Enhancement of Interface between Lignocellulosic Fibers and Polypropylene Matrix via the Structure Alteration of Lignin at Elevated Temperatures
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Alkaline Pretreatment of Jute Fibers
2.3. Fabrication of Fiber Reinforced Composites
2.4. Determination of Lignin Content
2.5. Isolation and Purification of Milled Wood Lignin
2.6. Characterization of Lignin Structures
2.6.1. Molecular Weight and Molecular Weight Distribution
2.6.2. Ratio of Condensed Units
2.6.3. Hydroxyl Concentration
2.7. Tensile Strength at Break of Jute Fibers
2.8. Surface Energy of Jute Fibers
2.9. Impact Strength of Jute Composites
2.10. Morphological of Jute Fibers and the Fracture Sections of Jute Composites
3. Results and Discussion
3.1. Content of Lignin in Jute Fibers
3.2. Structure of the Residual Lignin in Jute Fibers
3.2.1. Molecular Weight
3.2.2. Condensation Degree
3.2.3. Molecule-Weight Distribution
3.2.4. Hydroxyl Concentration
3.3. Tensile Strength at Break of Jute Fibers
3.4. Morphology and Surface Energy of Jute Fibers
3.5. Impact Strength and Interface of Fiber Reinforced Composites
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Das, S. Mechanical properties of waste paper/jute fabric reinforced polyester resin matrix hybrid composites. Carbohydr. Polym. 2017, 172, 60–67. [Google Scholar] [CrossRef] [PubMed]
- Shah, D.U. Developing plant fiber composites for structural applications by optimising composite parameters: A critical review. J. Mater. Sci. 2013, 48, 6083–6107. [Google Scholar] [CrossRef]
- Mohanty, A.K.; Misra, M.; Drzal, L.T. Surface modifications of natural fibers and performance of the resulting biocomposites: An overview. Compos. Interfaces 2001, 8, 313–343. [Google Scholar] [CrossRef]
- Khan, J.A.; Khan, M.A.; Islam, R. Effect of mercerization on mechanical, thermal and degradation characteristics of jute fabric-reinforced polypropylene composites. Fibers Polym. 2012, 13, 1300–1309. [Google Scholar] [CrossRef]
- Liu, W.; Mohanty, A.K.; Drzal, L.T.; Askel, P.; Misra, M. Effects of alkali treatment on the structure, morphology and thermal properties of native grass fibers as reinforcements for polymer matrix composites. J. Mater. Sci. 2004, 39, 1051–1054. [Google Scholar] [CrossRef]
- Miedzianowska, J.; Masowski, M.; Rybiński, P.; Strzelec, K. Properties of chemically modified (selected silanes) lignocellulosic filler and its application in natural rubber biocomposites. Materials 2020, 13, 4163. [Google Scholar] [CrossRef]
- Elamin, M.A.M.; Li, S.X.; Osman, Z.A.; Otitoju, T.A. Preparation and characterization of wood-plastic composite by utilizing a hybrid compatibilizer system. Ind. Crops Prod. 2020, 154, 112659. [Google Scholar] [CrossRef]
- Li, M.; Pu, Y.; Thomas, V.M.; Yoo, C.G.; Ozcan, S.; Deng, Y.; Nelson, K.; Ragauskas, A.J. Recent advancements of plant-based natural fiber–reinforced composites and their applications. Composites Part B 2020, 200, 108254. [Google Scholar] [CrossRef]
- Kord, B.; Movahedi, F.; Adlnasab, L.; Masrouri, H. Influence of eco-friendly pretreatment of lignocellulosic biomass using ionic liquids on the interface adhesion and characteristics of polymer composite boards. J. Compos. Mater. 2020, 54, 3717–3729. [Google Scholar] [CrossRef]
- Feng, N.; Ren, L.; Wu, H.; Wu, Q.; Xie, Y. New insights on structure of lignin-carbohydrate complex from hot water pretreatment liquor. Carbohydr. Polym. 2019, 224, 115130. [Google Scholar] [CrossRef]
- Oladele, I.O.; Ibrahim, I.O.; Akinwekomi, A.D.; Talabil, S.I. Effect of mercerization on the mechanical and thermal response of hybrid bagasse fiber/caco3 reinforced polypropylene composites. Polym. Test 2019, 76, 192–198. [Google Scholar] [CrossRef]
- Siddika, S.; Mansura, F.; Hasan, M.; Hassan, A. Effect of reinforcement and chemical treatment of fiber on the properties of jute-coir fiber reinforced hybrid polypropylene composites. Fibers Polym. 2014, 15, 1023–1028. [Google Scholar] [CrossRef]
- Kathirselvam, M.; Kumaravel, A.; Arthanarieswaran, V.P.; Saravanakumar, S.S. Characterization of cellulose fibers in Thespesia populnea barks: Influence of alkali treatment. Carbohydr. Polym. 2019, 217, 178–189. [Google Scholar] [CrossRef] [PubMed]
- Sinha, E.; Rout, S.K. Influence of fiber-surface treatment on structural, thermal and mechanical properties of jute fiber and its composite. Bull. Mater. Sci. 2009, 32, 65–76. [Google Scholar] [CrossRef]
