Structural Ceramics Modified by Water Treatment Plant Sludge
Abstract
:1. Introduction
1.1. The Use of Water Treatment Plant Sludge in Building Materials Science
1.2. Sludge Composition
1.3. Aims and Objectives
- to choose the optimal method for preliminary sludge dewatering;
- to establish the best method of sludge treatment on the properties of structural ceramics;
- to determine the optimal amount of sludge introduced into the clay;
- to determine the most effective firing temperature and establish the properties of the resulting ceramic bricks.
2. Materials and Methods
2.1. WTP Sludge Treatment
2.2. Experimental Testing
3. Results
3.1. Sludge Treatment Methods
3.2. Influence of the Sludge Treatment Method on the Properties of Ceramics
3.3. Selection of Optimal Conditions for Sludge Pretreatment
3.4. The Influence of the Additive Dosage and Firing Temperature on the Structural Properties of the Ceramics
4. Conclusions
- The utilization of WTP sludge in the production of ceramic bricks is promising.
- A 20% addition of WTP sludge reduces the sensitivity of the clay to drying, reduces the density of ceramics by 20% and increases its compressive strength from 7.0 to 10.2 MPa.
- The use of WTP sludge as a modifying additive, pretreated by the freezing-thawing method, makes it possible to obtain ceramic bricks with improved properties.
- The results can be used for WTP sludge containing aluminum, obtained by treating water of medium turbidity and medium colour.
- The results of the study confirmed the possibility of using WTP sludge on an industrial scale for the production of high-quality ceramic bricks.
Author Contributions
Funding
Conflicts of Interest
References
- Ferreira, C.; Ribeiro, A.; Ottosen, L. Possible applications for municipal solid waste fly ash. J. Hazard. Mater. 2003, 96, 201–216. [Google Scholar] [CrossRef]
- Kadir, A.A.; Salim, N.S.A.; Abdullah, M.M.A.B.; Nawi, M.N.M.; Sandu, A.V. Properties impact from wastewater treatment sludge utilized into fired clay bricks. Malays. Constr. Res. J. 2017, 2, 130–142. [Google Scholar]
- Qu, L.; Wang, Y.; Yang, J.; Wang, L.; Wang, G. Effect of sintering temperature on expansion process and structure characteristics of sludge ceramsite. Cailiao Daobao/Mater. Rev. 2016, 30, 125–128. [Google Scholar] [CrossRef]
- Ling, Y.P.; Tham, R.H.; Lim, S.M.; Fahim, M.; Ooi, C.H.; Krishnan, P.; Matsumoto, A.; Yeoh, F.Y. Evaluation and reutilization of water sludge from fresh water processing plant as a green clay substituent. Appl. Clay Sci. 2017, 143, 300–306. [Google Scholar] [CrossRef]
- Tarrago, M.; Garcia-Valles, M.; Aly, M.H.; Martínez, S. Valorization of sludge from a wastewater treatment plant by glass-ceramic production. Ceram. Int. 2017, 43, 930–937. [Google Scholar] [CrossRef]
- Franus, M.; Barnat-Hunek, D.; Wdowin, M. Utilization of sewage sludge in the manufacture of lightweight aggregate. Environ. Monit. Assess. 2016, 188, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Cremades, L.V.; Cusidó, J.A.; Arteaga, F. Recycling of sludge from drinking water treatment as ceramic material for the manufacture of tiles. J. Clean. Prod. 2018, 201, 1071–1080. [Google Scholar] [CrossRef]
