Investigation of Moisture Dissipation of Water-Foamed Asphalt and Its Influence on the Viscosity
Abstract
:1. Introduction
2. Material Preparation and Test Methods
2.1. Preparation of Foamed Asphalt
2.2. Experimental Works
2.2.1. Calculation of Water Content of Foamed Asphalt
2.2.2. Determination of Viscosity
2.2.3. AFM Test Method
3. Results and Discussion
3.1. Moisture Dissipation of Foamed Asphalt
3.2. Variation of Viscosity with Time
3.3. Relationship between Moisture Dissipation and Viscosity
3.4. Micromorphology Evolution of Foamed Asphalt
4. Conclusions
- During the process of moisture dissipation, the exponential equation is proposed to describe the residual water content of foamed asphalt. The stabilizing time for foamed asphalt shows a significant variation with FWC and the preserving temperature. According to the stabilizing time, the interval time from in-plant mixing to in-field paving can be determined. After stabilizing, the residual water content of foamed asphalt is less than 0.01% by the asphalt mass.
- The modified RV is applicable to the viscosity measurement of the foamed asphalt. The viscosity reduction of asphalt binder is highly related to FWC in the foaming process, but it is independent of the residual water content of asphalt in the moisture dissipation process. This gives a reasonable explanation why the foamed asphalt mixture could maintain good workability (construction temperature reduced by more than 20 °C) throughout the whole construction process.
- Based on the AFM results, the bee structure of foamed asphalt becomes smaller and exhibits a uniform distribution compared to the original asphalt. It is clear that the foaming process promotes the distribution of wax molecules in asphalt and decreases the internal friction force among molecules, resulting in the decrease of the viscosity.
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Zaumanis, M. Warm Mix Asphalt, Climate Change, Energy, Sustainability and Pavements. Green Energy and Technology; Springer: Berlin/Heidelberg, Germany, 2014; Volume 204, pp. 309–334. [Google Scholar] [CrossRef]
- Cheng, L.; Chen, D.; Yan, G.; Zheng, H. Life cycle assessment of road surface paving with warm mix asphalt (WMA) replacing hot mix asphalt (HMA). In Proceedings of the International Conference on E-product E-service and E-entertainment, Henan, China, 7–9 November 2010. [Google Scholar]
- Hasan, M.R.M.; You, Z.; Yang, X. A comprehensive review of theory, development, and implementation of warm mix asphalt using foaming techniques. Constr. Build. Mater. 2017, 152, 115–133. [Google Scholar] [CrossRef]
- Middleton, B.; Forfylow, R. Evaluation of warm-mix asphalt produced with the double barrel green process. Transp. Res. Rec. J. Transp. Res. Board 2009, 2126, 19–26. [Google Scholar] [CrossRef]
- Newcomb, D.E.; Arambula, E.; Yin, F.; Zhang, J.; Bhasin, A.; Li, W.; Arega, Z. Properties of Foamed Asphalt for Warm Mix Asphalt Applications; Report No. 807; TRB’s National Cooperative Highway Research Program; Transportation Research Board: Washington, DC, USA, 2015. [Google Scholar]
- Nazzal, M.; Abbas, A.R.; Ali, A.W.; Roy, A. Investigation of foamed warm mix asphalt performance using the MEPDG. In Proceedings of the Geocongress, Oakland, CA, USA, 25–29 March 2012. [Google Scholar]
- Castedo-Franco, L.H.; Wood, E.L. Stabilisation with foamed asphalt of aggregates commonly used in low volume roads. Transport. Res. Rec. 1983, 898, 297–302. [Google Scholar]
- Yu, X.; Liu, S.; Dong, F. Comparative assessment of rheological property characteristics for unfoamed and foamed asphalt binder. Constr. Build. Mater. 2016, 122, 354–361. [Google Scholar] [CrossRef]
- Yu, X.; Leng, Z.; Wang, Y.; Lin, S. Characterization of the effect of foaming water content on the performance of foamed crumb rubber modified asphalt. Constr. Build. Mater. 2014, 67, 279–284. [Google Scholar] [CrossRef]
- Yu, X.; Dong, F.; Ding, G.; Liu, S.; Shen, S. Rheological and microstructural properties of foamed epoxy asphalt. Constr. Build. Mater. 2016, 114, 215–222. [Google Scholar] [CrossRef]
