Effects of Zr-Cu Alloy Powder on Microstructure and Properties of Cu Matrix Composite with Highly-Aligned Flake Graphite
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Microstructure and Phase Composition
3.2. Thermal Properties
3.3. Mechanical Properties
4. Conclusions
- The flake graphite/Cu composites with superior thermal properties were successfully prepared via tape-casting and hot-pressing sintering. The flakes graphite showed high alignment in the Cu matrix, significantly improving the TC of FG/Cu-Zr composites. The added Zr acted with the FGs at the interface and the Cu matrix, forming ZrC and Cu-Zr intermetallic compounds, respectively.
- The maximum value of the TC of the FG/Cu composite reached 608.7 W/m∙K with 0.5 wt % Zr. The TC of the composite decreased with increasing the Zr content.
- The XY-CTE of the FG/Cu composite decreased as the Zr content increased, which attributed to the greater effective contact area caused by the interface strengthening. The addition of Zr weakened the negative thermal expansion in the Z direction of the composite, which was occasioned by the decreased thermal stress of the composite.
- The bending strength of the FG/Cu composite increased with the Zr addition. The bending strength of the FG/Cu composite with 2 wt % Zr reached 79.9 MPa, 42% higher than the composite without Zr. The exfoliation of graphite layers near the FG-Cu interface caused the fracture of the FG/Cu composites. All in all, the FG/Cu composite with 0.5 wt % Zr showed the best overall performance, including the thermal and mechanical properties.
Author Contributions
Funding
Conflicts of Interest
References
- Mizuuchi, K.; Inoue, K.; Agari, Y. Trend of the Development of Metal-Based Heat Dissipative Materials. Microelectron. Reliab. 2017, 79, 5–19. [Google Scholar] [CrossRef]
- Sidhu, S.S.; Kumar, S.; Batish, A. Metal Matrix Composites for Thermal Management: A Review. Crit. Rev. Solid State Mater. Sci. 2015, 41, 132–157. [Google Scholar] [CrossRef]
- Zhang, X.; Zhao, N.; He, C. The Superior Mechanical and Physical Properties of Nanocarbon Reinforced Bulk Composites Achieved by Architecture Design—A Review. Prog. Mater. Sci. 2020, 113, 100672. [Google Scholar] [CrossRef]
- Kováčik, J.; Emmer, Š. Cross Property Connection between the Electric and the Thermal Conductivities of Copper Graphite Composites. Int. J. Eng. Sci. 2019, 144. [Google Scholar] [CrossRef]
- Morvan, A.; Grosseau-Poussard, J.-L.; Caillault, N.; Delange, F.; Roure, S.; Lepretre, P.; Silvain, J.-F. Powder Processing Methodology for Fabrication of Copper/Graphite Composite Materials with Enhanced Thermal Properties. Compos. Part A Appl. Sci. Manuf. 2019, 124. [Google Scholar] [CrossRef]
- Zhang, Q.; Qin, Z.; Luo, Q.; Wu, Z.; Liu, L.; Shen, B.; Hu, W. Microstructure and Nanoindentation Behavior of Cu Composites Reinforced with Graphene Nanoplatelets by Electroless Co-Deposition Technique. Sci. Rep. 2017, 7, 1–12. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Firkowska, I.; Boden, A.; Boerner, B.; Reich, S. The Origin of High Thermal Conductivity and Ultralow Thermal Expansion in Copper-Graphite Composites. Nano Lett. 2015, 15, 4745–4751. [Google Scholar] [CrossRef] [PubMed]