- Kizinievič, O.; Kizinievič, V.; Boris, R.; Girskas, G.; Malaiškienė, J. Eco-efficient recycling of drinking water treatment sludge and glass waste: Development of ceramic bricks. J. Mater. Cycles Waste Manag. 2018, 20, 1228–1238. [Google Scholar] [CrossRef]
- Kizinievič, O.; Kizinievič, V. Utilisation of drinking water treatment sludge for the manufacturing of ceramic products. In Proceedings of the IOP Conference Series: Materials Science and Engineering, Riga, Latvia, 27–29 September 2017; Institute of Physics Publishing: Bristol, UK, 2017; Volume 251. [Google Scholar]
- Mymrin, V.; Alekseev, K.; Fortini, O.M.; Catai, R.E.; Nagalli, A.; Rissardi, J.L.; Molinetti, A.; Pedroso, D.E.; Izzo, R.L.S. Water cleaning sludge as principal component of composites to enhance mechanical properties of ecologically clean red ceramics. J. Clean. Prod. 2017, 145, 367–373. [Google Scholar] [CrossRef]
- Kizinievič, O.; Žurauskienė, R.; Kizinievič, V.; Yakovlev, G.; Bur’yanov, A. use of sludge from drinking water purification in the production of effective ceramic articles. Glas. Ceram. (Engl. Transl. Steklo i Keram.) 2016, 73, 58–61. [Google Scholar] [CrossRef]
- Ramírez Zamora, R.M.; Espejel Ayala, F.; Solís López, M.; González Barceló, O.; Gómez, R.W.; Pérez Mazariego, J.L.; Navarro-González, R.; Schouwenaars, R. Optimisation and analysis of the synthesis of a cellular glass-ceramic produced from water purification sludge and clay. Appl. Clay Sci. 2016, 123, 232–238. [Google Scholar] [CrossRef]
- Lyubarskiy, V.M. Osadki Prirodnykh Vod i Metody ikh Obrabotki [Natural Water Sediments and Methods of Their Treatment]; Stroyizdat Publisher: Moscow, Russia, 1980; Volume 129. [Google Scholar]
- Babatunde, A.O.; Zhao, Y.Q. Constructive approaches toward water treatment works sludge management: An international review of beneficial reuses. Crit. Rev. Environ. Sci. Technol. 2007, 37, 129–164. [Google Scholar] [CrossRef]
- Husillos Rodríguez, N.; Martínez-Ramírez, S.; Blanco-Varela, M.T.; Guillem, M.; Puig, J.; Larrotcha, E.; Flores, J. Evaluation of spray-dried sludge from drinking water treatment plants as a prime material for clinker manufacture. Cem. Concr. Compos. 2011. [Google Scholar] [CrossRef]
- Chen, H.X.; Ma, X.; Dai, H.J. Reuse of water purification sludge as raw material in cement production. Cem. Concr. Compos. 2010, 32, 436–439. [Google Scholar] [CrossRef]
- De Carvalho Gomes, S.; Zhou, J.L.; Li, W.; Long, G. Progress in manufacture and properties of construction materials incorporating water treatment sludge: A review. Resour. Conserv. Recycl. 2019, 145, 148–159. [Google Scholar] [CrossRef]
- Nikolaenko, E.V.; Belkanova, M.Y. Influence of the treatment method on the water yielding capacity of natural water sediments. Procedia Eng. 2016, 150, 2315–2320. [Google Scholar] [CrossRef] [Green Version]
- Krasoń, J.; Miasik, P.; Lichołai, L.; Dȩbska, B.; Starakiewicz, A. Analysis of the thermal characteristics of a composite ceramic product filled with phase change material. Buildings 2019, 9, 217. [Google Scholar] [CrossRef] [Green Version]
- Lukashevich, O.D.; Usova, N.T.; Filichev, S.A.; Patrusheva, N.Y. Production of composite silicate materials and ceramics using water treatment waste. Conf. Proc. Adv. Mater. Constr. Eng. (PMST-2014) 2014, 307–314. [Google Scholar]