- Guo, W.; Guo, X.; Li, Y.; Dai, W. Laboratory investigation on physical, rheological, thermal and microscopic characteristics of water-foamed asphalt under three environmental conditions. Coatings 2020, 10, 239. [Google Scholar] [CrossRef] [Green Version]
- Liu, S.; Peng, A.; Zhou, S.; Meng, H. Effect of foaming water on rheological and microscopic properties of foamed warm-mix asphalt binders. J. Transp. Eng. B Pavements 2019, 145, 04019019. [Google Scholar] [CrossRef]
- Liu, S.; Yu, X.; Dong, F. Evaluation of moisture susceptibility of foamed warm asphalt produced by water injection using surface free energy method. Constr. Build. Mater. 2017, 131, 138–145. [Google Scholar] [CrossRef]
- Hu, J.; Zhang, L.; Zhang, X.; Guo, Y.; Yu, X. Comparative evaluation of moisture susceptibility of modified/foamed asphalt binders combined with different types of aggregates using surface free energy approach. Constr. Build. Mater. 2020, 256, 119429. [Google Scholar] [CrossRef]
- Ali, A.; Abbas, A.; Nazzal, M.; Alhasan, A.; Roy, A.; Powers, D. Effect of temperature reduction, foaming water content, and aggregate moisture content on performance of foamed warm mix asphalt. Constr. Build. Mater. 2017, 48, 1058–1066. [Google Scholar] [CrossRef]
- Ali, A.; Abbas, A.; Nazzal, M.; Powers, D. Laboratory evaluation of foamed warm mix asphalt. Int. J. Pavement Res. 2012, 5, 93–101. [Google Scholar]
- Ali, A.; Abbas, A.; Nazzal, M.; Alhasan, A.; Roy, A.; Powers, D. Workability evaluation of foamed warm-mix asphalt. J. Mater. Civ. Eng. 2014, 26, 04014011. [Google Scholar] [CrossRef]
- Yin, F.; Arámbula-Mercado, E.; Newcomb, D. Workability and coatability of foamed Warm-Mix Asphalt. Asphalt Pavements 2014, 1, 721–730. [Google Scholar] [CrossRef]
- Yin, F.; Arámbula-Mercado, E.; Newcomb, D. Effect of laboratory foamer on asphalt foaming characteristics and foamed mixture properties. Int. J. Pavement Eng. 2017, 18, 358–366. [Google Scholar] [CrossRef]
- Yin, F.; Arámbula-Mercado, E.; Newcomb, D. Effect of water content on binder foaming characteristics and foamed mixture properties. Transp. Res. Rec. J. Transp. Res. Board 2015, 2506, 1–7. [Google Scholar] [CrossRef]
- Hailesilassie, B.W.; Hugener, M.; Partl, M.N. Influence of foaming water content on foam asphalt mixtures. Constr. Build. Mater. 2015, 85, 65–77. [Google Scholar] [CrossRef]
- Bairgi, B.K.; Tarefder, R.A. Characterization of foaming attributes to binder tribology and rheology to better understand the mechanistic behavior of foamed asphalt. Int. J. Pavement Res. Technol. 2020, in press. [Google Scholar] [CrossRef]
- Bairgi, B.K.; Mannan, U.A.; Tarefder, R.A. Influence of foaming on tribological and rheological characteristics of foamed asphalt. Constr. Build. Mater. 2019, 205, 186–195. [Google Scholar] [CrossRef]
- Bairgi, B.K.; Mannan, U.A.; Tarefder, R.A. Tribological approach to demonstrate workability of foamed warm-mix asphalt. J. Mater. Civ. Eng. 2019, 31, 04019191. [Google Scholar] [CrossRef]
- Ryan, J.; Braham, A. The characterisation of foamed asphalt cement using a rotational viscometer. Int. J. Pavement Eng. 2017, 18, 744–752. [Google Scholar] [CrossRef]
- American Society for Testing and Materials (ASTM). Standard Test Method for Viscosity Determination of Asphalt at Elevated Temperatures Using a Rotational Viscometer; ASTM D4402; American Society for Testing and Materials (ASTM): West Conshohocken, PA, USA, 2008. [Google Scholar]
- Heller, J.P.; Kuntamukkula, M.S. Critical review of the foam rheology literature. Ind. Eng. Chem. Res. 1987, 26, 318–325. [Google Scholar] [CrossRef]
- You, L.; You, Z.; Yang, X.; Ge, D.; Lv, S. Laboratory testing of rheological behavior of water-foamed bitumen. J. Mater. Civ. Eng. 2018, 30, 04018153. [Google Scholar] [CrossRef]
- Jenkins, K.J. Mix Design Considerations for Cold and Half-Warm Bituminous Mixes with on Foamed Bitumen. Ph.D. Thesis, University of Stellenbosch, Stellenbosch, South Africa, 2000. [Google Scholar]
- Sri, S.; Hartadi, S.M. Investigating foamed bitumen viscosity. Appl. Mech. Mater. 2014, 660, 254–258. [Google Scholar] [CrossRef]
