Numerical Modelling of CFS Three-Story Strap-Braced Building under Shaking-Table Excitations
Abstract
:1. Introduction
2. Mock-Up Description
3. Shake-Table Tests
4. Numerical Modelling
5. Experimental vs. Numerical Results
6. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Tartaglia, R.; D’Aniello, M.; De Martino, A. Ultimate performance of external end-plate bolted joints under column loss scenario accounting for the influence of the transverse beam. Open Constr. Build. Technol. J. 2017, 12, 132–139. [Google Scholar] [CrossRef]
- Tartaglia, R.; D’Aniello, M.; Zimbru, M. Experimental and numerical study on the T-Stub behaviour with preloaded bolts under large deformations. Structures 2020, 27, 2137–2155. [Google Scholar] [CrossRef]
- D’Aniello, M.; Tartaglia, R.; Cassiano, D. Experimental investigation of the inelastic tensile behaviour of non-preloadable grade 8.8 bolts. Ingegneria Sismica Int. J. Earth Eng. 2020, 2, 92–110. [Google Scholar]
- Tartaglia, R.; D’Aniello, M. Influence of transvserse beams on the ultimate behaviour of seismic resistant partial strength beam-to-column joints. Ingegneria Sismica Int. J. Earth Eng. 2020, 3, 50–66. [Google Scholar]
- Tartaglia, R.; D’Aniello, M.; Rassati, G.A.; Swanson, J.; Landolfo, R. Influence of composite slab on the nonlinear response of extended end-plate beam-to-column joints. Key Eng. Mater. 2017, 763, 818–825. [Google Scholar] [CrossRef]
- Tartaglia, R.; D’Aniello, M.; Landolfo, R. Numerical simulations to predict the seismic performance of a 2-story steel moment-resisting frame. Materials 2020, 13, 4831. [Google Scholar] [CrossRef]
- Tartaglia, R.; D’Aniello, M.; Andreini, M.; La Mendola, S. The performance of preloaded bolts in seismically prequalified steel joints in a fire scenario. Materials 2020, 13, 5079. [Google Scholar] [CrossRef]
- Cassiano, D.; D’Aniello, M.; Rebelo, C. Parametric finite element analyses on flush end-plate joints under column removal. J. Constr. Steel Res. 2017, 137, 77–92. [Google Scholar] [CrossRef]
- Costanzo, S.; D’Aniello, M.; Landolfo, R. Seismic design criteria for chevron CBFs: European vs North American codes (part-1). J. Constr. Steel Res. 2017, 135, 83–96. [Google Scholar] [CrossRef]
- Cassiano, D.; D’Aniello, M.; Rebelo, C. Seismic behaviour of gravity load designed flush end-plate joints. Steel Compos. Struct. 2018, 26, 621–634. [Google Scholar] [CrossRef]
- Costanzo, S.; Tartaglia, R.; Di Lorenzo, G.; De Martino, A. Seismic Behaviour of EC8-Compliant Moment Resisting and Concentrically Braced Frame. Buildings 2019, 9, 196. [Google Scholar] [CrossRef] [Green Version]
- D’Aniello, M.; Tartaglia, R.; Costanzo, S.; Campanella, G.; Landolfo, R.; De Martino, A. Experimental tests on extended stiffened end-plate joints within equal joints project. Key Eng. Mater. 2018, 763, 406–413. [Google Scholar] [CrossRef]
- Costanzo, S.; D’Aniello, M.; Landolfo, R. Proposal of design rules for ductile X-CBFS in the framework of EUROCODE 8. Earthq. Eng. Struct. Dyn. 2019, 48, 124–151. [Google Scholar] [CrossRef] [Green Version]
- Costanzo, S.; D’Aniello, M.; Landolfo, R. Critical review of seismic design criteria for chevron concentrically braced frames: The role of the brace-intercepted beam. Ing. Sismica Int. J. Earth Eng. 2016, 33, 72–89. [Google Scholar]
- Costanzo, S.; D’Aniello, M.; Landolfo, R. Seismic design rules for ductile Eurocode compliant two storey X concentrically braced frames. Steel Compos. Struct. 2020, 36, 273–291. [Google Scholar]
- Latour, M.; Rizzano, G. Cyclic behavior and modeling of a dissipative connector for cross-laminated timber panel buildings. J. Earthq. Eng. 2015, 19, 137–171. [Google Scholar] [CrossRef]
- Latour, M.; Rizzano, G. Design of X-shaped double split tee joints accounting for moment-shear interaction. J. Constr. Steel Res. 2015, 104, 115–126. [Google Scholar] [CrossRef]
- Francavilla, A.B.; Latour, M.; Piluso, V.; Rizzano, G. Design of full-strength full-ductility extended end-plate beam-to-column joints. J. Constr. Steel Res. 2018, 148, 77–96. [Google Scholar] [CrossRef]
