Next Issue
Volume 14, January-2
Previous Issue
Volume 13, December-2
 
 
materials-logo

Journal Browser

Journal Browser

Materials, Volume 14, Issue 1 (January-1 2021) – 235 articles

Cover Story (view full-size image): Disorder in covalent organic frameworks (COFs) is often not acknowledged but does influence the properties of these materials. The disorder can come from vacancies or side reactions leading to defects such as a linear versus triangular link, as illustrated in the 2D-COF containing carboxylated pores. We show how this disorder can influence properties and applications in a membrane, and using a Monto Carlo simulation we illustrate how these defects propagate as a COF nucleates and grows both within layers and by screw dislocation with other layers. View this paper
  • Issues are regarded as officially published after their release is announced to the table of contents alert mailing list.
  • You may sign up for e-mail alerts to receive table of contents of newly released issues.
  • PDF is the official format for papers published in both, html and pdf forms. To view the papers in pdf format, click on the "PDF Full-text" link, and use the free Adobe Reader to open them.
Order results
Result details
Section
Select all
Export citation of selected articles as:
20 pages, 5548 KiB  
Review
Applications of Hydrogel with Special Physical Properties in Bone and Cartilage Regeneration
by Hua Lin, Cuilan Yin, Anchun Mo and Guang Hong
Materials 2021, 14(1), 235; https://doi.org/10.3390/ma14010235 - 5 Jan 2021
Cited by 43 | Viewed by 8002
Abstract
Hydrogel is a polymer matrix containing a large amount of water. It is similar to extracellular matrix components. It comes into contact with blood, body fluids, and human tissues without affecting the metabolism of organisms. It can be applied to bone and cartilage [...] Read more.
Hydrogel is a polymer matrix containing a large amount of water. It is similar to extracellular matrix components. It comes into contact with blood, body fluids, and human tissues without affecting the metabolism of organisms. It can be applied to bone and cartilage tissues. This article introduces the high-strength polymer hydrogel and its modification methods to adapt to the field of bone and cartilage tissue engineering. From the perspective of the mechanical properties of hydrogels, the mechanical strength of hydrogels has experienced from the weak-strength traditional hydrogels to the high-strength hydrogels, then the injectable hydrogels were invented and realized the purpose of good fluidity before the use of hydrogels and high strength in the later period. In addition, specific methods to give special physical properties to the hydrogel used in the field of bone and cartilage tissue engineering will also be discussed, such as 3D printing, integrated repair of bone and cartilage tissue, bone vascularization, and osteogenesis hydrogels that regulate cell growth, antibacterial properties, and repeatable viscosity in humid environments. Finally, we explain the main reasons and contradictions in current applications, look forward to the research prospects in the field of bone and cartilage tissue engineering, and emphasize the importance of conducting research in this field to promote medical progress. Full article
(This article belongs to the Special Issue Dental Materials and Devices)
Show Figures

Figure 1

13 pages, 2365 KiB  
Article
Natural Building Materials for Interior Fitting and Refurbishment—What about Indoor Emissions?
by Matthias Richter, Wolfgang Horn, Elevtheria Juritsch, Andrea Klinge, Leon Radeljic and Oliver Jann
Materials 2021, 14(1), 234; https://doi.org/10.3390/ma14010234 - 5 Jan 2021
Cited by 20 | Viewed by 4257
Abstract
Indoor air quality can be adversely affected by emissions from building materials, consequently having a negative impact on human health and well-being. In this study, more than 30 natural building materials (earth dry boards and plasters, bio-based insulation materials, and boards made of [...] Read more.
Indoor air quality can be adversely affected by emissions from building materials, consequently having a negative impact on human health and well-being. In this study, more than 30 natural building materials (earth dry boards and plasters, bio-based insulation materials, and boards made of wood, flax, reed, straw, etc.) used for interior works were investigated as to their emissions of (semi-)volatile organic compounds ((S)VOC), formaldehyde, and radon. The study focused on the emissions from complete wall build-ups as they can be used for internal partition walls and the internal insulation of external walls. Test chambers were designed, allowing the compounds to release only from the surface of the material facing indoors under testing parameters that were chosen to simulate model room conditions. The emission test results were evaluated using the AgBB evaluation scheme, a procedure for the health-related evaluation of construction products and currently applied for the approval of specific groups of building materials in Germany. Seventeen out of 19 sample build-ups tested in this study would have passed this scheme since they generally proved to be low-emitting and although the combined emissions of multiple materials were tested, 50% of the measurements could be terminated before half of the total testing time. Full article
(This article belongs to the Special Issue Measurement of the Environmental Impact of Materials)
Show Figures

Figure 1

15 pages, 8881 KiB  
Article
Optimization of Pickling Solution for Improving the Phosphatability of Advanced High-Strength Steels
by Sangwon Cho, Sang-Jin Ko, Jin-Seok Yoo, Joong-Chul Park, Yun-Ha Yoo and Jung-Gu Kim
Materials 2021, 14(1), 233; https://doi.org/10.3390/ma14010233 - 5 Jan 2021
Cited by 8 | Viewed by 3234
Abstract
This study investigated the optimum pickling conditions for improving the phosphatability of advanced high-strength steel (AHSS) using surface analysis and electrochemical measurements. To remove the SiO2 that forms on the surface of AHSS, 30 wt.% NH4HF2 was added to [...] Read more.
This study investigated the optimum pickling conditions for improving the phosphatability of advanced high-strength steel (AHSS) using surface analysis and electrochemical measurements. To remove the SiO2 that forms on the surface of AHSS, 30 wt.% NH4HF2 was added to the pickling solution, resulting in a significant reduction in the amount of SiO2 remaining on the surface of the AHSS. The phosphatability was improved remarkably using HNO3 concentrations higher than 13% in the pickling solution. Furthermore, phosphate crystals became finer after pickling with a HNO3-based solution rather than a HCl-based solution. Electrochemical impedance spectroscopy (EIS) data indicated that the corrosion resistance of AHSS subjected to HNO3-based pickling was higher than that of AHSS subjected to HCl-based pickling. Fluorine compounds, which were involved in the phosphate treatment process, were only formed on the surface of steel in HNO3-based solutions. The F compounds reacted with the phosphate solution to increase the pH of the bulk solution, which greatly improved the phosphatability. The phosphatability was better under HNO3-based conditions than a HCl-based condition due to the fineness of the phosphate structure and the increased surface roughness. Full article
Show Figures

