Enhanced Fatigue and Durability Properties of Natural Rubber Composites Reinforced with Carbon Nanotubes and Graphene Oxide
Abstract
:1. Introduction
2. Experimental
2.1. Materials
2.2. Materials Preparation
2.3. Characterization
3. Results and Discussion
3.1. Filler Dispersion
3.2. Filler Network
3.3. Dynamic Mechanical Analysis
3.4. Mechanical Properties
3.5. Strain-Induced Crystallization
3.6. Fatigue Performance
3.6.1. Fatigue Life
3.6.2. Crack Precursor Size
3.6.3. Crack Propagation Rate
3.6.4. Crack Tip Evolutions
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Tanasi, P.; Santana, M.H.; Carretero-Gonzalez, J.; Verdejo, R.; Lopez-Manchado, M.A. Thermo-reversible crosslinked natural rubber: A Diels-Alder route for reuse and self-healing properties in elastomers. Polymer 2019, 175, 15–24. [Google Scholar] [CrossRef]
- Legorju-Jago, K.; Bathias, C. Fatigue initiation and propagation in natural and synthetic rubbers. Int. J. Fatigue 2002, 24, 85–92. [Google Scholar] [CrossRef]
- Rey, T.; Chagnon, G.; Cam, J.B.L.; Favier, D. Effects of temperature on the mechanical behavior of filled and unfilled silicone rubbers. Polym. Test. 2013, 32, 492–501. [Google Scholar] [CrossRef] [Green Version]
- Gac, P.Y.L.; Arhant, M.; Davies, P.; Muhr, A. Fatigue behavior of natural rubber in marine environment: Comparison between air and sea water. Mater. Des. 2015, 65, 462–467. [Google Scholar] [CrossRef] [Green Version]
- Andriyana, A.; Chai, A.B.; Verron, E.; Johan, M.R. Interaction between diffusion of palm biodiesel and large strain in rubber: Effect on stress-softening during cyclic loading. Mech. Res. Commun. 2012, 43, 80–86. [Google Scholar] [CrossRef] [Green Version]
- Neuhaus, C.; Lion, A.; Johlitz, M.; Heuler, P.; Barkhoff, M.; Duisen, F. Fatigue behaviour of an elastomer under consideration of ageing effects. Int. J. Fatigue 2017, 104, 72–80. [Google Scholar] [CrossRef]
- Rublon, P.; Huneau, B.; Verron, E.; Saintier, N.; Beurrot, S.; Leygue, A.; Mocuta, C.; Thiaudière, D.; Berghezan, D. Multiaxial deformation and strain-induced crystallization around a fatigue crack in natural rubber. Eng. Fract. Mech. 2014, 123, 59–69. [Google Scholar] [CrossRef] [Green Version]
- Ruellan, B.; le Cam, J.-B.; Robin, E.; Jeanneau, I.; Canévet, F.; Mauvoisin, G.; Loison, D. Fatigue crack growth in natural rubber: The role of SIC investigated through post-mortem analysis of fatigue striations. Eng. Fract. Mech. 2018, 201, 353–365. [Google Scholar] [CrossRef]
- Ayoub, G.; Naït-Abdelaziz, M.; Zaïri, F.; Gloaguen, J.M.; Charrier, P. Fatigue life prediction of rubber-like materials under multiaxial loading using a continuum damage mechanics approach: Effects of two-blocks loading and R ratio. Mech. Mater. 2012, 52, 87–102. [Google Scholar] [CrossRef]
- Ayoub, G.; Naït-Abdelaziz, M.; Zaïri, F. Multiaxial fatigue life predictors for rubbers: Application of recent developments to a carbon-filled SBR. Int. J. Fatigue 2014, 66, 168–176. [Google Scholar] [CrossRef]