- Brunengo, E.; Conzatti, L.; Utzeri, R.; Vicini, S.; Scatto, M.; Verga Falzacappa, E.; Castellano, M.; Stagnaro, P. Chemical modification of hemp fibers by plasma treatment for eco-composites based on biodegradable polyester. J. Mater. Sci. 2019, 54, 14367–14377. [Google Scholar] [CrossRef]
- Dong, Z.; Chu, T.; Lu, N.; Pan, X.; Li, D. Spinning property of cotton stalk fibers degummed with microwaves assistance. Cotton Text. Technol. 2020, 48, 39–42. (In Chinese) [Google Scholar]
- Dong, Z.; Hou, X.; Haigler, I.; Yang, Y. Preparation and properties of cotton stalk bark fibers and their cotton blended yarns and fabrics. J. Cleaner Prod. 2016, 139, 267–276. [Google Scholar] [CrossRef] [Green Version]
- Ilangovan, M.; Guna, V.; Prajwal, B.; Jiang, Q.; Reddy, N. Extraction and characterisation of natural cellulose fibers from Kigelia Africana. Carbohydr. Polym. 2020, 236, 115996. [Google Scholar] [CrossRef]
- Pichandi, S.; Rana, S.; Parveen, S.; Fangueiro, R.A. Green approach of improving interface and performance of plant fiber composites using microcrystalline cellulose. Carbohydr. Polym. 2018, 197, 137–146. [Google Scholar] [CrossRef]
- Rahman, M.R.; Huque, M.M.; Islam, M.N.; Hasan, M. Improvement of physico-mechanical properties of jute fiber reinforced polypropylene composites by post-treatment. Composites Part A 2008, 39, 1739–1747. [Google Scholar] [CrossRef]
- Zhao, Y.; Yue, J.; Tao, L.; Liu, Y.; Shi, S.Q.; Cai, L.; Xiao, S. Effect of lignin on the self-bonding of a natural fiber material in a hydrothermal environment: Lignin structure and characterization. Int. J. Biol. Macromol. 2020, 158, 1135–1140. [Google Scholar] [CrossRef] [PubMed]
- Hou, X.; Sun, F.; Yan, D.; Xu, H.; Dong, Z.; Li, Q.; Yang, Y. Preparation of lightweight polypropylene composites reinforced by cotton stalk fibers from combined steam flash-explosion and alkaline treatment. J. Cleaner Prod. 2014, 83, 454–462. [Google Scholar] [CrossRef]
- BjÖrkman, A. Isolation of lignin from finely divided wood with neutral solvents. Nature 1954, 174, 1057–1058. [Google Scholar] [CrossRef]
- Lundquist, K.; Ohlsson, B.; Simonson, R. Isolation of lignin by means of liquid-liquid extraction. Sven. Papperstidn. 1977, 80, 143–144. [Google Scholar] [CrossRef]
- Sette, M.; Wechselberger, R.; Crestini, C. Elucidation of lignin structure by quantitative 2d NMR. Chem-Eur. J. 2011, 17, 9529–9535. [Google Scholar] [CrossRef]
- Yan, T.; Xu, Y.; Yu, C. The isolation and characterization of lignin of kenaf fiber. J. Appl. Polym. Sci. 2009, 114, 1896–1901. [Google Scholar] [CrossRef]
- Owens, D.K.; Wendt, R.C. Estimation of the surface free energy of polymers. J. Appl. Polym. Sci. 1969, 13, 1741–1747. [Google Scholar] [CrossRef]
- Jańczuk, B.; Białopiotrowicz, T.; Zdziennicka, A. Some remarks on the components of the liquid surface free energy. J. Colloid Interface Sci. 1999, 211, 96–103. [Google Scholar] [CrossRef]
- Gholampour, A.; Ozbakkaloglu, T. A review of natural fiber composites: Properties, modification and processing techniques, characterization, applications. J. Mater. Sci. 2020, 55, 829–892. [Google Scholar] [CrossRef]
Conditions | C9 Formula | OHAliphatic/C9 | OHPhenolic/C9 | Total OH/C9 |
---|---|---|---|---|
100℃ 3h | C9H9.463O3.553(OCH3)0.990 | 0.805 | 0.097 | 0.902 |
100℃ 5h | C9H9.458O3.444(OCH3)0.992 | 0.800 | 0.099 | 0.899 |
130℃ 3h | C9H9.432O3.447(OCH3)0.911 | 0.655 | 0.288 | 0.943 |
130℃ 5h | C9H9.395O3.258(OCH3)0.903 | 0.593 | 0.295 | 0.888 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dong, Z.; Li, N.; Dong, A.; Ma, B.; Yu, C.; Chu, T.; Liu, Q. Enhancement of Interface between Lignocellulosic Fibers and Polypropylene Matrix via the Structure Alteration of Lignin at Elevated Temperatures. Materials 2020, 13, 5428. https://doi.org/10.3390/ma13235428
Dong Z, Li N, Dong A, Ma B, Yu C, Chu T, Liu Q. Enhancement of Interface between Lignocellulosic Fibers and Polypropylene Matrix via the Structure Alteration of Lignin at Elevated Temperatures. Materials. 2020; 13(23):5428. https://doi.org/10.3390/ma13235428
Chicago/Turabian StyleDong, Zhen, Na Li, Aixue Dong, Bomou Ma, Chongwen Yu, Teye Chu, and Qixia Liu. 2020. "Enhancement of Interface between Lignocellulosic Fibers and Polypropylene Matrix via the Structure Alteration of Lignin at Elevated Temperatures" Materials 13, no. 23: 5428. https://doi.org/10.3390/ma13235428
APA StyleDong, Z., Li, N., Dong, A., Ma, B., Yu, C., Chu, T., & Liu, Q. (2020). Enhancement of Interface between Lignocellulosic Fibers and Polypropylene Matrix via the Structure Alteration of Lignin at Elevated Temperatures. Materials, 13(23), 5428. https://doi.org/10.3390/ma13235428