Figure 1

14 pages, 7597 KiB  
Article
Effect of Equal Channel Angular Pressing on the Dynamic Softening Behavior of Ti-6Al-4V Alloy in the Hot Deformation Process
by Zhiyong Zhao, Jun Gao, Yaoqi Wang, Yanling Zhang and Hongliang Hou
Materials 2021, 14(1), 232; https://doi.org/10.3390/ma14010232 - 5 Jan 2021
Cited by 6 | Viewed by 2768
Abstract
To investigate the effect of equal channel angular pressing (ECAP) on the deformation of Ti-6Al-4V alloy at a higher temperature, hot compression tests were conducted on alloys having two different initial microstructures (the original alloy (Pre-ECAP) and ECAP-deformed alloy (Post-ECAP)). Post-ECAP, the alloy [...] Read more.
To investigate the effect of equal channel angular pressing (ECAP) on the deformation of Ti-6Al-4V alloy at a higher temperature, hot compression tests were conducted on alloys having two different initial microstructures (the original alloy (Pre-ECAP) and ECAP-deformed alloy (Post-ECAP)). Post-ECAP, the alloy showed a higher degree of dynamic softening during the hot deformation process due to its finer grain size and higher distortion energy. The flow stress of Post-ECAP alloy was higher than the Pre-ECAP alloy at 500 °C when ε˙= 0.003 s1. However, the stress of the Post-ECAP alloy decreased rapidly with increasing temperature and strain rate, until the stress value was much lower than that of Pre-ECAP at 700 °C when ε˙= 0.03 s1. The value of the dynamic softening coefficient revealed that the dynamic softening behavior of Post-ECAP was more pronounced than that of Pre-ECAP in the hot compression deformation process. The main dynamic softening mechanism of Pre-ECAP is dynamic recovery, while the dynamic recrystallization process plays a more important role in the deformation process of Post-ECAP alloy. The microstructures observation results showed that dynamic recrystallization was more likely to occur to Post-ECAP alloys under the same deformation condition. Almost fully dynamic recrystallization had occurred in the deformation process of Post-ECAP at 700 °C and a strain rate of ε˙= 0.01 s1. The grains of Post-ECAP alloys were further refined. The Post-ECAP alloy exhibits better plastic deformation at temperatures higher than 600 °C due to its significant dynamic recrystallization. Full article
(This article belongs to the Special Issue Metal Forming: Processes and Analyses)
Show Figures

Figure 1

21 pages, 10827 KiB  
Article
Influence of Elemental Carbon (EC) Coating Covering nc-(Ti,Mo)C Particles on the Microstructure and Properties of Titanium Matrix Composites Prepared by Reactive Spark Plasma Sintering
by Anna Biedunkiewicz, Paweł Figiel, Dariusz Garbiec, Aleksei Obrosov, Mirosława Pawlyta, Witold Biedunkiewicz, Przemysław Pruss, Krzysztof Rokosz, Rafał Wróbel, Steinar Raaen, Sabine Weiß and Dmitry Bokov
Materials 2021, 14(1), 231; https://doi.org/10.3390/ma14010231 - 5 Jan 2021
Cited by 6 | Viewed by 4012
Abstract
This paper describes the microstructure and properties of titanium-based composites obtained as a result of a reactive spark plasma sintering of a mixture of titanium and nanostructured (Ti,Mo)C-type carbide in a carbon shell. Composites with different ceramic addition mass percentage (10 and 20 [...] Read more.
This paper describes the microstructure and properties of titanium-based composites obtained as a result of a reactive spark plasma sintering of a mixture of titanium and nanostructured (Ti,Mo)C-type carbide in a carbon shell. Composites with different ceramic addition mass percentage (10 and 20 wt %) were produced. Effect of content of elemental carbon covering nc-(Ti,Mo)C reinforcing phase particles on the microstructure, mechanical, tribological, and corrosion properties of the titanium-based composites was investigated. The microstructural evolution, mechanical properties, and tribological behavior of the Ti + (Ti,Mo)C/C composites were evaluated using X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDX), electron backscatter diffraction analysis (EBSD), X-ray photoelectron spectroscopy (XPS), 3D confocal laser scanning microscopy, nanoindentation, and ball-on-disk wear test. Moreover, corrosion resistance in a 3.5 wt % NaCl solution at RT were also investigated. It was found that the carbon content affected the tested properties. With the increase of carbon content from ca. 3 to 40 wt % in the (Ti,Mo)C/C reinforcing phase, an increase in the Young’s modulus, hardness, and fracture toughness of spark plasma sintered composites was observed. The results of abrasive and corrosive resistance tests were presented and compared with experimental data obtained for cp-Ti and Ti-6Al-4V alloy without the reinforcing phase. Moreover, it was found that an increase in the percentage of carbon increased the resistance to abrasive wear and to electrochemical corrosion of composites, measured by the relatively lower values of the friction coefficient and volume of wear and higher values of resistance polarization. This resistance results from the fact that a stable of TiO2 layer doped with MoO3 is formed on the surface of the composites. The results of experimental studies on the composites were compared with those obtained for cp-Ti and Ti-6Al-4V alloy without the reinforcing phase. Full article
(This article belongs to the Section Advanced Composites)
Show Figures

Figure 1

19 pages, 6420 KiB  
Article
The Influence of ZnO Oxide Layer on the Physicochemical Behavior of Ti6Al4V Titanium Alloy
by Anna Woźniak, Witold Walke, Agata Jakóbik-Kolon, Bogusław Ziębowicz, Zbigniew Brytan and Marcin Adamiak
Materials 2021, 14(1), 230; https://doi.org/10.3390/ma14010230 - 5 Jan 2021
Cited by 16 | Viewed by 4026
Abstract
Titanium and its alloys are characterized by high biocompatibility and good corrosion resistance as a result of the ability to form a TiO2 oxide layer. However, based on literature data it can be concluded that titanium degradation products, in the form of [...] Read more.
Titanium and its alloys are characterized by high biocompatibility and good corrosion resistance as a result of the ability to form a TiO2 oxide layer. However, based on literature data it can be concluded that titanium degradation products, in the form of titanium particles, metal-protein groups, oxides and ions, may cause allergic, inflammatory reactions and bone resorption. The corrosion process of Ti6Al4V in the human body environment may be intensified by a decreased pH and concentration of chloride compounds. The purpose of this article was to analyze the corrosion resistance of the Ti6Al4V alloy, obtained by the selective laser melting method in a corrosion solution of neutral pH and in a solution simulating peri-implant inflammatory conditions. Additionally, the influence of zinc oxide deposited by the atomic layer deposition method on the improvement of the physicochemical behavior of the Ti6Al4V alloy was analyzed. In order to characterize the ZnO layer, tests of chemical and phase composition as well as surface morphology investigation were performed. As part of the assessment of the physicochemical properties of the uncoated samples and those with the ZnO layer, tests of wetting angle, pitting corrosion and impedance corrosion were carried out. The number of ions released after the potentiodynamic test were measured using the inductively coupled plasma atomic emission spectrometry (ICP–AES) method. It can be concluded that samples after surface modification (with the ZnO layer) were characterized by favorable physicochemical properties and had higher corrosion resistance. Full article
(This article belongs to the Special Issue Corrosion Resistance of Alloy and Coating Materials)
Show Figures

Figure 1

15 pages, 4574 KiB  
Article
Numerical Analysis of Shear and Particle Crushing Characteristics in Ring Shear System Using the PFC2D
by Sueng-Won Jeong, Kabuyaya Kighuta, Dong-Eun Lee and Sung-Sik Park
Materials 2021, 14(1), 229; https://doi.org/10.3390/ma14010229 - 5 Jan 2021
Cited by 6 | Viewed by 3972
Abstract
The shear and particle crushing characteristics of the failure plane (or shear surface) in catastrophic mass movements are examined with a ring shear apparatus, which is generally employed owing to its suitability for large deformations. Based on results of previous experiments on waste [...] Read more.
The shear and particle crushing characteristics of the failure plane (or shear surface) in catastrophic mass movements are examined with a ring shear apparatus, which is generally employed owing to its suitability for large deformations. Based on results of previous experiments on waste materials from abandoned mine deposits, we employed a simple numerical model based on ring shear testing using the particle flow code (PFC2D). We examined drainage, normal stress, and shear velocity dependent shear characteristics of landslide materials. For shear velocities of 0.1 and 100 mm/s and normal stress (NS) of 25 kPa, the numerical results are in good agreement with those obtained from experimental results. The difference between the experimental and numerical results of the residual shear stress was approximately 0.4 kPa for NS equal to 25 kPa and 0.9 kPa for NS equal to 100 kPa for both drained and undrained condition. In addition, we examined particle crushing effect during shearing using the frictional work concept in PFC. We calculated the work done by friction at both peak and residual shear stresses, and then used the results as crushing criteria in the numerical analysis. The frictional work at peak and the residual shear stresses was ranged from 303 kPa·s to 2579 kPa·s for given drainage and normal stress conditions. These results showed that clump particles were partially crushed at peak shear stress, and further particle crushing with respect to the production of finer in shearing was recorded at residual shear stress at the shearing plane. Full article
(This article belongs to the Special Issue Testing of Materials and Elements in Civil Engineering)
Show Figures