- Dong, F.; Yu, X.; Liang, X.; Ding, G.; Wei, J. Influence of foaming water and aging process on the properties of foamed asphalt. Constr. Build. Mater. 2017, 153, 866–874. [Google Scholar] [CrossRef]
- Arega, Z.A.; Bhasin, A.; Li, W.; Newcomb, D.E.; Arambula, E. Characteristics of asphalt binders foamed in the laboratory to produce warm mix asphalt. J. Mater. Civ. Eng. 2014, 26, 04014078. [Google Scholar] [CrossRef]
- Binnig, G.K.; Quate, C.F.; Gerber, C. The atomic force microscope. Phys. Rev. Lett. 1986, 56, 930–933. [Google Scholar] [CrossRef] [Green Version]
- Qtaish, L.A.; Nazzal, M.D.; Abbas, A.; Kaya, S.; Akinbowale, S.; Arefin, M.S.; Kim, S.-S. Micromechanical and chemical characterization of foamed warm-Mix asphalt aging. J. Mater. Civ. Eng. 2018, 30, 04018213. [Google Scholar] [CrossRef]
- Nazzal, M.D.; Qtaish, L.A.; Kay, S.; Abbas, A.; Powers, D. A nano-scale approach to study the healing phenomenon in warm mix asphalt. J. Test. Eval. 2017, 45, 1662–1670. [Google Scholar] [CrossRef]
- Kutay, E.M.; Ozturk, H.I. Investigation of moisture dissipation in foam-based warm mix asphalt using synchrotron-based X-Ray microtomography. J. Mater. Civ. Eng. 2012, 24, 674–683. [Google Scholar] [CrossRef]
- Pugh, R.J. Experimental techniques for studying the structure of foams and froths. Adv. Colloid Interface Sci. 2005, 114–115, 239–251. [Google Scholar] [CrossRef] [PubMed]
- Loeber, L.; Sutton, O.; Morel, J.; Valleton, J.M.; Muller, G. New direct observations of asphalts and asphalt binder by scanning electron microscopy and atomic force microscopy. J. Microsc. 1996, 182, 32–39. [Google Scholar] [CrossRef]
- De Moraes, M.B.; Pereira, R.B.; Simão, R.A.; Leite, L.F.M. High temperature AFM study of CAP 30/45 pen grade bitumen. J. Microsc. 2010, 239, 46–53. [Google Scholar] [CrossRef] [PubMed]
- Soenen, H.; Besamusca, J.; Fischer, H.R.; Poulikakos, L.D.; Planche, J.-P.; das Prabir, K.; Kringos, N.; Grenfell, J.R.A.; Lu, X.; Chailleux, E. Laboratory investigation of bitumen based on round robin DSC and AFM tests. Mater. Struct. 2014, 47, 1205–1220. [Google Scholar] [CrossRef]
- Fischer, H.R.; Dillingh, E.C.; Hermse, C.G.M. On the microstructure of bituminous binders. Road Mater. Pavement Des. 2014, 15, 1–15. [Google Scholar] [CrossRef]
Properties | Test Results | Standard Specification |
---|---|---|
Penetration/0.1 mm (25 °C, 100 g, 5 s) | 75 | ASTM D 5 |
Ductility/cm (5 cm/min, 15 °C) | >100 | ASTM D 113 |
Softening point/°C (TR&B) | 48.5 | ASTM D 36 |
Rotational viscosity (mPa·s, 135 °C) | 448.1 | ASTM D 4402 |
G*/sinδ (kPa, 64 °C) | 1.76 | AASHTO T315 |
PG grade | PG 64–22 | AASHTO T315 |
Samples | Fitting Equation | c | r | R2 |
---|---|---|---|---|
120 °C/1% | y = 0.85e−0.0137t | 0.85 | 0.0137 | 0.964 |
140 °C/1% | y = 0.75e−0.0205t | 0.75 | 0.0205 | 0.954 |
120 °C/3% | y = 2.63e−0.0116t | 2.63 | 0.0116 | 0.998 |
140 °C/3% | y = 2.54e−0.0165t | 2.54 | 0.0165 | 0.986 |
120 °C/5% | y = 4.48e−0.0076t | 4.48 | 0.0076 | 0.995 |
140 °C/5% | y = 4.43e−0.0126t | 4.43 | 0.0126 | 0.995 |
Asphalt Types | Percent of Total Area/% | Number | Average Area/um2 |
---|---|---|---|
0%–0 min | 6.10 | 16 | 1.525 |
3%–105 min | 6.50 | 38 | 0.684 |
3%–210 min | 6.20 | 42 | 0.590 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, N.; Tang, W.; Yu, X.; Zhan, H.; Ma, H.; Ding, G.; Zhang, Y. Investigation of Moisture Dissipation of Water-Foamed Asphalt and Its Influence on the Viscosity. Materials 2020, 13, 5325. https://doi.org/10.3390/ma13235325
Li N, Tang W, Yu X, Zhan H, Ma H, Ding G, Zhang Y. Investigation of Moisture Dissipation of Water-Foamed Asphalt and Its Influence on the Viscosity. Materials. 2020; 13(23):5325. https://doi.org/10.3390/ma13235325
Chicago/Turabian StyleLi, Ning, Wei Tang, Xin Yu, He Zhan, Hui Ma, Gongying Ding, and Yu Zhang. 2020. "Investigation of Moisture Dissipation of Water-Foamed Asphalt and Its Influence on the Viscosity" Materials 13, no. 23: 5325. https://doi.org/10.3390/ma13235325
APA StyleLi, N., Tang, W., Yu, X., Zhan, H., Ma, H., Ding, G., & Zhang, Y. (2020). Investigation of Moisture Dissipation of Water-Foamed Asphalt and Its Influence on the Viscosity. Materials, 13(23), 5325. https://doi.org/10.3390/ma13235325