- Ayoub, G.; Zaïri, F.; Naït-Abdelaziz, M.; Gloaguen, J.M. Modeling the low-cycle fatigue behavior of visco-hyperelastic elastomeric materials using a new network alteration theory: Application to styrene-butadiene rubber. J. Mech. Phys. Solids 2011, 59, 473–495. [Google Scholar] [CrossRef]
- Kim, W.D.; Lee, H.J.; Kim, J.Y.; Koh, S.K. Fatigue life estimation of an engine rubber mount. Int. J. Fatigue 2004, 26, 553–560. [Google Scholar] [CrossRef]
- Cao, L.; Sinha, T.K.; Tao, L.; Li, H.; Zong, C.; Kim, J.K. Synergistic reinforcement of silanized silica-graphene oxide hybrid in natural rubber for tire-tread fabrication: A latex based facile approach. Compos. Part B 2019, 161, 667–676. [Google Scholar] [CrossRef]
- Li, F.; Liu, J.; Mars, W.V.; Chan, T.W.; Lu, Y.; Yang, H.; Zhang, L. Crack precursor size for natural rubber inferred from relaxing and non-relaxing fatigue experiments. Int. J. Fatigue 2015, 80, 50–57. [Google Scholar] [CrossRef]
- Geim, A.K.; Novoselov, K.S. The rise of graphene. Nat. Mater. 2007, 6, 183–191. [Google Scholar] [CrossRef]
- Stankovich, S.; Dikin, D.A.; Dommett, G.H.B.; Kohlhaas, K.M.; Zimney, E.J.; Stach, E.A.; Piner, R.D.; Nguyen, S.T.; Ruoff, R.S. Graphene-based composite materials. Nature 2006, 442, 282–286. [Google Scholar] [CrossRef]
- Iijima, S. Helical microtubules of graphitic carbon. Nature 1991, 354, 56–58. [Google Scholar] [CrossRef]
- Pan, Z.W.; Xie, S.S.; Chang, B.H.; Wang, C.Y.; Qian, L.X. Very long carbon nanotubes. Nature 1998, 394, 631–632. [Google Scholar] [CrossRef]
- Dong, B.; Liu, C.; Zhang, L.; Wu, Y. Preparation, fracture, and fatigue of exfoliated graphene oxide/natural rubber composites. RSC Adv. 2015, 5, 17140–17148. [Google Scholar] [CrossRef]
- Xu, S.J.Z.; Guo, H.; Zhou, Y.; Jiang, L.; Gao, Y.; Zhang, L.; Liu, L.; Wen, S. Influence of graphene oxide and carbon nanotubes on the fatigue properties of silica/styrene-butadiene rubber composites under uniaxial and multiaxial cyclic loading. Int. J. Fatigue 2020, 131. [Google Scholar] [CrossRef]
- Song, S.H.; Jeong, H.K.; Kang, Y.G. Preparation and characterization of exfoliated graphite and its styrene butadiene rubber nanocomposites. J. Ind. Eng. Chem. 2010, 16, 1059–1065. [Google Scholar] [CrossRef]
- Zhou, Y.; Jiang, L.; Chen, S.; Ma, J.; Betts, A.; Jerrams, S. Determination of reliable fatigue life predictors for magnetorheological elastomers under dynamic equi-biaxial loading. Polym. Test. 2017, 61, 177–184. [Google Scholar] [CrossRef] [Green Version]
- Zheng, L.; Jerrams, S.; Xu, Z.; Zhang, L.; Liu, L.; Wen, S. Enhanced gas barrier properties of graphene oxide/rubber composites with strong interfaces constructed by graphene oxide and sulfur. Chem. Eng. J. 2019, 383. [Google Scholar] [CrossRef]
- Guo, B.; Tang, Z.; Zhang, L. Transport performance in novel elastomer nanocomposites: Mechanism, design and control. Prog. Polym. Sci. 2016, 61, 29–66. [Google Scholar] [CrossRef]