- Cao, H.; Xiong, D.-B.; Tan, Z.; Fan, G.; Tan, Z.; Guo, Q.; Su, Y.; Guo, C.; Zhang, D. Thermal Properties of In Situ Grown Graphene Reinforced Copper Matrix Laminated Composites. J. Alloys Compd. 2019, 771, 228–237. [Google Scholar] [CrossRef]
- Ren, S.; Chen, J.; He, X.; Qu, X. Effect of Matrix-Alloying-Element Chromium on the Microstructure and Properties of Graphite Flakes/Copper Composites Fabricated by Hot Pressing Sintering. Carbon 2018, 127, 412–423. [Google Scholar] [CrossRef]
- Bai, H.; Xue, C.; Lyu, J.; Li, J.; Chen, G.; Yu, J.; Lin, C.; Lv, D.; Xiong, L. Thermal Conductivity and Mechanical Properties of Flake Graphite/Copper Composite with a Boron Carbide-Boron Nano-Layer on Graphite Surface. Compos. Part A Appl. Sci. Manuf. 2018, 106, 42–51. [Google Scholar] [CrossRef]
- Shirvanimoghaddam, K.; Hamim, S.U.; Akbari, M.K.; FakhrHoseini, S.M.; Khayyam, H.; Pakseresht, A.H.; Ghasali, E.; Zabet, M.; Munir, K.S.; Jia, S.; et al. Carbon Fiber Reinforced Metal Matrix Composites: Fabrication Processes and Properties. Compos. Part A Appl. Sci. Manuf. 2017, 92, 70–96. [Google Scholar] [CrossRef]
- Chang, J.; Zhang, Q.; Lin, Y.; Wu, G. Layer by Layer Graphite Film Reinforced Aluminum Composites with an Enhanced Performance of Thermal Conduction in the Thermal Management Applications. J. Alloys Compd. 2018, 742, 601–609. [Google Scholar] [CrossRef]
- Zhuang, Y.; Cao, X.; Zhang, J.; Ma, Y.; Shang, X.; Lu, J.; Yang, S.; Zheng, K.; Ma, Y. Monomer Casting Nylon/Graphene Nanocomposite with Both Improved Thermal Conductivity and Mechanical Performance. Compos. Part A Appl. Sci. Manuf. 2019, 120, 49–55. [Google Scholar] [CrossRef]
- Chen, J.; Gao, X. Thermal and Electrical Anisotropy of Polymer Matrix Composite Materials Reinforced with Graphene Nanoplatelets and Aluminum-Based Particles. Diam. Relat. Mater. 2019, 100, 107571. [Google Scholar] [CrossRef]
- Xue, C.; Bai, H.; Tao, P.; Wang, J.; Jiang, N.; Wang, S. Thermal Conductivity and Mechanical Properties of Flake Graphite/Al Composite with a SiC Nano-Layer on Graphite Surface. Mater. Des. 2016, 108, 250–258. [Google Scholar] [CrossRef]
- Zhang, H.; Chao, M.; Zhang, H.; Tang, A.; Ren, B.; He, X. Microstructure and Thermal Properties of Copper Matrix Composites Reinforced by Chromium-Coated Discontinuous Graphite Fibers. Appl. Therm. Eng. 2014, 73, 739–744. [Google Scholar] [CrossRef]
- Cui, Q.; Yu, C.; Hao, J.; Chen, C.-G.; Zhang, X.; Guo, Z.; Volinsky, A.A. Ultrahigh Thermal Conductivity Copper/Graphite Membrane Composites Prepared by Tape Casting with Hot-Pressing Sintering. Mater. Lett. 2018, 231, 60–63. [Google Scholar] [CrossRef]
- Chen, J.; Ren, S.; He, X.; Qu, X. Properties and Microstructure of Nickel-Coated Graphite Flakes/Copper Composites Fabricated by Spark Plasma Sintering. Carbon 2017, 121, 25–34. [Google Scholar] [CrossRef]
- Zhou, S.; Chiang, S.; Xu, J.; Du, H.; Li, B.; Xu, C.; Kang, F. Modeling the in-Plane Thermal Conductivity of a Graphite/Polymer Composite Sheet with a Very High Content of Natural Flake Graphite. Carbon 2012, 50, 5052–5061. [Google Scholar] [CrossRef]
- Prieto, R.; Molina, J.; Narciso, J.; Louis, E. Fabrication and Properties of Graphite Flakes/Metal Composites for Thermal Management Applications. Scr. Mater. 2008, 59, 11–14. [Google Scholar] [CrossRef]