Figure 1

12 pages, 5385 KiB  
Article
Four-Fold Multi-Modal X-ray Microscopy Measurements of a Cu(In,Ga)Se2 Solar Cell
by Christina Ossig, Christian Strelow, Jan Flügge, Andreas Kolditz, Jan Siebels, Jan Garrevoet, Kathryn Spiers, Martin Seyrich, Dennis Brückner, Niklas Pyrlik, Johannes Hagemann, Frank Seiboth, Andreas Schropp, Romain Carron, Gerald Falkenberg, Alf Mews, Christian G. Schroer, Tobias Kipp and Michael E. Stuckelberger
Materials 2021, 14(1), 228; https://doi.org/10.3390/ma14010228 - 5 Jan 2021
Cited by 13 | Viewed by 3562
Abstract
Inhomogeneities and defects often limit the overall performance of thin-film solar cells. Therefore, sophisticated microscopy approaches are sought to characterize performance and defects at the nanoscale. Here, we demonstrate, for the first time, the simultaneous assessment of composition, structure, and performance in four-fold [...] Read more.
Inhomogeneities and defects often limit the overall performance of thin-film solar cells. Therefore, sophisticated microscopy approaches are sought to characterize performance and defects at the nanoscale. Here, we demonstrate, for the first time, the simultaneous assessment of composition, structure, and performance in four-fold multi-modality. Using scanning X-ray microscopy of a Cu(In,Ga)Se2 (CIGS) solar cell, we measured the elemental distribution of the key absorber elements, the electrical and optical response, and the phase shift of the coherent X-rays with nanoscale resolution. We found structural features in the absorber layer—interpreted as voids—that correlate with poor electrical performance and point towards defects that limit the overall solar cell efficiency. Full article
(This article belongs to the Special Issue Microscopy in Material Science: Imaging, Analytics, and New Materials)
Show Figures

Figure 1

14 pages, 3748 KiB  
Article
Lyophilized Polyvinylpyrrolidone Hydrogel for Culture of Human Oral Mucosa Stem Cells
by Carolina Oliver-Urrutia, Raúl Rosales Ibañez, Miriam V. Flores-Merino, Lucy Vojtova, Jakub Salplachta, Ladislav Čelko, Jozef Kaiser and Edgar B. Montufar
Materials 2021, 14(1), 227; https://doi.org/10.3390/ma14010227 - 5 Jan 2021
Cited by 10 | Viewed by 4732
Abstract
This work shows the synthesis of a polyvinylpyrrolidone (PVP) hydrogel by heat-activated polymerization and explores the production of hydrogels with an open porous network by lyophilisation to allow the three-dimensional culture of human oral mucosa stem cells (hOMSCs). The swollen hydrogel showed a [...] Read more.
This work shows the synthesis of a polyvinylpyrrolidone (PVP) hydrogel by heat-activated polymerization and explores the production of hydrogels with an open porous network by lyophilisation to allow the three-dimensional culture of human oral mucosa stem cells (hOMSCs). The swollen hydrogel showed a storage modulus similar to oral mucosa and elastic solid rheological behaviour without sol transition. A comprehensive characterization of porosity by scanning electron microscopy, mercury intrusion porosimetry and nano-computed tomography (with spatial resolution below 1 μm) showed that lyophilisation resulted in the heterogeneous incorporation of closed oval-like pores in the hydrogel with broad size distribution (5 to 180 μm, d50 = 65 μm). Human oral mucosa biopsies were used to isolate hOMSCs, expressing typical markers of mesenchymal stem cells in more than 95% of the cell population. Direct contact cytotoxicity assay demonstrated that PVP hydrogel have no negative effect on cell metabolic activity, allowing the culture of hOMSCs with normal fusiform morphology. Pore connectivity should be improved in future to allow cell growth in the bulk of the PVP hydrogel. Full article
Show Figures

Figure 1

14 pages, 5266 KiB  
Article
Characteristics of the Mg-Zn-Ca-Gd Alloy after Mechanical Alloying
by Sabina Lesz, Bartłomiej Hrapkowicz, Małgorzata Karolus and Klaudiusz Gołombek
Materials 2021, 14(1), 226; https://doi.org/10.3390/ma14010226 - 5 Jan 2021
Cited by 26 | Viewed by 3274
Abstract
Magnesium-based materials are interesting alternatives for medical implants, as they have promising mechanical and biological properties. Thanks to them, it is possible to create biodegradable materials for medical application, which would reduce both costs and time of treatment. Magnesium as the sole material, [...] Read more.
Magnesium-based materials are interesting alternatives for medical implants, as they have promising mechanical and biological properties. Thanks to them, it is possible to create biodegradable materials for medical application, which would reduce both costs and time of treatment. Magnesium as the sole material, however, it is not enough to support this function. It is important to determine proper alloying elements and methods. A viable method for creating such alloys is mechanical alloying, which can be used to design the structure and properties for proper roles. Mechanical alloying is highly influenced by the milling time of the alloy, as the time of the process affects many properties of the milled powders. X-ray diffraction (XRD) and scanning electron microscopy (SEM) with energy-dispersive spectroscopy (EDS) were carried out to study the powder morphology and chemical composition of Mg65Zn30Ca4Gd1 powders. Moreover, the powder size was assessed by granulometric method and the Vickers hardness test was used for microhardness testing. The samples were milled for 6 min, 13, 20, 30, 40, and 70 h. The hardness correlated with the particle size of the samples. After 30 h of milling time, the average value of hardness was equal to 168 HV and it was lower after 13 (333 HV), 20 (273 HV), 40 (329 HV), and 70 (314 HV) h. The powder particles average size increased after 13 (31 μm) h of milling time, up to 30 (45–49 μm) hours, and then sharply decreased after 40 (28 μm) and 70 (12 μm) h. Full article
Show Figures