- Mao, Y.; Wen, S.; Chen, Y.; Zhang, F.; Panine, P.; Chan, T.W.; Zhang, L.; Liang, Y.; Liu, L. High performance graphene oxide based rubber composites. Sci. Rep. 2013, 3. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, Y.; Peng, D.; He, G.; Wang, S.; Li, Y.; Wu, H.; Jiang, Z. Enhanced CO2 permeability of membranes by incorporating polyzwitterion@CNT composite particles into polyimide matrix. ACS Appl. Mater. Interfaces 2014, 6, 13051. [Google Scholar] [CrossRef] [PubMed]
- Ahmad, M.Z.; Castro-Muñoz, R.; Budd, P.M. Boosting gas separation performance and suppressing the physical aging of polymers of intrinsic microporosity (PIM-1) by nanomaterial blending. Nanoscale 2020, 12, 23333–23370. [Google Scholar] [CrossRef] [PubMed]
- Guo, H.; Xu, Z.; Zhou, Y.; Jiang, L.; Zhang, L.; Liu, L.; Wen, S. Enhanced fatigue and durability of carbon black/natural rubber composites reinforced with graphene oxide and carbon nanotubes. Eng. Fract. Mech. 2020, 223. [Google Scholar] [CrossRef]
- Krishnamoorthy, K.; Veerapandian, M.; Yun, K.; Kim, S.J. The chemical and structural analysis of graphene oxide with different degrees of oxidation. Carbon 2013, 53, 38–49. [Google Scholar] [CrossRef]
- Su, C.-Y.; Xu, Y.; Zhang, W.; Zhao, J.; Tang, X.; Tsai, C.-H.; Li, L.-J. Electrical and Spectroscopic Characterizations of Ultra-Large Reduced Graphene Oxide Monolayers. Chem. Mater. 2009, 21, 5674–5680. [Google Scholar] [CrossRef]
- Zhao, G.; Li, J.; Ren, X.; Chen, C.; Wang, X. Few-layered graphene oxide nanosheets as superior sorbents for heavy metal ion, water pollution control. Environ. Sci. Technol. 2011, 45, 10454–10462. [Google Scholar] [CrossRef] [PubMed]
- Bai, X.; Zhai, Y.; Zhang, Y. Green Approach To Prepare Graphene-Based Composites with High Microwave Absorption Capacity. J. Phys. Chem. C 2011, 115, 11673–11677. [Google Scholar] [CrossRef]
- Hirata, M.; Gotou, T.; Horiuchi, S.; Fujiwara, M.; Ohba, M. Thin-film particles of graphite oxide 1: High-yield synthesis and flexibility of the particles. Carbon 2004, 42, 2929–2937. [Google Scholar] [CrossRef]
- Furukawa, J.; Onouchi, Y.; Inagaki, S.; Okamoto, H. Rubber elasticity at very large elongation. Polym. Bull. 1982, 6, 381–387. [Google Scholar] [CrossRef]
- Guo, H.; Li, F.; Wen, S.; Yang, H.; Zhang, L. Characterization and quantitative analysis of crack precursor size for rubber composites. Materials 2019, 12, 3442. [Google Scholar] [CrossRef] [Green Version]
- Amstutz, C.; Bürgi, M.; Jousset, P. Characterisation and FE simulation of polyurethane elastic bonded joints under multiaxial loading conditions. Int. J. Adhes. Adhes. 2018, 83, 103–115. [Google Scholar] [CrossRef]
- le Cam, J.-B.; Huneau, B.; Verron, E. Fatigue damage in carbon black filled natural rubber under uni- and multiaxial loading conditions. Int. J. Fatigue 2013, 52, 82–94. [Google Scholar] [CrossRef] [Green Version]