- Wang, L.; Li, J.; Bai, G.; Li, N.; Wang, X.; Zhang, H.; Wang, J.; Kim, M.J. Interfacial Structure Evolution and Thermal Conductivity of Cu-Zr/Diamond Composites Prepared by Gas Pressure Infiltration. J. Alloys Compd. 2019, 781, 800–809. [Google Scholar] [CrossRef]
- Ciupiński, Ł.; Kruszewski, M.J.; Grzonka, J.; Chmielewski, M.; Zielińsk, R.; Moszczyńska, D.; Michalski, A. Design of Interfacial Cr3C2 Carbide Layer via Optimization of Sintering Parameters Used to Fabricate Copper/Diamond Composites for Thermal Management Applications. Mater. Des. 2017, 120, 170–185. [Google Scholar] [CrossRef]
- Ma, S.; Zhao, N.; Shi, C.; Liu, E.; He, C.; He, F.; Ma, L. Mo2C Coating on Diamond: Different Effects on Thermal Conductivity of Diamond/Al and Diamond/Cu Composites. Appl. Surf. Sci. 2017, 402, 372–383. [Google Scholar] [CrossRef]
- Li, J.; Wang, X.; Qiao, Y.; Zhang, Y.; He, Z.; Zhang, H. High Thermal Conductivity through Interfacial Layer Optimization in Diamond Particles Dispersed Zr-Alloyed Cu Matrix Composites. Scr. Mater. 2015, 109, 72–75. [Google Scholar] [CrossRef]
- Bai, G.; Li, N.; Wang, X.; Wang, J.; Kim, M.J.; Zhang, H. High Thermal Conductivity of Cu-B/Diamond Composites Prepared by Gas Pressure Infiltration. J. Alloys Compd. 2018, 735, 1648–1653. [Google Scholar] [CrossRef]
- Liu, X.; Li, J.; Sha, J.; Liu, E.; Li, Q.; He, C.; Shi, C.; Zhao, N. In-Situ Synthesis of Graphene Nanosheets Coated Copper for Preparing Reinforced Aluminum Matrix Composites. Mater. Sci. Eng. A 2018, 709, 65–71. [Google Scholar] [CrossRef]
- Zhang, H.; Zhang, J.; Liu, Y.; Zhang, F.; Fan, T.; Zhang, D. Unveiling the Interfacial Configuration in Diamond/Cu Composites by Using Statistical Analysis of Metallized Diamond Surface. Scr. Mater. 2018, 152, 84–88. [Google Scholar] [CrossRef]
- Cui, Q.; Hao, J.; Yu, C.; Lu, T.; Long, H.; Yan, S.; Volinsky, A.A.; Hao, J. Effect of Molybdenum Particles on Thermal and Mechanical Properties of Graphite Flake/Copper Composites. Carbon 2020, 161, 169–180. [Google Scholar] [CrossRef]
- Okamoto, H. Cu-Zr (Copper-Zirconium). J. Phase Equilibria Diffus. 2012, 33, 417–418. [Google Scholar] [CrossRef]
- Zhao, Y.; Pang, T.; He, J.; Tao, X.; Chen, H.; Ouyang, Y.; Du, Y. Interdiffusion Behaviors and Mechanical Properties of Cu-Zr System. Calphad 2018, 61, 92–97. [Google Scholar] [CrossRef]
- Turner, P. Thermal-Expansion Stresses in Reinforced Plastics. J. Res. Natl. Inst. Stand. Technol. 1946, 37, 239. [Google Scholar] [CrossRef]
- Kerner, E.H. The Elastic and Thermo-Elastic Properties of Composite Media. Proc. Phys. Soc. Sect. B 1956, 69, 808–813. [Google Scholar] [CrossRef]
- Oddone, V.; Boerner, B.; Reich, S. Composites of Aluminum Alloy and Magnesium Alloy with Graphite Showing Low Thermal Expansion and High Specific Thermal Conductivity. Sci. Technol. Adv. Mater. 2017, 18, 180–186. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lu, T.-X.; Chen, C.-G.; Guo, Z.; Li, P.; Guo, M.-X. Tungsten Nanoparticle-Strengthened Copper Composite Prepared by a Sol-Gel Method and In-Situ Reaction. Int. J. Miner. Met. Mater. 2019, 26, 1477–1483. [Google Scholar] [CrossRef]
- Lu, T.; Chen, C.-G.; Li, P.; Zhang, C.; Han, W.; Zhou, Y.; Suryanarayana, C.; Guo, Z. Enhanced Mechanical and Electrical Properties of In Situ Synthesized Nano-Tungsten Dispersion-Strengthened Copper Alloy. Mater. Sci. Eng. A 2021, 799, 140161. [Google Scholar] [CrossRef]