Figure 1

20 pages, 5438 KiB  
Article
Lightweight Cement Conglomerates Based on End-of-Life Tire Rubber: Effect of the Grain Size, Dosage and Addition of Perlite on the Physical and Mechanical Properties
by Andrea Petrella and Michele Notarnicola
Materials 2021, 14(1), 225; https://doi.org/10.3390/ma14010225 - 5 Jan 2021
Cited by 9 | Viewed by 2978
Abstract
Lightweight cement mortars containing end-of-life tire rubber (TR) as aggregate were prepared and characterized by rheological, thermal, mechanical, microstructural, and wetting tests. The mixtures were obtained after total replacement of the conventional sand aggregate with untreated TR with different grain sizes (0–2 mm [...] Read more.
Lightweight cement mortars containing end-of-life tire rubber (TR) as aggregate were prepared and characterized by rheological, thermal, mechanical, microstructural, and wetting tests. The mixtures were obtained after total replacement of the conventional sand aggregate with untreated TR with different grain sizes (0–2 mm and 2–4 mm) and distributions (25%, 32%, and 40% by weight). The mortars showed lower thermal conductivities (≈90%) with respect to the sand reference due to the differences in the conductivities of the two phases associated with the low density of the aggregates and, to a minor extent, to the lack of adhesion of tire to the cement paste (evidenced by microstructural detection). In this respect, a decrease of the thermal conductivities was observed with the increase of the TR weight percentage together with a decrease of fluidity of the fresh mixture and a decrease of the mechanical strengths. The addition of expanded perlite (P, 0–1 mm grain size) to the mixture allowed us to obtain mortars with an improvement of the mechanical strengths and negligible modification of the thermal properties. Moreover, in this case, a decrease of the thermal conductivities was observed with the increase of the P/TR dosage together with a decrease of fluidity and of the mechanical strengths. TR mortars showed discrete cracks after failure without separation of the two parts of the specimens, and similar results were observed in the case of the perlite/TR samples thanks to the rubber particles bridging the crack faces. The super-elastic properties of the specimens were also observed in the impact compression tests in which the best performances of the tire and P/TR composites were evidenced by a deep groove before complete failure. Moreover, these mortars showed very low water penetration through the surface and also through the bulk of the samples thanks to the hydrophobic nature of the end-of-life aggregate, which makes these environmentally sustainable materials suitable for indoor and outdoor elements. Full article
(This article belongs to the Special Issue Recycled Materials in Civil and Environmental Engineering)
Show Figures

Figure 1

20 pages, 7323 KiB  
Article
Topological, Mechanical and Biological Properties of Ti6Al4V Scaffolds for Bone Tissue Regeneration Fabricated with Reused Powders via Electron Beam Melting
by Maria Laura Gatto, Riccardo Groppo, Nora Bloise, Lorenzo Fassina, Livia Visai, Manuela Galati, Luca Iuliano and Paolo Mengucci
Materials 2021, 14(1), 224; https://doi.org/10.3390/ma14010224 - 5 Jan 2021
Cited by 31 | Viewed by 3636
Abstract
Cellularized scaffold is emerging as the preferred solution for tissue regeneration and restoration of damaged functionalities. However, the high cost of preclinical studies creates a gap between investigation and the device market for the biomedical industry. In this work, bone-tailored scaffolds based on [...] Read more.
Cellularized scaffold is emerging as the preferred solution for tissue regeneration and restoration of damaged functionalities. However, the high cost of preclinical studies creates a gap between investigation and the device market for the biomedical industry. In this work, bone-tailored scaffolds based on the Ti6Al4V alloy manufactured by electron beam melting (EBM) technology with reused powder were investigated, aiming to overcome issues connected to the high cost of preclinical studies. Two different elementary unit cell scaffold geometries, namely diamond (DO) and rhombic dodecahedron (RD), were adopted, while surface functionalization was performed by coating scaffolds with single layers of polycaprolactone (PCL) or with mixture of polycaprolactone and 20 wt.% hydroxyapatite (PCL/HA). The mechanical and biological performances of the produced scaffolds were investigated, and the results were compared to software simulation and experimental evidence available in literature. Good mechanical properties and a favorable environment for cell growth were obtained for all combinations of scaffold geometry and surface functionalization. In conclusion, powder recycling provides a viable practice for the biomedical industry to strongly reduce preclinical costs without altering biomechanical performance. Full article
(This article belongs to the Special Issue Biomaterials for Bone Tissue Engineering 2020)
Show Figures

Figure 1

10 pages, 3254 KiB  
Article
Bio-Absorption of Human Dentin-Derived Biomaterial in Sheep Critical-Size Iliac Defects
by Md Arafat Kabir, Masaru Murata, Mamata Shakya, Katsuhisa Yamada and Toshiyuki Akazawa
Materials 2021, 14(1), 223; https://doi.org/10.3390/ma14010223 - 5 Jan 2021
Cited by 15 | Viewed by 2774
Abstract
The aim of this study was to evaluate the bio-absorption and bone regeneration of human tooth-derived dentin scaffold, entitled as perforated root-demineralized dentin matrix (PR-DDM), after in vivo implantation into the critical-size iliac defects. The dentin scaffolds were prepared from human vital, non-functional [...] Read more.
The aim of this study was to evaluate the bio-absorption and bone regeneration of human tooth-derived dentin scaffold, entitled as perforated root-demineralized dentin matrix (PR-DDM), after in vivo implantation into the critical-size iliac defects. The dentin scaffolds were prepared from human vital, non-functional teeth. Thirty artificial macro-pores (Ø 1 mm) were added after removing the enamel portion. The modified teeth were supersonically demineralized in 0.34 N HNO3 for 30 min. The microstructure was observed by scanning electron microscope (SEM). The 3D micro-CT and histological analysis were carried out to evaluate the bio-absorption of PR-DDM at 2 and 4 months. A smooth dentin collagen surface with symmetrical macro-pores and tube-type dentinal tubules (Ø 1–2 µm) with micro-cracks were observed on the perforated region. A significant number of custom-made macro-pores disappeared, and the size of the macro-pores became significantly wider at 4 months compared with the 2 months (p < 0.05) evaluated by 3D micro-CT. Histological images revealed the presence of multinucleated giant cells attached to the scalloped border of the PR-DDM. The morphological changes due to bio-absorption by the cellular phagocytes were comparable to the 3D micro-CT and histological images at 2 and 4 months. Altogether, the results demonstrated that the PR-DDM block was gradually absorbed by multinucleated giant cells and regenerated bone. Human PR-DDM might serve as a unique scaffold for extraoral bone regeneration. Full article
(This article belongs to the Special Issue Materials for Hard Tissue Repair and Regeneration)
Show Figures

Figure 1

15 pages, 7948 KiB  
Article
Histological and Histomorphometric Analyses of Bone Regeneration in Osteoporotic Rats Using a Xenograft Material
by Marwa Y. Shaheen, Amani M. Basudan, Abdurahman A. Niazy, Jeroen J. J. P. van den Beucken, John A. Jansen and Hamdan S. Alghamdi
Materials 2021, 14(1), 222; https://doi.org/10.3390/ma14010222 - 5 Jan 2021
Cited by 6 | Viewed by 2796
Abstract
We evaluated the effect of osteoporotic induction after eight weeks of initial healing of bone defects grafted with a xenograft material in a rat model. Bone defects were created in the femoral condyles of 16 female Wistar rats (one defect per rat). The [...] Read more.
We evaluated the effect of osteoporotic induction after eight weeks of initial healing of bone defects grafted with a xenograft material in a rat model. Bone defects were created in the femoral condyles of 16 female Wistar rats (one defect per rat). The defects were filled with bovine bone (Inter-Oss) granules. After eight weeks of bone healing, rats were randomly ovariectomized (OVX) or sham-operated (SHAM). At 14 weeks of bone healing, all animals were euthanized. Bone specimens were harvested and processed for histological and histomorphometric analyses to assess new bone formation (N-BF%), remaining bone graft (RBG%) and trabecular bone space (Tb.Sp%) within the defect area. After 14 weeks of bone healing, histological evaluation revealed a significant alteration in trabecular bone in OVX rats compared to SHAM rats. There was lower N-BF% in OVX rats (22.5% ± 3.0%) compared to SHAM rats (37.7% ± 7.9%; p < 0.05). Additionally, the RBG% was significantly lower in OVX (23.7% ± 5.8%) compared to SHAM (34.8% ± 9.6%; p < 0.05) rats. Finally, the Tb.Sp% was higher in OVX (53.8% ± 7.7%) compared to SHAM (27.5% ± 14.3%; p < 0.05) rats. In conclusion, within the limitations of this study, inducing an osteoporotic condition in a rat model negatively influenced bone regeneration in the created bone defect and grafted with a xenograft material. Full article
(This article belongs to the Special Issue Biomaterials for Bone Tissue Engineering 2020)
Show Figures

