Effect of Varying Steel Fiber Content on Strength and Permeability Characteristics of High Strength Concrete with Micro Silica
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Design of Concrete Mixtures
2.3. Sample Preparation and Testing Techniques
3. Results and Discussion
3.1. Compressive Strength (CS)
3.2. Modulus of Elasticity (MOE)
3.3. Splitting Tensile Strength (STS)
3.4. Water Absorption (WA)
3.5. Chloride Ion Penetration (CIP)
4. Conclusions
- (1)
- Fibers have mixed effects on compressive strength (CS). The positive effect of SF on CS is observed only at small doses. A high-volume dose of SF negatively affects CS. MS improves the utilization of SF in advancing the CS of concrete.
- (2)
- Similar to CS results, modulus of elasticity (MOE) also shows mixed behavior with varying fiber dose. Low volumes (0.05–0.5%) of SF are beneficial to MOE, whereas high volumes (1–2%) are detrimental to MOE. MS shows synergistic effects with SF on MOE. SF doses of 0.5% produce optimum MOE and CS. The addition of MS is highly useful compared to SF addition if the increment in CS or MOE is desired.
- (3)
- Splitting-tensile strength (STS) increases up to 36% with the rising dose of SF (0 to 2%). There is no significant achievement in STS when SF doses increased beyond 1%. STS experience more gain than CS and MOE at all doses of SF. MS improves the net gain in STS due to SF addition. The combined addition of 10%MS and 1%SF produces concrete with 60% more STS than plain concrete.
- (4)
- Considering the combined behavior of CS, MOE, and STS, 1%SF can be taken as the optimum dose for high strength concrete.
- (5)
- At low to medium fiber doses (0.05–0.25%), the WA of concrete was slightly lower than that of the plain concrete. Whereas high fiber doses (0.5–1%) are determinantal to the imperviousness of concrete. The positive effect of low fiber volumes is very negligible compared to that of the MS. MS can play a key role in downing the WA capacity of high fiber volume concretes.
- (6)
- Similar to WA, chloride-ion penetration (CIP) experiences a small reduction of 0.05–0.25% SF. The detrimental effect of high fiber dose can be minimized by MS addition. With the help of 10%MS, 2%SF concrete shows a significant 25% lower CIP compared to plain concrete.
5. Future Research
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Nomenclature
CIP | Chloride Ion Penetration |
CS | Compressive Strength |
MOE | Modulus of Elasticity |
MS | Micro-Silica |
SF | Steel Fiber |
STS | Splitting Tensile Strength |
WA | Water Absorption |
References
- Ali, B.; Qureshi, L.A. Influence of glass fibers on mechanical and durability performance of concrete with recycled aggregates. Constr. Build. Mater. 2019, 228, 116783. [Google Scholar] [CrossRef]
- Ali, B.; Ahmed, H.H.; Qureshi, L.A.; Kurda, R.; Hafez, H.; Mohammed, H.; Raza, A. Enhancing the Hardened Properties of Recycled Concrete (RC) through Synergistic Incorporation of Fiber Reinforcement and Silica Fume. Materials 2020, 13, 4112. [Google Scholar] [CrossRef] [PubMed]