- Cavallaro, G.F.; Francavilla, A.B.; Latour, M.; Piluso, V.; Rizzano, G. Cyclic response of low yielding connections using different friction materials. Soil Dyn. Earthq. Eng. 2018, 114, 404–423. [Google Scholar] [CrossRef]
- Lemos, A.; da Silva, L.S.; Latour, M.; Rizzano, G. Numerical modelling of innovative DST steel joint under cyclic loading. Arch. Civ. Mech. Eng. 2018, 18, 687–701. [Google Scholar] [CrossRef]
- Chisari, C.; Francavilla, A.B.; Latour, M.; Piluso, V.; Rizzano, G.; Amadio, C. Critical issues in parameter calibration of cyclic models for steel members. Eng. Struct. 2017, 132, 123–138. [Google Scholar] [CrossRef]
- Fiorino, L.; Macillo, V.; Landolfo, R. Experimental characterization of quick mechanical connecting systems for cold-formed steel structures. Adv. Struct. Eng. 2017, 20, 1098–1110. [Google Scholar] [CrossRef]
- Fiorino, L.; Iuorio, O.; Macillo, V.; Terracciano, M.T.; Pali, T.; Landolfo, R. Seismic design method for CFS diagonal strap-braced stud walls: Experimental validation. J. Struct. Eng. 2016, 142, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Landolfo, R.; Fiorino, L.; Iuorio, O. A specific procedure for seismic design of cold-formed steel housing. Adv. Steel Construct. 2010, 6, 603–618. [Google Scholar]
- Fiorino, L.; Iuorio, O.; Macillo, V.; Landolfo, R. Performance-based design of sheathed CFS buildings in seismic area. Thin Wall. Struct. 2012, 61, 248–257. [Google Scholar] [CrossRef]
- Fiorino, L.; Iuorio, O.; Landolfo, R. Sheathed cold-formed steel housing: A seismic design procedure. Thin Wall. Struct. 2009, 47, 919–930. [Google Scholar] [CrossRef]
- Fülöp, L.; Dubina, D. Performance of wall-stud cold-formed shear panels under monotonic and cyclic loading: Part II: Numerical modelling and performance analysis. Thin Wall. Struct. 2004, 42, 339–349. [Google Scholar] [CrossRef]
- Kim, T.-W.; Wilcoski, J.; Foutch, D.A. Analysis of measured and calculated response of a cold-formed steel shear panel structure. J. Earthq. Eng. 2007, 11, 67–85. [Google Scholar] [CrossRef] [Green Version]
- Macillo, V.; Shakeel, S.; Fiorino, L.; Landolfo, R. Development and calibration of hysteretic model for CFS strap braced stud walls. Int. J. Adv. Steel Construct. 2018, 14, 337–360. [Google Scholar] [CrossRef] [Green Version]
- Pastor, N.; Rodríguez-Ferran, A. Hysteretic modelling of x-braced shear walls. Thin Wall. Struct. 2005, 43, 1567–1588. [Google Scholar] [CrossRef] [Green Version]
- Zeynalian, M.; Ronagh, H.R. A numerical study on seismic characteristics of knee-braced cold formed steel shear walls. Thin Wall. Struct. 2011, 49, 1517–1525. [Google Scholar] [CrossRef]
- Zeynalian, M.; Ronagh, H.R. A numerical study on seismic performance of strap-braced cold-formed steel shear walls. Thin Wall. Struct. 2012, 60, 229–238. [Google Scholar] [CrossRef]
- Mirzaei, A.; Sangree, R.H.; Velchev, K.; Comeau, G.; Balh, N.; Rogers, C.A.; Schafer, B.W. Seismic capacity-based design of narrow strap-braced cold-formed steel walls. J. Constr. Steel Res. 2015, 115, 81–91. [Google Scholar] [CrossRef]
- Gerami, M.; Lotfi, M.; Nejat, R. Inelastic behavior of cold-formed braced walls under monotonic and cyclic loading. Int. J. Adv. Struct. Eng. 2015, 7, 181–209. [Google Scholar] [CrossRef] [Green Version]
- Kim, T.-W.; Wilcoski, J.; Foutch, D.A.; Lee, M.S. Shaketable tests of a cold-formed steel shear panel. Eng. Struct. 2006, 28, 1462–1470. [Google Scholar] [CrossRef]
- Comeau, G.; Velchev, K.; Rogers, C.A. Development of seismic force modification factors for cold-formed steel strap braced walls. Can. J. Civ. Eng. 2010, 37, 236–249. [Google Scholar] [CrossRef]
- Fiorino, L.; Shakeel, S.; Landolfo, R. Behaviour factor (q) evaluation the CFS braced structures according to FEMA P695. J. Constr. Steel Res. 2017, 138, 324–339. [Google Scholar] [CrossRef]
- Mazzoni, S.; McKenna, F.; Scott, M.H.; Fenves, G.L. OpenSees. 2009. Available online: https://opensees.berkeley.edu/ (accessed on 28 December 2020).