Figure 1

8 pages, 1881 KiB  
Article
Effect of Denture Base Fabrication Technique on Candida albicans Adhesion In Vitro
by Avi Meirowitz, Arkadi Rahmanov, Eti Shlomo, Helena Zelikman, Eran Dolev and Nir Sterer
Materials 2021, 14(1), 221; https://doi.org/10.3390/ma14010221 - 5 Jan 2021
Cited by 41 | Viewed by 3732
Abstract
Denture stomatitis is a common manifestation of oral candidiasis affecting some 65% of denture wearers. This condition is initiated by the adherence of Candida albicans to denture base acrylic resin. The present study aimed to test the in vitro effect of traditional and [...] Read more.
Denture stomatitis is a common manifestation of oral candidiasis affecting some 65% of denture wearers. This condition is initiated by the adherence of Candida albicans to denture base acrylic resin. The present study aimed to test the in vitro effect of traditional and novel fabrication methods on Candida albicans adhesion to denture base samples. Denture based acrylic discs were fabricated using: (i) computerized milling, (ii) 3D printing, (iii) heat curing, and (iv) cold curing. Discs were tested for surface roughness (Ra), hydrophobicity (contact angle), mucin adsorption (Bradford assay), and Candida albicans adhesion. 3D printing significantly increased microbial cell adhesion as compared with heat curing, and computerized milling significantly decreased it. These results were associated with mucin adsorption levels rather than surface roughness. Results suggest that 3D printing may increase the risk for developing denture stomatitis, whereas computerized milling may decrease it as compared with traditional heat curing denture base fabrication. Full article
Show Figures

Figure 1

21 pages, 2286 KiB  
Article
Manufacturing and Recycling Impact on Environmental Life Cycle Assessment of Innovative Wind Power Plant Part 1/2
by Krzysztof Doerffer, Patrycja Bałdowska-Witos, Michał Pysz, Piotr Doerffer and Andrzej Tomporowski
Materials 2021, 14(1), 220; https://doi.org/10.3390/ma14010220 - 5 Jan 2021
Cited by 10 | Viewed by 3850
Abstract
Wind power plants are considered as an ecologically-clean source of energy. However, manufacturing processes cannot be treated that way. Manufacturing processes consume huge amounts of electrical and thermal energy and significant amount of materials, e.g., steel, polymers, oils, and lubricants. All of the [...] Read more.
Wind power plants are considered as an ecologically-clean source of energy. However, manufacturing processes cannot be treated that way. Manufacturing processes consume huge amounts of electrical and thermal energy and significant amount of materials, e.g., steel, polymers, oils, and lubricants. All of the above could be potentially harmful for environment. There are not many works and publications regarding life-cycle analysis of wind power plants. This study’s objective is to use LCA (Life Cycle Assessment) to the manufacturing and utilization of a specific drag force-driven wind turbine. The discussed innovative wind turbine is of the type that assures safety for prosumer application. Drag force-driven turbines become more heavy than other types of lift driven turbines, but at the same time, their characteristic provides opportunity to use easily recyclable materials instead of materials like plastics or composites. The wider look through LCA tools, may change the perspective of view at that type of wind turbines. Analyzed turbine has capacity of 15 kW and is located in Poland. LCA was carried out using Eco-indicator 99 method in eleven impact categories. Among all of the turbine components, the highest negative impact was noted in the case of the tower. The wind turbine under consideration is characterized by high recycling potential. According to the presented research, recycling provides around 30% reduction of the environmental impact. Full article
(This article belongs to the Special Issue Recent Developments in Pro-ecological Materials and Processes)
Show Figures

Figure 1

10 pages, 4295 KiB  
Article
Investigation on the Microstructure of ECAP-Processed Iron-Aluminium Alloys
by Bernd-Arno Behrens, Kai Brunotte, Tom Petersen and Roman Relge
Materials 2021, 14(1), 219; https://doi.org/10.3390/ma14010219 - 5 Jan 2021
Cited by 1 | Viewed by 2258
Abstract
The present work deals with adjusting a fine-grained microstructure in iron-rich iron-aluminium alloys using the ECAP-process (Equal Channel Angular Pressing). Due to the limited formability of Fe-Al alloys with increased aluminium content, high forming temperatures and low forming speeds are required. Therefore, tool [...] Read more.
The present work deals with adjusting a fine-grained microstructure in iron-rich iron-aluminium alloys using the ECAP-process (Equal Channel Angular Pressing). Due to the limited formability of Fe-Al alloys with increased aluminium content, high forming temperatures and low forming speeds are required. Therefore, tool temperatures above 1100 °C are permanently needed to prevent cooling of the work pieces, which makes the design of the ECAP-process challenging. For the investigation, the Fe-Al work pieces were heated to the respective hot forming temperature in a chamber furnace and then formed in the ECAP tool at a constant punch speed of 5 mm/s. Besides the chemical composition (Fe9Al, Fe28Al and Fe38Al (at.%—Al)), the influences of a subsequent heat treatment and the holding time on the microstructure development were investigated. For this purpose, the average grain size of the microstructure was measured using the AGI (Average Grain Intercept) method and correlated with the aforementioned parameters. The results show that no significant grain refinement could be achieved with the parameters used, which is largely due to the high forming temperature significantly promoting grain growth. The holding times in the examined area do not have any influence on the grain refinement. Full article
(This article belongs to the Special Issue Forging Processes of Materials)
Show Figures

Figure 1

18 pages, 4407 KiB  
Article
Preparation and Physico-Chemical Performance Optimization of Sintering-Free Lightweight Aggregates with High Proportions of Red Mud
by Guan Wang, Chao Zhang, Wenlong Wang, Shuang Wu, Jingwei Li, Xujiang Wang and Changliang Wu
Materials 2021, 14(1), 218; https://doi.org/10.3390/ma14010218 - 5 Jan 2021
Cited by 6 | Viewed by 2603
Abstract
Sintering-free lightweight aggregates were prepared with high proportions of red mud and a binder material derived from whole solid wastes through rolling granulation at room temperature. The preparation process was optimized by changing the material matching and size parameters of the SFLAs. The [...] Read more.
Sintering-free lightweight aggregates were prepared with high proportions of red mud and a binder material derived from whole solid wastes through rolling granulation at room temperature. The preparation process was optimized by changing the material matching and size parameters of the SFLAs. The physico-chemical performance, including the density, mechanical strength, water absorption, hydration products, heavy metal leaching, and microstructure were evaluated by jointly employing X-ray Fluorescence, X-ray Diffraction, and Inductively Coupled Plasma Optical Emission Spectrometry, Shadow Electron Microscope, etc. The results indicated that the red mud and waste-based binders were highly compatible in the granulation process, with up to 80% red mud being successfully added. The sintering-free lightweight aggregates products at the binder content of 30% and the size coverage of 10–16 mm exhibited a bulk density of 900–1000 kg·m−3, a 28 d cylinder compressive strength of 9.2–11.3 MPa, and water absorption of less than 10%. Owing to the formation of important hydration products, ettringite, the heavy metal leaching of the sintering-free lightweight aggregates was also proven to be environmentally acceptable. This work provides a promising pathway to prepare low-cost, high-strength, and green lightweight aggregates through the large-scale utilization of solid waste red mud. Full article
Show Figures