- Teixeira, S.R.; Santos, G.T.A.; Souza, A.E.; Alessio, P.; Souza, S.A.; Souza, N.R. The effect of incorporation of a Brazilian water treatment plant sludge on the properties of ceramic materials. Appl. Clay Sci. 2011, 53, 561–565. [Google Scholar] [CrossRef]
- Cultrone, G.; Carrillo Rosua, F.J. Growth of metastable phases during brick firing: Mineralogical and microtextural changes induced by the composition of the raw material and the presence of additives. Appl. Clay Sci. 2020, 185. [Google Scholar] [CrossRef]
- Pokhara, P.; Ekamparam, A.S.S.; Gupta, A.B.; Rai, D.C.; Singh, A. Activated alumina sludge as partial substitute for fine aggregates in brick making. Constr. Build. Mater. 2019, 221, 244–252. [Google Scholar] [CrossRef]
- Belkanova, M.Y.; Nikolaenko, E.V.; Gevel, D.A. Technological aspects of waterworks sludge treatment. IOP Conf. Ser. Mater. Sci. Eng. 2017, 262, 012221. [Google Scholar] [CrossRef]
- Vaxelaire, J.; Cézac, P. Moisture distribution in activated sludges: A review. Water Res. 2004, 38, 2215–2230. [Google Scholar] [CrossRef] [PubMed]
- Martel, C.J.; Affleck, R.; Yushak, M. Operational parameters for mechanical freezing of alum sludge. Water Res. 1998, 32, 2646–2654. [Google Scholar] [CrossRef]
- Ahmad, T.; Ahmad, K.; Alam, M. Sustainable management of water treatment sludge through 3′R’ concept. J. Clean. Prod. 2016, 124, 1–13. [Google Scholar] [CrossRef]
- Verrelli, D.I.; Dixon, D.R.; Scales, P.J. Effect of coagulation conditions on the dewatering properties of sludges produced in drinking water treatment. Colloids Surf. A Physicochem. Eng. Asp. 2009, 348, 14–23. [Google Scholar] [CrossRef]
- Verrelli, D.I.; Dixon, D.R.; Scales, P.J. Assessing dewatering performance of drinking water treatment sludges. Water Res. 2010, 44, 1542–1552. [Google Scholar] [CrossRef]
- Huang, C.; Pan, J.R.; Sun, K.D.; Liaw, C.T. Reuse of water treatment plant sludge and dam sediment in brick-making. Water Sci. Technol. 2001, 44, 273–277. [Google Scholar] [CrossRef]
- Kizinievič, O.; Žurauskiene, R.; Kizinievič, V.; Žurauskas, R. Utilisation of sludge waste from water treatment for ceramic products. Constr. Build. Mater. 2013, 41, 464–473. [Google Scholar] [CrossRef]
- Rodrigues, L.P.; de Holanda, J.N.F. Valorization of municipal waterworks sludge to produce ceramic floor tiles. Recycling 2018, 3, 10. [Google Scholar] [CrossRef] [Green Version]
- Evuti, A.M.; Lawal, M. Recovery of coagulants from water works sludge: A review. Adv. Appl. Sci. Res. 2011, 2, 410–417. [Google Scholar]
- Chen, S.Y.; Chen, S.; Wu, J.M.; He, N.H.; Shi, Y.S.; Li, C.H.; Zhang, K.; Cui, D.; Wang, Y.J. Rheological properties of photocurable coal-series kaolin slurry. Cailiao Gongcheng/J. Mater. Eng. 2020, 48, 142–147. [Google Scholar] [CrossRef]
- Russian State Standard GOST 21216-2014, Clay Raw Material. Test Methods, Moscow, Rusian Federation, 2015. Available online: Http://docs.cntd.ru/document/1200115068 (accessed on 19 November 2020).
- Russian State Standard GOST 7025-1991 Ceramic and Calcium Silicate Bricks and Stones. Methods for Water Absorption and Density Determination and Frost Resistance Control, Moscow, Rusian Federation, 2014. Available online: http://docs.cntd.ru/document/901700526 (accessed on 19 November 2020).