- le Cam, J.B.; Huneau, B.; Verron, E.; Gornet, L. Mechanism of Fatigue Crack Growth in Carbon Black Filled Natural Rubber. Macromolecules 2004, 37, 5011–5017. [Google Scholar] [CrossRef] [Green Version]
- Weng, G.; Huang, G.; Lei, H.; Qu, L.; Nie, Y.; Wu, J. Crack initiation and evolution in vulcanized natural rubber under high temperature fatigue. Polym. Degrad. Stab. 2011, 96, 2221–2228. [Google Scholar] [CrossRef]
Samples | NR | CNT/NR | GO/NR | CNT-GO/NR |
---|---|---|---|---|
Natural rubber | 100 | 100 | 100 | 100 |
Zinc oxide | 5 | 5 | 5 | 5 |
Stearic acid | 1 | 1 | 1 | 1 |
Antioxidant RD b | 2 | 2 | 2 | 2 |
Antioxidant 4010 NA c | 2 | 2 | 2 | 2 |
Graphene oxide | - | - | 2 | 1 |
Carbon nanotube | - | 1 | - | 1 |
Accelerator DTDM d | 3.75 | 3.75 | 3.75 | 3.75 |
Accelerator DM e | 1.25 | 1.25 | 1.25 | 1.25 |
Sulfur | 1.2 | 1.2 | 1.2 | 1.2 |
Sample | ∆G′ |
---|---|
CNT/NR | 8.33 |
GO/NR | 11.1 |
CNT-GO/NR | 17.3 |
Sample | NR | CNT/NR | GO/NR | CNT-GO/NR |
---|---|---|---|---|
Tensile strength (MPa) | 22.4 ± 0.6 | 25.1 ± 0.7 | 28.7 ± 0.5 | 29.3 ± 0.8 |
Elongation at break (%) | 495 ± 9 | 524 ± 14 | 515 ± 17 | 560 ± 16 |
100% Modulus (MPa) | 1.2 ± 0.1 | 1.3 ± 0.1 | 1.6 ± 0.2 | 1.8 ± 0.1 |
300% Modulus (MPa) | 4.3 ± 0.2 | 4.2 ±0.3 | 5.8 ± 0.3 | 6.4 ± 0.2 |
Hardness (shore A) | 46 ± 1 | 49 ± 1 | 51 ± 1 | 52 ± 1 |
Tear strength (kN/m) | 30 ± 0.3 | 34 ± 0.2 | 35 ± 0.4 | 37 ± 0.3 |
Sample. | C1 (MPa) | C2 (MPa) | λup |
---|---|---|---|
NR | 0.57 | 1.70 | 4.79 |
CNT/NR | 0.90 | 1.38 | 3.98 |
GO/NR | 1.66 | 1.81 | 3.51 |
CNT-GO/NR | 1.51 | 0.76 | 2.87 |
Sample | NR | CNT/NR | GO/NR | CNT-GO/NR |
---|---|---|---|---|
c01 (μm) | 218.1 | 206.0 | 192.4 | 185.1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guo, H.; Ji, P.; Halász, I.Z.; Pirityi, D.Z.; Bárány, T.; Xu, Z.; Zheng, L.; Zhang, L.; Liu, L.; Wen, S. Enhanced Fatigue and Durability Properties of Natural Rubber Composites Reinforced with Carbon Nanotubes and Graphene Oxide. Materials 2020, 13, 5746. https://doi.org/10.3390/ma13245746
Guo H, Ji P, Halász IZ, Pirityi DZ, Bárány T, Xu Z, Zheng L, Zhang L, Liu L, Wen S. Enhanced Fatigue and Durability Properties of Natural Rubber Composites Reinforced with Carbon Nanotubes and Graphene Oxide. Materials. 2020; 13(24):5746. https://doi.org/10.3390/ma13245746
Chicago/Turabian StyleGuo, Hao, Peizhi Ji, István Zoltán Halász, Dávid Zoltán Pirityi, Tamás Bárány, Zongchao Xu, Long Zheng, Liqun Zhang, Li Liu, and Shipeng Wen. 2020. "Enhanced Fatigue and Durability Properties of Natural Rubber Composites Reinforced with Carbon Nanotubes and Graphene Oxide" Materials 13, no. 24: 5746. https://doi.org/10.3390/ma13245746
APA StyleGuo, H., Ji, P., Halász, I. Z., Pirityi, D. Z., Bárány, T., Xu, Z., Zheng, L., Zhang, L., Liu, L., & Wen, S. (2020). Enhanced Fatigue and Durability Properties of Natural Rubber Composites Reinforced with Carbon Nanotubes and Graphene Oxide. Materials, 13(24), 5746. https://doi.org/10.3390/ma13245746