- Koushkbaghi, M.; Kazemi, M.J.; Mosavi, H.; Mohseni, E. Acid resistance and durability properties of steel fiber-reinforced concrete incorporating rice husk ash and recycled aggregate. Constr. Build. Mater. 2019, 202, 266–275. [Google Scholar] [CrossRef]
- Zain, M.; Mahmud, H.; Ilham, A.; Faizal, M. Prediction of splitting tensile strength of high-performance concrete. Cem. Concr. Res. 2002, 32, 1251–1258. [Google Scholar] [CrossRef]
- Xie, J.; Li, J.; Lu, Z.; Li, Z.; Fang, C.; Huang, L.; Li, L. Combination effects of rubber and silica fume on the fracture behaviour of steel-fibre recycled aggregate concrete. Constr. Build. Mater. 2019, 203, 164–173. [Google Scholar] [CrossRef]
- Cao, S.; Xue, G.; Yilmaz, E. Flexural Behavior of Fiber Reinforced Cemented Tailings Backfill under Three-Point Bending. IEEE Access 2019, 7, 139317–139328. [Google Scholar] [CrossRef]
- Ali, B.; Qureshi, L.A.; Khan, S.U. Flexural behavior of glass fiber-reinforced recycled aggregate concrete and its impact on the cost and carbon footprint of concrete pavement. Constr. Build. Mater. 2020, 262, 120820. [Google Scholar] [CrossRef]
- Wang, J.; Dai, Q.; Si, R.; Ma, Y.; Guo, S. Fresh and mechanical performance and freeze-thaw durability of steel fiber-reinforced rubber self-compacting concrete (SRSCC). J. Clean. Prod. 2020, 277, 123180. [Google Scholar] [CrossRef]
- Qureshi, L.A.; Ali, B.; Ali, A. Combined effects of supplementary cementitious materials (silica fume, GGBS, fly ash and rice husk ash) and steel fiber on the hardened properties of recycled aggregate concrete. Constr. Build. Mater. 2020, 263, 120636. [Google Scholar] [CrossRef]
- Hussain, I.; Ali, B.; Akhtar, T.; Jameel, M.S.; Raza, S.S. Comparison of mechanical properties of concrete and design thickness of pavement with different types of fiber-reinforcements (steel, glass, and polypropylene). Case Stud. Constr. Mater. 2020, 13, e00429. [Google Scholar] [CrossRef]
- Ahmad, W.; Farooq, S.H.; Usman, M.; Khan, M.; Ahmad, A.; Aslam, F.; Alyouef, R.; Alabduljabbar, H.; Sufian, M. Effect of Coconut Fiber Length and Content on Properties of High Strength Concrete. Materials 2020, 13, 1075. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ahmed, H.H.; Bogas, J.A. Influence of carbon nanotubes on steel–concrete bond strength. Mater. Struct. 2018, 51, 155. [Google Scholar] [CrossRef]
- Hawreen, A.; Bogas, J.A.; Kurda, R.; Hawreen, A.; Bogas, J.A.; Kurda, R. Mechanical Characterization of Concrete Reinforced with Different Types of Carbon Nanotubes. Arab. J. Sci. Eng. 2019, 44, 8361–8376. [Google Scholar] [CrossRef]
- Ali, B.; Qureshi, L.A.; Kurda, R. Environmental and economic benefits of steel, glass, and polypropylene fiber reinforced cement composite application in jointed plain concrete pavement. Compos. Commun. 2020, 22, 100437. [Google Scholar] [CrossRef]
- Wu, Z.; Shi, C.; He, W.; Wu, L. Effects of steel fiber content and shape on mechanical properties of ultra high performance concrete. Constr. Build. Mater. 2016, 103, 8–14. [Google Scholar] [CrossRef]
- Raza, S.S.; Qureshi, L.A.; Ali, B.; Raza, A.; Khan, M.M. Effect of different fibers (steel fibers, glass fibers, and carbon fibers) on mechanical properties of reactive powder concrete. Struct. Concr. 2020. [Google Scholar] [CrossRef]