- Yang, Z.; Yin, Z.; Wang, D.; Wang, H.; Song, H.; Zhao, Z.; Zhang, G.; Qing, G.; Wu, H.; Jin, H. Effects of ternary sintering aids and sintering parameters on properties of alumina ceramics based on orthogonal test method. Mater. Chem. Phys. 2020, 241. [Google Scholar] [CrossRef]
Property | Regulatory Document |
---|---|
Plasticity number of clay mass | Russian State Standard GOST 21216-2014 [35] Clay raw materials. Test methods, p. 5.3 |
Air shrinkage of clay sample | Russian State Standard GOST 21216-2014 [35] Clay raw materials. Test methods, p. 5.26 |
Fire shrinkage | Russian State Standard GOST 21216-2014 [35] Clay raw materials. Test methods, p. 5.27.4.3 |
Compressive strength of ceramic sample | Russian State Standard GOST 21216-2014 [35] Clay raw materials. Test methods, p. 5.33.4 |
Sensitivity of clay sample to drying | Russian State Standard GOST 21216-2014 [35] Clay raw materials. Test methods, p, п. 5.32 |
Density of ceramic shard | Russian State Standard GOST 7025-1991 [36] Ceramic and calcium silicate bricks and stones. Methods for water absorption and density determination and frost resistance control, p. 5 |
Treatment Method | Specific Resistance to Filtration, × 1013 m/kg | |||||
---|---|---|---|---|---|---|
Lime% | Sludge without Treatment | |||||
10 | 15 | 20 | 30 | 40 | ||
PL | – | – | 2.34 | 1.16 | 0.77 | 8.40 |
HL | 1.28 | 1.10 | 0.880 | – | – | 3.74 |
Property | Without Additives | With WTPS-FT Additive | With WTPS-HL Additive |
---|---|---|---|
Mixing moisture content% | 34.8 | 30.0 | 32.8 |
Plasticity number% | 15.0 | 15.5 | 13.9 |
Air shrinkage% | 9.7 | 8.0 | 8.0 |
Fire shrinkage% | 1.4 | 1.6 | 1.4 |
Density of ceramic shard, g/cm3 | 1.67 | 1.53 | 1.48 |
First Factor, X | Second Factor, Y | Plasticity Number% | Shrinkage | Density of Ceramic Shard, g/cm3 | |||
---|---|---|---|---|---|---|---|
Code Values | D% | Code Values | TO, °C | Air Shrinkage% | Fire Shrinkage% | ||
−1 | 5.0 | −1 | 950 | 15.5 | 8.0 | 1.60 | 1.53 |
0 | 7.5 | −1 | 950 | 16.8 | 7.6 | 1.70 | 1.47 |
1 | 10.0 | −1 | 950 | 16.9 | 7.5 | 1.90 | 1.42 |
−1 | 5.0 | 0 | 1000 | - | - | 1.86 | 1.53 |
0 | 7.5 | 0 | 1000 | - | - | 2.02 | 1.47 |
1 | 10.0 | 0 | 1000 | - | - | 2.15 | 1.45 |
−1 | 5.0 | 1 | 1050 | - | - | 2.43 | 1.57 |
0 | 7.5 | 1 | 1050 | - | - | 2.46 | 1.51 |
1 | 10 | 1 | 1050 | - | - | 2.69 | 1.49 |
Sample | Sensitivity to Drying, Seconds | Air Shrinkage% | Fire Shrinkage% | Density of Ceramic Shard, g/cm3 | Compressive Strength Limit, MPa | Strength-Density Ratio |
---|---|---|---|---|---|---|
Without additives | 100 | 6.2 | 1.5 | 1.57 | 7.0 | 4.2 |
With 10 % of WTPS-FT additive | >180 | 4.5 | 2.5 | 1.45 | 8.5 | 5.6 |
With 20 % of WTPS-FT additive | >180 | 4.2 | 3.5 | 1.33 | 10.2 | 7.7 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Orlov, A.; Belkanova, M.; Vatin, N. Structural Ceramics Modified by Water Treatment Plant Sludge. Materials 2020, 13, 5293. https://doi.org/10.3390/ma13225293
Orlov A, Belkanova M, Vatin N. Structural Ceramics Modified by Water Treatment Plant Sludge. Materials. 2020; 13(22):5293. https://doi.org/10.3390/ma13225293
Chicago/Turabian StyleOrlov, Alexander, Marina Belkanova, and Nikolay Vatin. 2020. "Structural Ceramics Modified by Water Treatment Plant Sludge" Materials 13, no. 22: 5293. https://doi.org/10.3390/ma13225293
APA StyleOrlov, A., Belkanova, M., & Vatin, N. (2020). Structural Ceramics Modified by Water Treatment Plant Sludge. Materials, 13(22), 5293. https://doi.org/10.3390/ma13225293