Figure 1

17 pages, 4391 KiB  
Article
Indentation Induced Mechanical Behavior of Spark Plasma Sintered WC-Co Cemented Carbides Alloyed with Cr3C2, TaC-NbC, TiC, and VC
by Piotr Siwak
Materials 2021, 14(1), 217; https://doi.org/10.3390/ma14010217 - 5 Jan 2021
Cited by 7 | Viewed by 2704
Abstract
The focus of this paper is on examining the mechanical behavior of spark plasma sintered WC-Co based composites doped with Cr3C2, TaC-NbC, TiC, and VC, as well as defining some parameters characterizing deformation and fracture processes during hardness measurement. [...] Read more.
The focus of this paper is on examining the mechanical behavior of spark plasma sintered WC-Co based composites doped with Cr3C2, TaC-NbC, TiC, and VC, as well as defining some parameters characterizing deformation and fracture processes during hardness measurement. The calculated microhardness of WC-Co cemented carbides for all the studied compositions is found to be higher than the results obtained during hardness testing. Therefore, the ratio of the experimental and calculated values of microhardness is shown to be an approximate indication of WC-Co cemented carbide sensitivity to damage processes during indentation. Some parameters characterizing the microstructure–microhardness relationship are defined, and the nanomechanical properties of WC-Co cemented carbide phases are examined in order to separate the deformation and fracture processes during the indentation process. Strain gradient linear function parameters are calculated for 10-cycle nanoindentation. It was found that the nanoindentation curve after 10 cycles shows anomalous behavior of the WC grains, which indicates their fracture processes. Full article
(This article belongs to the Special Issue Advanced Technologies for Materials Characterization)
Show Figures

Figure 1

7 pages, 1911 KiB  
Communication
Intrinsic Dielectric Loss in Zr0.8Sn0.2TiO4 Ceramics Investigated by Terahertz Time Domain Spectroscopy
by Liviu Nedelcu, Cezar Dragos Geambasu, Monica Enculescu and Marian Gabriel Banciu
Materials 2021, 14(1), 216; https://doi.org/10.3390/ma14010216 - 5 Jan 2021
Cited by 6 | Viewed by 2365
Abstract
Terahertz time-domain spectroscopy (THz-TDS) was employed for estimation of intrinsic dielectric loss of Zr0.8Sn0.2TiO4 (ZST) ceramics. Single-phase ZST dielectric resonators (DRs) with various synthesis parameters and, consequently, different extrinsic losses, were prepared by conventional ceramic technology. Even though [...] Read more.
Terahertz time-domain spectroscopy (THz-TDS) was employed for estimation of intrinsic dielectric loss of Zr0.8Sn0.2TiO4 (ZST) ceramics. Single-phase ZST dielectric resonators (DRs) with various synthesis parameters and, consequently, different extrinsic losses, were prepared by conventional ceramic technology. Even though the DRs exhibit a similar microstructure, their quality factor (Q is the inverse of dielectric loss tangent) measured in microwave (MW) domain at 6 GHz varies between 2500 and 8400. On the other hand, it was found that the THz dielectric loss is less sensitive to the sample preparation. The intrinsic losses (Q × f ~60 THz) of the ZST ceramics have been derived from THz data. Full article
(This article belongs to the Section Electronic Materials)
Show Figures

Figure 1

14 pages, 4462 KiB  
Article
Effects of Curing Conditions on the MECHANICAL and Microstructural Properties of Ultra-High-Performance Concrete (UHPC) Incorporating Iron Tailing Powder
by Dong Lu, Jing Zhong, Baobao Yan, Jing Gong, Ziye He, Guanhua Zhang and Chengzhe Song
Materials 2021, 14(1), 215; https://doi.org/10.3390/ma14010215 - 4 Jan 2021
Cited by 31 | Viewed by 3993
Abstract
It has been reported that iron tailing powder (ITP) has the potential to partially replace cement to prepare ultra-high-performance concrete (UHPC). However, the reactivity of ITP particles in concrete largely depends on the curing method. This study investigates the effects of curing conditions [...] Read more.
It has been reported that iron tailing powder (ITP) has the potential to partially replace cement to prepare ultra-high-performance concrete (UHPC). However, the reactivity of ITP particles in concrete largely depends on the curing method. This study investigates the effects of curing conditions on the mechanical and microstructural properties of UHPC containing ITP. To achieve this objective, three research tasks are conducted, including (1) preparing seven concrete formulations by introducing ITP; (2) characterizing their mechanical performance under different curing regimes; and (3) analyzing their microstructure by XRD patterns, FTIR analysis, and SEM observation. The experimental results show that there is an optimum ITP dosage (15%) for their application. The concrete with 15% ITP under standard curing obtains 94.3 MPa at 7 days, their early-age strength could be even further increased by ~30% (warm-water curing) and ~35% (steamed curing). The steam curing regime stimulates the activity of ITP and refines the microstructure. This study demonstrates the potential of replacing Portland cement with ITP in UHPC production. Full article
Show Figures

Figure 1

16 pages, 7314 KiB  
Article
Immobilization of Heavy Metals in Boroaluminosilicate Geopolymers
by Piotr Rożek, Paulina Florek, Magdalena Król and Włodzimierz Mozgawa
Materials 2021, 14(1), 214; https://doi.org/10.3390/ma14010214 - 4 Jan 2021
Cited by 12 | Viewed by 3292
Abstract
Boroaluminosilicate geopolymers were used for the immobilization of heavy metals. Then, their mechanical properties, phase composition, structure, and microstructure were investigated. The addition of borax and boric acid did not induce the formation of any crystalline phases. Boron was incorporated into the geopolymeric [...] Read more.
Boroaluminosilicate geopolymers were used for the immobilization of heavy metals. Then, their mechanical properties, phase composition, structure, and microstructure were investigated. The addition of borax and boric acid did not induce the formation of any crystalline phases. Boron was incorporated into the geopolymeric network and caused the formation of N–B–A–S–H (hydrated sodium boroaluminosilicate) gel. In the range of a B/Al molar ratio of 0.015–0.075, the compressive strength slightly increased (from 16.1 to 18.7 MPa), while at a ratio of 0.150, the compressive strength decreased (to 12 MPa). Heavy metals (lead and nickel) were added as nitrate salts. The loss of the strength of the geopolymers induced by heavy metals was limited by the presence of boron. However, it caused an increase in heavy metal leaching. Despite this, heavy metals were almost entirely immobilized (with immobilization rates of >99.8% in the case of lead and >99.99% in the case of nickel). The lower immobilization rate of lead was due to the formation of macroscopic crystalline inclusions of PbO·xH2O, which was vulnerable to leaching. Full article
(This article belongs to the Special Issue Recent Developments in Geopolymers and Alkali-Activated Materials)
Show Figures