- Alabduljabbar, H.; Alyouef, R.; Alrshoudi, F.; Alaskar, A.; Fathi, A.; Mohamed, A.M. Mechanical Effect of Steel Fiber on the Cement Replacement Materials of Self-Compacting Concrete. Fibers 2019, 7, 36. [Google Scholar] [CrossRef] [Green Version]
- Lee, S.F.; Jacobsen, S. Study of interfacial microstructure, fracture energy, compressive energy and debonding load of steel fiber-reinforced mortar. Mater. Struct. 2011, 44, 1451–1465. [Google Scholar] [CrossRef] [Green Version]
- Li, V.C.; Wu, H.-C.; Chan, Y.-W. Effect of Plasma Treatment of Polyethylene Fibers on Interface and ementitious Composite Properties. J. Am. Ceram. Soc. 2005, 79, 700–704. [Google Scholar] [CrossRef] [Green Version]
- Teng, S.; Afroughsabet, V.; Ostertag, C.P. Flexural behavior and durability properties of high performance hybrid-fiber-reinforced concrete. Constr. Build. Mater. 2018, 182, 504–515. [Google Scholar] [CrossRef]
- Afroughsabet, V.; Biolzi, L.; Ozbakkaloglu, T. Influence of double hooked-end steel fibers and slag on mechanical and durability properties of high performance recycled aggregate concrete. Compos. Struct. 2017, 181, 273–284. [Google Scholar] [CrossRef]
- Afroughsabet, V.; Ozbakkaloglu, T. Mechanical and durability properties of high-strength concrete containing steel and polypropylene fibers. Constr. Build. Mater. 2015, 94, 73–82. [Google Scholar] [CrossRef]
- Xie, J.; Zhang, Z.; Lu, Z.; Sun, M. Coupling effects of silica fume and steel-fiber on the compressive behaviour of recycled aggregate concrete after exposure to elevated temperature. Constr. Build. Mater. 2018, 184, 752–764. [Google Scholar] [CrossRef]
- Wang, J.; Xie, J.; He, J.; Sun, M.; Yang, J.; Li, L. Combined use of silica fume and steel fibre to improve fracture properties of recycled aggregate concrete exposed to elevated temperature. J. Mater. Cycles Waste Manag. 2020, 22, 1–16. [Google Scholar] [CrossRef]
- Carneiro, J.A.; Lima, P.R.L.; Leite, M.B.; Filho, R.D.T. Compressive stress–strain behavior of steel fiber reinforced-recycled aggregate concrete. Cem. Concr. Compos. 2014, 46, 65–72. [Google Scholar] [CrossRef]
- Song, W.; Yin, J. Hybrid effect evaluation of steel fiber and carbon fiber on the performance of the fiber reinforced concrete. Materials 2016, 9, 704. [Google Scholar] [CrossRef] [Green Version]
- Wu, Z.; Khayat, K.H.; Khayat, K. Influence of silica fume content on microstructure development and bond to steel fiber in ultra-high strength cement-based materials (UHSC). Cem. Concr. Compos. 2016, 71, 97–109. [Google Scholar] [CrossRef] [Green Version]
- C01 Committee. Specification for Portland Cement; ASTM International: West Conshohocken, PA, USA, 2018. [Google Scholar]
- ASTM International. ASTM-C39, Standard Test Method for Compressive Strength of Cylindrical Concrete Specimens; ASTM International: West Conshohocken, PA, USA, 2015. [Google Scholar]
- ASTM International. ASTM-C469, Standard Test Method for Static Modulus of Elasticity and Poisson’s Ratio of Concrete in Compression; ASTM International: West Conshohocken, PA, USA, 2014. [Google Scholar]
