | 4397 | 1832 | 3432 | 62.7 | 0.59 | 1.69 | |
0.75 Vpl | 6 | 4397 | 1832 | 3432 | 106.3 | 0.62 | 1.62 | |
BC3-E | 0.25 Vpl | 6 | 4397 | 1832 | 3432 | 16.02 | 0.57 | 1.77 |
0.5 Vpl | 6 | 4397 | 1832 | 3432 | 44.79 | 0.58 | 1.72 | |
0.75 Vpl | 6 | 4397 | 1832 | 3432 | 77.6 | 0.60 | 1.67 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tartaglia, R.; D’Aniello, M.; Andreini, M.; La Mendola, S. The Performance of Preloaded Bolts in Seismically Prequalified Steel Joints in a Fire Scenario. Materials 2020, 13, 5079. https://doi.org/10.3390/ma13225079
Tartaglia R, D’Aniello M, Andreini M, La Mendola S. The Performance of Preloaded Bolts in Seismically Prequalified Steel Joints in a Fire Scenario. Materials. 2020; 13(22):5079. https://doi.org/10.3390/ma13225079
Chicago/Turabian StyleTartaglia, Roberto, Mario D’Aniello, Marco Andreini, and Saverio La Mendola. 2020. "The Performance of Preloaded Bolts in Seismically Prequalified Steel Joints in a Fire Scenario" Materials 13, no. 22: 5079. https://doi.org/10.3390/ma13225079
APA StyleTartaglia, R., D’Aniello, M., Andreini, M., & La Mendola, S. (2020). The Performance of Preloaded Bolts in Seismically Prequalified Steel Joints in a Fire Scenario. Materials, 13(22), 5079. https://doi.org/10.3390/ma13225079