Figure 1

18 pages, 16177 KiB  
Article
Textile Antenna for Bio-Radar Embedded in a Car Seat
by Caroline Loss, Carolina Gouveia, Rita Salvado, Pedro Pinho and José Vieira
Materials 2021, 14(1), 213; https://doi.org/10.3390/ma14010213 - 4 Jan 2021
Cited by 11 | Viewed by 3593
Abstract
A bio-radar system is presented for vital signs acquisition, using textile antennas manufactured with a continuous substrate that integrates the ground plane. Textile antennas were selected to be used in the RF (Radio Frequency) front-end, rather than those made of conventional materials, to [...] Read more.
A bio-radar system is presented for vital signs acquisition, using textile antennas manufactured with a continuous substrate that integrates the ground plane. Textile antennas were selected to be used in the RF (Radio Frequency) front-end, rather than those made of conventional materials, to further integrate the system in a car seat cover and thus streamline the industrial manufacturing process. The development of the novel substrate material is described in detail, as well as its characterization process. Then, the antenna design considerations are presented. The experiments to validate the textile antennas operation by acquiring the respiratory signal of six subjects with different body structures while seated in a car seat are presented. In conclusion, it was possible to prove that bio-radar systems can operate with textile-based antennas, providing accurate results of the extraction of vital signs. Full article
(This article belongs to the Special Issue Textile-Integrated Electronics )
Show Figures

Figure 1

23 pages, 11957 KiB  
Article
The Impact of the Lubricant Dose on the Reduction of Wear Dies Used in the Forging Process of the Valve Forging
by Łukasz Dworzak, Marek Hawryluk and Marta Janik
Materials 2021, 14(1), 212; https://doi.org/10.3390/ma14010212 - 4 Jan 2021
Cited by 11 | Viewed by 3613
Abstract
The paper presents the results of research on the influence of the settings of lubrication and cooling system parameters (solenoid valve opening time and lubricant feed pressure in terms of its quantity) in order to select the optimal lubricating conditions and thus reduce [...] Read more.
The paper presents the results of research on the influence of the settings of lubrication and cooling system parameters (solenoid valve opening time and lubricant feed pressure in terms of its quantity) in order to select the optimal lubricating conditions and thus reduce the wear of the dies used in the first forging operation of the valve forging made of high-nickel steel. Based on the observation of lubrication in the industrial process, it was found that a significant part of the lubricant fails to reach the die cavity, reaching the outside of it, which causes die wear due to seizure resulting from adhesion of the forging material to the tool surface as well as high lubricant consumption and dirt in the press chamber. The authors proposed their own mobile lubricating and cooling system, which allows for a wide range of adjustments and provided with automatic cleaning procedures of the entire system, unlike the fixed lubrication system used so far in the industrial process. First, tests were carried out in laboratory conditions to determine the highest wettability and the lubricant remaining inside the tool cavity. These tests determined the lubrication system parameter settings that ensured that the greatest amount of lubricant remains in the cold die cavity without the forging process. Then, to verify the obtained results, tests were carried out in the industrial process of hot die forging of valve forgings for short production runs of up to 500 forgings. The results were compared with the measurement of changes in the geometry of tools and forgings based on 3D scanning and surface topography analysis with the use of SEM (Scanning Electron Microscope). For the best results (the variant of the setting of the dose and the time of exposure to lubricant), the forging process was carried out with the use of a new tool up to the maximum service life. Full article
(This article belongs to the Special Issue Friction and Wear of Materials Surfaces)
Show Figures

Figure 1

16 pages, 4152 KiB  
Article
Fabrication and Evaluation of Nano-TiO2 Superhydrophobic Coating on Asphalt Pavement
by Hongfeng Li, Xiangwen Lin and Hongguang Wang
Materials 2021, 14(1), 211; https://doi.org/10.3390/ma14010211 - 4 Jan 2021
Cited by 18 | Viewed by 3777
Abstract
In order to address water damage of asphalt pavement, reduce the occurrence of water-related potholes, deformation, and other diseases, and improve the performance and service life of the pavement, a nano-TiO2 superhydrophobic coating (PSC) on asphalt pavement was prepared from waterborne polyurethane [...] Read more.
In order to address water damage of asphalt pavement, reduce the occurrence of water-related potholes, deformation, and other diseases, and improve the performance and service life of the pavement, a nano-TiO2 superhydrophobic coating (PSC) on asphalt pavement was prepared from waterborne polyurethane and nano-TiO2 modified by stearic acid. FT-IR measured stearic acid successfully modified low surface energy substance on the surface of nano-TiO2. The SEM image shows that the PSC has a rough surface structure. The contact angle and rolling angle of the PSC in the contact angle test are 153.5° and 4.7°, respectively. PSC has a super-hydrophobic ability, which can improve the water stability of the asphalt mixture. Although the texture depth and pendulum value have been reduced by 2.5% and 4.4%, respectively, they all comply with the standard requirements. After the abrasion resistance test, the PSC coating still has a certain hydrophobic ability. These results surface PSC coating can effectively reduce water damage on asphalt pavement, and has considerable application value. Full article
Show Figures

Figure 1

12 pages, 14590 KiB  
Article
Effect of Periodic Water Clusters on AISI 304 Welded Surfaces
by Madhulika Srivastava, Akash Nag, Lucie Krejčí, Jana Petrů, Somnath Chattopadhyaya and Sergej Hloch
Materials 2021, 14(1), 210; https://doi.org/10.3390/ma14010210 - 4 Jan 2021
Cited by 9 | Viewed by 2380
Abstract
This study compared the effect of the interaction time of periodic water clusters on the surface integrity of AISI 304 tungsten inert gas (TIG) welded joints at different excitation frequencies, as the effect of the technological parameters of pulsating water jet (PWJ) on [...] Read more.
This study compared the effect of the interaction time of periodic water clusters on the surface integrity of AISI 304 tungsten inert gas (TIG) welded joints at different excitation frequencies, as the effect of the technological parameters of pulsating water jet (PWJ) on the mechanical properties of TIG welded joints are under-researched. The TIG welded joints were subjected to different frequencies (20 and 40 kHz) and traverse speeds (1–4 mm/s) at a water pressure of 40 MPa and a standoff distance of 70 mm. The effect of the interaction of the pulsating jet on the material and the enhancement in its mechanical properties were compared through residual stress measurements, surface roughness, and sub-surface microhardness. A maximum enhancement in the residual stress values of up to 480 MPa was observed in the heat-affected zone, along with a maximum roughness of 6.03 µm and a maximum hardness of 551 HV using a frequency of 40 kHz. The improvement in the surface characteristics of the welded joints shows the potential of utilizing pulsed water jet technology with an appropriate selection of process parameters in the treatment of welded structures. Full article
(This article belongs to the Collection Machining and Manufacturing of Alloys and Steels)
Show Figures