- ASTM International. ASTM-C496, Standard Test Method for Splitting Tensile Strength of Cylindrical Concrete Specimens; ASTM International: West Conshohocken, PA, USA, 2017. [Google Scholar]
- ASTM International. ASTM-C642-13, Standard Test Method for Density, Absorption, and Voids in Hardened Concrete; ASTM International: West Conshohocken, PA, USA, 2013. [Google Scholar]
- Ali, B.; Qureshi, L.A. Durability of recycled aggregate concrete modified with sugarcane molasses. Constr. Build. Mater. 2019, 229, 116913. [Google Scholar] [CrossRef]
- Das, C.S.; Dey, T.; Dandapat, R.; Mukharjee, B.B.; Kumar, J. Performance evaluation of polypropylene fibre reinforced recycled aggregate concrete. Constr. Build. Mater. 2018, 189, 649–659. [Google Scholar] [CrossRef]
- Chan, R.; Santana, M.A.; Oda, A.M.; Paniguel, R.C.; Vieira, L.B.; Figueiredo, A.D.; Galobardes, I. Analysis of potential use of fibre reinforced recycled aggregate concrete for sustainable pavements. J. Clean. Prod. 2019, 218, 183–191. [Google Scholar] [CrossRef]
- Ali, B.; Raza, S.S.; Hussain, I.; Iqbal, M. Influence of different fibers on mechanical and durability performance of concrete with silica fume. Struct. Concr. 2020, 201900422. [Google Scholar] [CrossRef]
- Chan, Y.-W.; Chu, S.-H. Effect of silica fume on steel fiber bond characteristics in reactive powder concrete. Cem. Concr. Res. 2004, 34, 1167–1172. [Google Scholar] [CrossRef]
- Lee, S.-C.; Oh, J.-H.; Cho, J.-Y. Compressive Behavior of Fiber-Reinforced Concrete with End-Hooked Steel Fibers. Materials 2015, 8, 1442–1458. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ou, Y.-C.; Tsai, M.-S.; Liu, K.-Y.; Chang, K.-C. Compressive Behavior of Steel-Fiber-Reinforced Concrete with a High Reinforcing Index. J. Mater. Civ. Eng. 2012, 24, 207–215. [Google Scholar] [CrossRef]
- Dinh-Cong, D.; Keykhosravi, M.H.; Alyousef, R.; Salih, M.N.A.; Nguyen, H.; Alabduljabbar, H.; Alaskar, A.; Alrshoudi, F.; Poi-Ngian, S. The effect of wollastonite powder with pozzolan micro silica in conventional concrete containing recycled aggregate. Smart Struct. Syst. 2019, 24, 541–552. [Google Scholar]
- Afroughsabet, V.; Biolzi, L.; Monteiro, P.J. The effect of steel and polypropylene fibers on the chloride diffusivity and drying shrinkage of high-strength concrete. Compos. Part B Eng. 2018, 139, 84–96. [Google Scholar] [CrossRef]
- Li, D.; Liu, S. The influence of steel fiber on water permeability of concrete under sustained compressive load. Constr. Build. Mater. 2020, 242, 118058. [Google Scholar] [CrossRef]
Aggregate Type | Material | Dry Rodded Density | Water Absorption (%) | 10% Fine Value (kN) | Specific Gravity | Maximum Aggregate Size |
---|---|---|---|---|---|---|
Fine aggregate | Siliceous sand | 1615 | 0.97 | - | 2.67 | 4.75 |
Coarse Aggregate | Dolomite-sandstone | 1519 | 0.65 | 148 | 2.68 | 12.5 |
Mix No. | Mix ID | MS (%) | SF (%) | Cement (kg/m3) | MS (kg/m3) | Siliceous Sand (kg/m3) | Crushed Limestone (kg/m3) | SF (kg/m3) | Water (kg/m3) | HWR (kg/m3) |
---|---|---|---|---|---|---|---|---|---|---|
1 | MS0/SF0 (Control) | 0 | 0.00 | 478 | 0 | 657 | 1077 | 0 | 185 | 2 |