- Liu, Q.; He, X.-B.; Ren, S.-B.; Zhang, C.; Ting-Ting, L.; Qu, X.-H. Thermophysical Properties and Microstructure of Graphite Flake/Copper Composites Processed by Electroless Copper Coating. J. Alloys Compd. 2014, 587, 255–259. [Google Scholar] [CrossRef]
- Zhu, Y.; Bai, H.; Xue, C.; Zhou, R.; Xu, Q.; Tao, P.; Wang, C.; Wang, J.; Jiang, N. Thermal Conductivity and Mechanical Properties of a Flake Graphite/Cu Composite with a Silicon Nano-Layer on a Graphite Surface. RSC Adv. 2016, 6, 98190–98196. [Google Scholar] [CrossRef]
- Chu, K.; Wang, X.-H.; Li, Y.-B.; Huang, D.-J.; Geng, Z.-R.; Zhao, X.-L.; Liu, H.; Zhang, H. Thermal Properties of Graphene/Metal Composites with Aligned Graphene. Mater. Des. 2018, 140, 85–94. [Google Scholar] [CrossRef]
- Chu, K.; Wang, X.-H.; Wang, F.; Li, Y.-B.; Huang, D.-J.; Liu, H.; Ma, W.-L.; Liu, F.-X.; Zhang, H. Largely Enhanced Thermal Conductivity of Graphene/Copper Composites with Highly Aligned Graphene Network. Carbon 2018, 127, 102–112. [Google Scholar] [CrossRef] [Green Version]
Zr Content (wt %) | ρ (g/cm3) | Cp (J/g·K) | α (mm2/s) | λ (W/m∙K) | CTE (×10−6/K) | |||
---|---|---|---|---|---|---|---|---|
XY | Z | XY | Z | XY | Z | |||
0 | 5.47 ± 0.1 | 0.452 | 241.2 ± 1.5 | 20.3 ± 0.4 | 596.5 ± 3.7 | 50.2 ± 1.0 | 12.5 | −7.61 |
0.5 | 5.43 ± 0.1 | 0.452 | 248.0 ± 1.4 | 17.5 ± 0.3 | 608.7 ± 3.4 | 43.0 ± 0.7 | 9.63 | −4.34 |
1 | 5.39 ± 0.1 | 0.452 | 229.0 ± 1.0 | 15.7 ± 0.5 | 558.0 ± 2.4 | 38.2 ± 1.2 | 8.56 | −3.46 |
2 | 5.36 ± 0.1 | 0.452 | 216.6 ± 1.4 | 15.3 ± 0.4 | 524.8 ± 3.4 | 37.1 ± 1.0 | 9.58 | −1.1 |
FG Fraction (vol%) | Interfacial Layer | Fabrication Method | λ (W/m∙K) | CTE (×10−6/K) | Bending Strength (MPa) | Reference | ||
---|---|---|---|---|---|---|---|---|
XY | Z | XY | Z | |||||
50 | ZrC | HP a | 608.7 | 43 | 9.63 | −4.34 | 68 | This study |
50 | Cr3C2 | HP | 628 | 80 | 14.5 | 5 | 93 | [9] |
70 | B4C | HP | 608 | 40 | 5.2 | 3.9 | 72 | [10] |
50 | SiC | HP | 491 | 66 | / | / | 79 | [37] |
50 | Mo2C | HP | 598 | 42 | 13.9 | −2.92 | 75 | [28] |
50 | / | SPS b | 503 | / | / | 2 | / | [7] |
40 | / | RA c + HP | 640 | 100 | / | / | / | [5] |
30 | / | VF d + SPS | 438 | 80 | 12 | 6.2 | / | [38] |
35 | / | VF + SPS | 525 | 106 | / | / | / | [39] |
60 | Ni | HP | 532 | / | 15 | −3.85 | 75 | [18] |
51 | / | HP | 488 | 96 | 7.5 | / | / | [36] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, C.; Cui, Q.; Yu, C.; Li, P.; Han, W.; Hao, J. Effects of Zr-Cu Alloy Powder on Microstructure and Properties of Cu Matrix Composite with Highly-Aligned Flake Graphite. Materials 2020, 13, 5709. https://doi.org/10.3390/ma13245709
Chen C, Cui Q, Yu C, Li P, Han W, Hao J. Effects of Zr-Cu Alloy Powder on Microstructure and Properties of Cu Matrix Composite with Highly-Aligned Flake Graphite. Materials. 2020; 13(24):5709. https://doi.org/10.3390/ma13245709
Chicago/Turabian StyleChen, Cunguang, Qianyue Cui, Chengwei Yu, Pei Li, Weihao Han, and Junjie Hao. 2020. "Effects of Zr-Cu Alloy Powder on Microstructure and Properties of Cu Matrix Composite with Highly-Aligned Flake Graphite" Materials 13, no. 24: 5709. https://doi.org/10.3390/ma13245709
APA StyleChen, C., Cui, Q., Yu, C., Li, P., Han, W., & Hao, J. (2020). Effects of Zr-Cu Alloy Powder on Microstructure and Properties of Cu Matrix Composite with Highly-Aligned Flake Graphite. Materials, 13(24), 5709. https://doi.org/10.3390/ma13245709