Figure 1

12 pages, 9498 KiB  
Article
Effects of Double-Ageing Heat Treatments on the Microstructure and Mechanical Behaviour of a Ti-3.5Al-5Mo-4V Alloy
by Xuanming Ji, Panpan Ge, Song Xiang and Yuanbiao Tan
Materials 2021, 14(1), 209; https://doi.org/10.3390/ma14010209 - 4 Jan 2021
Cited by 11 | Viewed by 2322
Abstract
In this work, the effect of double-ageing heat treatments on the microstructural evolution and mechanical behaviour of a metastable β-titanium Ti-3.5Al-5Mo-4V alloy is investigated by X-ray diffraction (XRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The double-ageing treatments are composed of [...] Read more.
In this work, the effect of double-ageing heat treatments on the microstructural evolution and mechanical behaviour of a metastable β-titanium Ti-3.5Al-5Mo-4V alloy is investigated by X-ray diffraction (XRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The double-ageing treatments are composed of low-temperature pre-ageing and high-temperature ageing, where the low-temperature pre-ageing is conducted at 300 °C or 350 °C for different times, and the high-temperature ageing is conducted at 500 °C for 8 h. The results show that the phase transformation sequence is altered with the time spent during the first ageing stage, the isothermal ω phase is precipitated in the pre-ageing process of the alloy at 300 °C and 350 °C with the change in the ageing time, and the ω phase is finally transformed into the α phase with the extension of pre-ageing time. The existence time of the ω phase is shortened as the pre-ageing temperature increases. The microhardness of the alloy increases with increasing pre-ageing time and temperature. Compared with single-stage ageing, the ω phase formed in the pre-ageing stage changes the response to subsequent high-temperature ageing. After the two-stage ageing treatment, the precipitation size of the α phase is obviously refined after the double-ageing treatment. A microhardness test shows that the microhardness of the two-stage aged alloy increases with extended pre-ageing time. Full article
Show Figures

Figure 1

15 pages, 4053 KiB  
Article
Tryptophan and Kynurenine Enhances the Stemness and Osteogenic Differentiation of Bone Marrow-Derived Mesenchymal Stromal Cells In Vitro and In Vivo
by Hai Thanh Pham, Mitsuaki Ono, Emilio Satoshi Hara, Ha Thi Thu Nguyen, Anh Tuan Dang, Hang Thuy Do, Taishi Komori, Ikue Tosa, Yuri Hazehara-Kunitomo, Yuya Yoshioka, Yasutaka Oida, Kentaro Akiyama and Takuo Kuboki
Materials 2021, 14(1), 208; https://doi.org/10.3390/ma14010208 - 4 Jan 2021
Cited by 10 | Viewed by 3345
Abstract
Aging tissues present a progressive decline in homeostasis and regenerative capacities, which has been associated with degenerative changes in tissue-specific stem cells and stem cell niches. We hypothesized that amino acids could regulate the stem cell phenotype and differentiation ability of human bone [...] Read more.
Aging tissues present a progressive decline in homeostasis and regenerative capacities, which has been associated with degenerative changes in tissue-specific stem cells and stem cell niches. We hypothesized that amino acids could regulate the stem cell phenotype and differentiation ability of human bone marrow-derived mesenchymal stromal cells (hBMSCs). Thus, we performed a screening of 22 standard amino acids and found that D-tryptophan (10 μM) increased the number of cells positive for the early stem cell marker SSEA-4, and the gene expression levels of OCT-4, NANOG, and SOX-2 in hBMSCs. Comparison between D- and L-tryptophan isomers showed that the latter presents a stronger effect in inducing the mRNA levels of Oct-4 and Nanog, and in increasing the osteogenic differentiation of hBMSCs. On the other hand, L-tryptophan suppressed adipogenesis. The migration and colony-forming ability of hBMSCs were also enhanced by L-tryptophan treatment. In vivo experiments delivering L-tryptophan (50 mg/kg/day) by intraperitoneal injections for three weeks confirmed that L-tryptophan significantly increased the percentage of cells positive for SSEA-4, mRNA levels of Nanog and Oct-4, and the migration and colony-forming ability of mouse BMSCs. L-kynurenine, a major metabolite of L-tryptophan, also induced similar effects of L-tryptophan in enhancing stemness and osteogenic differentiation of BMSCs in vitro and in vivo, possibly indicating the involvement of the kynurenine pathway as the downstream signaling of L-tryptophan. Finally, since BMSCs migrate to the wound healing site to promote bone healing, surgical defects of 1 mm in diameter were created in mouse femur to evaluate bone formation after two weeks of L-tryptophan or L-kynurenine injection. Both L-tryptophan and L-kynurenine accelerated bone healing compared to the PBS-injected control group. In summary, L-tryptophan enhanced the stemness and osteoblastic differentiation of BMSCs and may be used as an essential factor to maintain the stem cell properties and accelerate bone healing and/or prevent bone loss. Full article
(This article belongs to the Special Issue Materials for Hard Tissue Repair and Regeneration)
Show Figures

Figure 1

10 pages, 2694 KiB  
Article
Role of Co in the Electrocatalytic Activity of Monolayer Ternary NiFeCo-Double Hydroxide Nanosheets for Oxygen Evolution Reaction
by Ye Li, Dan Zhao, Yue Shi, Zhicheng Sun and Ruping Liu
Materials 2021, 14(1), 207; https://doi.org/10.3390/ma14010207 - 4 Jan 2021
Cited by 10 | Viewed by 3688
Abstract
Monolayer nanosheets have gained significant attention as functional materials and also in photo/electrocatalysis due to their unique physical/chemical properties, abundance of highly exposed coordination sites, edges, and corner sites, motivating the pursuit of highly active monolayer nanosheets. NiFe-based layered double hydroxide (NiFe-LDH) nanosheets [...] Read more.
Monolayer nanosheets have gained significant attention as functional materials and also in photo/electrocatalysis due to their unique physical/chemical properties, abundance of highly exposed coordination sites, edges, and corner sites, motivating the pursuit of highly active monolayer nanosheets. NiFe-based layered double hydroxide (NiFe-LDH) nanosheets have been regarded as the most efficient electrocatalysis for oxygen evolution. However, the limited catalytic active site and the stacking layer limited the performance. Therefore, by introducing highly electroactive Co ions into monolayer NiFe-LDH, the obtained ternary NiFeCo-LDH monolayer structure possessed an increased concentration of defect (oxygen and metal vacancies), providing enough unsaturated coordination sites, benefitting the electrocatalytic water oxidation, as also explained by the density functional theory (DFT). This work reported an efficient strategy for the synthesis of ternary monolayer LDH in the application of energy conversion and storage. Full article
(This article belongs to the Section Energy Materials)
Show Figures

Figure 1

25 pages, 1806 KiB  
Article
Validating the Methods to Process the Stress Path in Multiaxial High-Cycle Fatigue Criteria
by Jan Papuga, Eva Cízová and Aleksander Karolczuk
Materials 2021, 14(1), 206; https://doi.org/10.3390/ma14010206 - 4 Jan 2021
Cited by 10 | Viewed by 2484
Abstract
The paper discusses one of the key features in the multiaxial fatigue strength evaluation—the procedure in which the stress path is analyzed to provide relevant measures of parameters required by multiaxial criteria. The selection of this procedure affects the complete equivalent stress derived [...] Read more.
The paper discusses one of the key features in the multiaxial fatigue strength evaluation—the procedure in which the stress path is analyzed to provide relevant measures of parameters required by multiaxial criteria. The selection of this procedure affects the complete equivalent stress derived for any multiaxial load combinations. Three major concepts—the minimum circumscribed circle, minimum circumscribed ellipse, and moment of inertia methods—are described. Analytical solutions of their evaluation for multiaxial stress state with components described by harmonic functions are provided. The concepts are validated on available experimental data when included into six different multiaxial fatigue strength criteria. The results show that the moment of inertia results in too conservative results. Differences between both methods of circumscribed entities are much smaller. There are indications however that the minimum circumscribed ellipse solution works better for critical plane criteria and for the criteria based on stress tensor transformation into the Ilyushin deviatoric space. On the other hand, the minimum circumscribed ellipse solution tends to shift integral criteria to the conservative side. Full article
(This article belongs to the Special Issue Fatigue Life under Multiaxial Load Conditions)
Show Figures

Figure 1

Previous Issue
Back to TopTop