2 | MS0/SF0.05 | 0.05 | 478 | 0 | 656 | 1076 | 4 | 185 | 2 | |
3 | MS0/SF0.1 | 0.10 | 478 | 0 | 656 | 1076 | 8 | 185 | 2 | |
4 | MS0/SF0.25 | 0.25 | 478 | 0 | 654 | 1074 | 20 | 185 | 2 | |
5 | MS0/SF0.5 | 0.50 | 478 | 0 | 651 | 1071 | 39 | 185 | 3 | |
6 | MS0/SF1 | 1.00 | 478 | 0 | 644 | 1064 | 78 | 185 | 3 | |
7 | MS0/SF2 | 2.00 | 478 | 0 | 631 | 1051 | 156 | 185 | 3 | |
8 | MS5/SF0 | 5 | 0.00 | 454 | 18 | 657 | 1077 | 0 | 185 | 2 |
9 | MS5/SF0.05 | 0.05 | 454 | 18 | 656 | 1076 | 4 | 185 | 2 | |
10 | MS5/SF0.1 | 0.10 | 454 | 18 | 656 | 1076 | 8 | 185 | 2 | |
11 | MS5/SF0.25 | 0.25 | 454 | 18 | 654 | 1074 | 20 | 185 | 2 | |
12 | MS5/SF0.5 | 0.50 | 454 | 18 | 651 | 1071 | 39 | 185 | 3 | |
13 | MS5/SF1 | 1.00 | 454 | 18 | 644 | 1064 | 78 | 185 | 3 | |
14 | MS5/SF2 | 2.00 | 454 | 18 | 631 | 1051 | 156 | 185 | 3 | |
15 | MS10/SF0 | 10 | 0.00 | 430 | 36 | 657 | 1077 | 0 | 185 | 2 |
16 | MS10/SF0.05 | 0.05 | 430 | 36 | 656 | 1076 | 4 | 185 | 2 | |
17 | MS10/SF0.1 | 0.10 | 430 | 36 | 656 | 1076 | 8 | 185 | 2 | |
18 | MS10/SF0.25 | 0.25 | 430 | 36 | 654 | 1074 | 20 | 185 | 2 | |
19 | MS10/SF0.5 | 0.50 | 430 | 36 | 651 | 1071 | 39 | 185 | 3 | |
20 | MS10/SF1 | 1.00 | 430 | 36 | 644 | 1064 | 78 | 185 | 3 | |
21 | MS10/SF2 | 2.00 | 430 | 36 | 631 | 1051 | 156 | 185 | 3 |
Property | Standard Followed | Size of Specimen | Age of Testing |
---|---|---|---|
Compressive Strength (MPa) | ASTM C39 | 100 φ mm × 200 mm cylinder | 28 days |
Modulus of Elasticity (MPa) | ASTM C469 | 150 φ mm × 300 mm cylinder | 28 days |
Splitting Tensile Strength (MPa) | ASTM C496 | 100 φ mm × 200 mm cylinder | 28 days |
Water Absorption (%) | ASTM C642 | 100 φ mm × 50 mm disc | 28 days |
Chloride Ion Penetration (mm) | Ali et al. [2] | 100 φ mm × 100 mm cylinder | 28 days curing + 56 days of condition in NaCl solution |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ali, B.; Kurda, R.; Herki, B.; Alyousef, R.; Mustafa, R.; Mohammed, A.; Raza, A.; Ahmed, H.; Fayyaz Ul-Haq, M. Effect of Varying Steel Fiber Content on Strength and Permeability Characteristics of High Strength Concrete with Micro Silica. Materials 2020, 13, 5739. https://doi.org/10.3390/ma13245739
Ali B, Kurda R, Herki B, Alyousef R, Mustafa R, Mohammed A, Raza A, Ahmed H, Fayyaz Ul-Haq M. Effect of Varying Steel Fiber Content on Strength and Permeability Characteristics of High Strength Concrete with Micro Silica. Materials. 2020; 13(24):5739. https://doi.org/10.3390/ma13245739
Chicago/Turabian StyleAli, Babar, Rawaz Kurda, Bengin Herki, Rayed Alyousef, Rasheed Mustafa, Ahmed Mohammed, Ali Raza, Hawreen Ahmed, and Muhammad Fayyaz Ul-Haq. 2020. "Effect of Varying Steel Fiber Content on Strength and Permeability Characteristics of High Strength Concrete with Micro Silica" Materials 13, no. 24: 5739. https://doi.org/10.3390/ma13245739
APA StyleAli, B., Kurda, R., Herki, B., Alyousef, R., Mustafa, R., Mohammed, A., Raza, A., Ahmed, H., & Fayyaz Ul-Haq, M. (2020). Effect of Varying Steel Fiber Content on Strength and Permeability Characteristics of High Strength Concrete with Micro Silica. Materials, 13(24), 5739. https://doi.org/10.3390/ma13245739