- Fiorino, L.; Terracciano, M.T.; Landolfo, R. Experimental investigation of seismic behaviour of low dissipative CFS strap-braced stud walls. J. Constr. Steel Res. 2016, 127, 92–107. [Google Scholar] [CrossRef]
- Harris, H.G.; Sabnis, G.M. Structural Modeling and Experimental Techniques; CRC Press: Boca Raton, FL, USA, 1999. [Google Scholar]
- Fiorino, L.; Bucciero, B.; Landolfo, R. Shake table tests of three storey cold-formed steel structures with strap-braced walls. Bull. Earthq. Eng. 2019, 17, 4217–4245. [Google Scholar] [CrossRef]
- Campiche, A.; Shakeel, S.; Bucciero, B.; Pali, T.; Fiorino, L.; Landolfo, R. Seismic behaviour of strap-braced LWS structures: Shake table testing and numerical modelling. Sci. Eng. 2018, 473, 012032. [Google Scholar] [CrossRef]
- Structural Vibration Solutions A/S. ARTeMIS Modal 5.2.1.1. 2018. Available online: https://svibs.com/ (accessed on 28 December 2020).
- Leng, J.; Peterman, K.D.; Bian, G.; Buonopane, S.G.; Schafer, B.W. Modeling seismic response of a full-scale cold-formed steel-framed building. Eng. Struct. 2017, 153, 146–165. [Google Scholar] [CrossRef]
- American Society of Civil Engineers. SEI/ASCE, ASCE 7-10 Minimim Design Loads for Buildings and Other Structures; American Society of Civil Engineers: Reston, VG, USA, 2010. [Google Scholar]
Component | Element | Properties | |
---|---|---|---|
Wall | 1st story | Stud | C50 × 20 × 10 × 0.7 |
Track | U51.4 × 20 × 0.7 | ||
Diagonal strap | 80 × 0.7 | ||
Gusset plates | 130 × 130 × 0.7 | ||
Track reinforcement | C50 × 20 × 10 × 0.7 | ||
Blocking | C50 × 20 × 10 × 0.7 U51.4 × 20 × 0.7 | ||
Flat strap | 20 × 0.7 | ||
Hold-down to chord stud fasteners | no. 4 M6 bolts Class 8.8 | ||
Hold-down to steel beam fasteners | no. 1 M8 Class 10.9 | ||
2nd story | Stud | C50 × 20 × 10 × 0.7 | |
Track | U51.4 × 20 × 0.7 | ||
Diagonal strap | 53 × 0.7 | ||
Gusset plates | 117 × 117 × 0.7 | ||
Track reinforcement | C50 × 20 × 10 × 0.7 | ||
Blocking | C50 × 20 × 10 × 0.7 U51.4 × 20 × 0.7 | ||
Flat strap | 20 × 0.7 | ||
Hold-down to chord stud fasteners | no. 4 M6 bolts Class 8.8 | ||
Wall to wall fasteners | no. 1 M8 Class 10.9 | ||
3rd story | Stud | C50 × 20 × 10 × 0.5 | |
Track | U51 × 20 × 0.5 | ||
Diagonal strap | 55 × 0.5 | ||
Gusset plates | 100 × 100 × 0.5 | ||
Track reinforcement | C50 × 20 × 10 × 0.5 | ||
Blocking | C50 × 20 × 10 × 0.5 U51 × 20 × 0.5 | ||
Flat strap | 20 × 0.5 | ||
Hold-down to chord stud fasteners | No. 4 M5 bolts Class 8.8 | ||
Wall to wall fasteners | no. 1 M8 Class 10.9 | ||
Floor | composite | Joist | C85 × 20 × 10 × 0.7 |
Corrugated sheet (thickness) | 0.04 | ||
wood-based | Joist | C85 × 20 × 10 × 0.7 | |
OSB panel | 760 × 400 × 9 |
Mock-Up | Test Label | Time History Scaling Factor |
---|---|---|
Type 1 | TH1, TH2, TH3, TH4, TH5, TH6, TH7 | 9%, 12%, 38%, 49%, 100%, 120%, 150% |
Type 2 | TH1, TH2, TH3, TH4, TH5, TH6, TH7 | 11%, 16%, 48%, 62%, 100%, 120%, 150% |
Type 1 Mock-Up | Type 2 Mock-Up | |||||
---|---|---|---|---|---|---|
Exp | Num | Exp/Num | Exp | Num | Exp/Num | |
T1 [s] | 0.43 | 0.40 | 1.08 | 0.50 | 0.50 | 1.00 |
T2 [s] | 0.15 | 0.12 | 1.25 | 0.18 | 0.13 | 1.38 |
T3 [s] | 0.10 | 0.07 | 1.43 | 0.11 | 0.08 | 1.38 |
Test Label | Peak Inter-Story Drift [%] | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
1st Level | 2nd Level | 3rd Level | ||||||||||
Type 1 | Type 2 | Type 1 | Type 2 | Type 1 | Type 2 | |||||||
EXP | NUM | EXP | NUM | EXP | NUM | EXP | NUM | EXP | NUM | EXP | NUM | |
TH1 | 0.10 | 0.07 | 0.12 | 0.07 | 0.13 | 0.14 | 0.17 | 0.13 | 0.18 | 0.16 | 0.31 | 0.13 |
TH2 | 0.13 | 0.09 | 0.22 | 0.09 | 0.15 | 0.21 | 0.28 | 0.15 | 0.16 | 0.23 | 0.28 | 0.17 |
TH3 | 0.40 | 0.33 | 0.35 | 0.34 | 0.61 | 0.71 | 0.73 | 0.58 | 0.75 | 0.73 | 0.89 | 0.55 |
TH4 | 0.47 | 0.41 | 0.44 | 0.37 | 0.94 | 0.89 | 0.73 | 0.68 | 1.03 | 0.92 | 0.98 | 0.68 |
TH5 | 0.83 | 0.76 | 0.52 | 0.56 | 1.59 | 1.60 | 1.17 | 0.94 | 2.15 | 1.62 | 1.65 | 0.83 |
TH6 | 0.80 | 0.84 | 0.47 | 0.66 | 1.58 | 1.86 | 1.34 | 1.03 | 2.23 | 1.89 | 1.38 | 1.07 |
TH7 | 0.92 | 1.00 | 0.62 | 0.71 | 1.88 | 2.15 | 1.81 | 1.17 | 3.49 | 2.01 | 2.21 | 1.23 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Campiche, A. Numerical Modelling of CFS Three-Story Strap-Braced Building under Shaking-Table Excitations. Materials 2021, 14, 118. https://doi.org/10.3390/ma14010118
Campiche A. Numerical Modelling of CFS Three-Story Strap-Braced Building under Shaking-Table Excitations. Materials. 2021; 14(1):118. https://doi.org/10.3390/ma14010118
Chicago/Turabian StyleCampiche, Alessia. 2021. "Numerical Modelling of CFS Three-Story Strap-Braced Building under Shaking-Table Excitations" Materials 14, no. 1: 118. https://doi.org/10.3390/ma14010118
APA StyleCampiche, A. (2021). Numerical Modelling of CFS Three-Story Strap-Braced Building under Shaking-Table Excitations. Materials, 14(1), 118. https://doi.org/10.3390/ma14010118