Performance Comparison of Advanced Ceramic Cladding Approaches via Solid-State and Traditional Welding Processes: A Review
Abstract
:1. Introduction
Applications
2. Literature Study
2.1. Processes and Sub-Systems for Ceramic Coating
2.1.1. Gas Tungsten Arc Welding
2.1.2. Laser Beam Cladding
2.1.3. Plasma Transferred Arc Cladding
2.1.4. Friction Cladding
2.1.5. Explosion Cladding
2.1.6. Accumulative Roll Bonding
3. Results and Discussion
4. Conclusions
- Solid-state processes did not face any potential challenges due to the dissimilarity in the ceramics and metals properties. The temperature remained below the fusion points of both the materials, and hence factors such as thermal expansion did not affect the quality of the cladding layer.
- As the fusion welding processes involved melting and re-solidification, porosity could be seen in the microstructures unless an adequate inert environment is provided during the cladding process. The solid-state processes, on the other hand, faced comparatively less porosity and hence had better properties.
- The hardness was uniformly distributed in the entire coating in solid-state cladding processes, while fusion welding processes suffered a gradient decrease in hardness to the coating-substrate interface.
- The overall hardness of solid-state processes was also found on the higher end, as the comparative study was considered between the two. Further, this can only be attributed to the temperatures which remain well below the fusion points.
- Solid-state processes also led to more enhancement of wear resistance properties because of the high adhesive strength provided during the process. The coatings were denser due to finer grains, bonds were more vital, and a decrease in porosity led to superior properties than the traditional fusion welding processes.
Author Contributions
Funding
Conflicts of Interest
References
- Karthikeyan, J.; Mayuram, M.M. Ceramic coating technology. Sadhana 1988, 13, 139–156. [Google Scholar] [CrossRef]
- Ciniviz, M.; Sahir, M.; Canl, E.; Kse, H.; Solmaz, Z. Ceramic Coating Applications and Research Fields for Internal Combustion Engines. Ceram. Coatings Appl. Eng. 2012. [Google Scholar] [CrossRef] [Green Version]
- Rasihhan, Y.; Wallace, F.J. Piston-liner thermal resistance model for diesel engine simulation: Part 2: Application to various insulation schemes. Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci. 1991, 205, 353–361. [Google Scholar] [CrossRef]
- Abbas, S.M.; Elayaperumal, A. Experimental investigation on the effect of ceramic coating on engine performance and emission characteristics for cleaner production. J. Clean. Prod. 2019, 214, 506–513. [Google Scholar] [CrossRef]
- Ramaswamy, P.; Seetharamu, S.; Verma, K.B.R.; Raman, N.; Rao, K.J. Thermomechanical fatigue characterization of zirconia (8% Y2O3-ZrO2) and mullite thermal barrier coatings on diesel engine components: Effect of coatings on engine performance. Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci. 2000, 214, 729–742. [Google Scholar]
- Bruns, L.; Bryzik, W.; Kamo, R. Performance Assessment of US. Army Truck with Adiabatic Diesel Engine SAE Technical Paper 890142. 1989. [CrossRef]
- Padture, N.P.; Gell, M.; Jordan, E.H. Thermal barrier coatings for gas-turbine engine applications. Science 2002, 296, 280–284. [Google Scholar] [CrossRef]
- Cui, Y.J.; Li, J.E.; Wang, B.L.; Wang, K.F. Thermally induced delamination and buckling of a ceramic coating with temperature-dependent material properties from porous substrate at high temperatures. Acta Mech. 2020, 231, 2143–2154. [Google Scholar] [CrossRef]
- Asmatulu, R. Nanocoatings for Corrosion Protection of Aerospace Alloys; Woodhead Publishing Limited: Cambridge, UK, 2012. [Google Scholar]
- Yao, H.L.; Yang, G.J. Cold Spray Processing for micro-Nano Ceramic Coatings; Elsevier Inc.: Amsterdam, The Netherlands, 2019; ISBN 9780128138700. [Google Scholar]
- Ramazan, K.; Levent, U.; Ali, C.; Serdar, S.; Fehim, F. Three types of ceramic coating applicability in automotive industry for wear resistance purpose. Ind. Lubr. Tribol. 2005, 57, 140–144. [Google Scholar] [CrossRef]
- Sheikh-Ahmad, J.; Davim, J.P. Tool wear in machining processes for composites. Mach. Technol. Compos. Mater. 2012, 116–153. [Google Scholar] [CrossRef]
- Saha, M.K.; Das, S. A Review on Different Cladding Techniques Employed to Resist Corrosion. J. Assoc. Eng. India 2016, 86, 51. [Google Scholar] [CrossRef]
- De-Xing, P. The effects of welding parameters on wear performance of clad layer with TiC ceramic. Ind. Lubr. Tribol. 2012, 64, 303–311. [Google Scholar] [CrossRef]
- Wang, S.W.; Lin, Y.C.; Tsai, Y.Y. The effects of various ceramic–metal on wear performance of clad layer. J. Mater. Process. Technol. 2003, 140, 682–687. [Google Scholar] [CrossRef] [Green Version]
- De-Xing, P. Optimizing wear resistance of ceramic (TiN, WC and TiC) clad layer by gas tungsten arc welding (GTAW). Ind. Lubr. Tribol. 2014, 66, 452–458. [Google Scholar] [CrossRef]
- De-Xing, P.; Yuan, K. Wear behavior of ceramic powder and nano-diamond cladding on carbon steel surface. Ind. Lubr. Tribol. 2014, 66, 272–281. [Google Scholar] [CrossRef]
- Lin, Y.C.; Bai, J.B.; Chen, J.N. Improved wear resistance of AISI 304L by cladding boride layers using the GTAW process. Adv. Mater. Res. 2014, 966–967, 386–396. [Google Scholar] [CrossRef]
- Wang, L. Performance of reactive plasma cladding TiC particle reinforced high chromium Fe-based ceramics composite coating. Appl. Mech. Mater. 2012, 201–202, 1106–1109. [Google Scholar] [CrossRef]
- Lin, Y.C.; Wang, S.W.; Lin, Y.C. Analysis of microstructure and wear performance of WC-Ti clad layers on steel, produced by gas tungsten arc welding. Surf. Coat. Technol. 2005, 200, 2106–2113. [Google Scholar] [CrossRef]
- Peng, D.X.; Kang, Y.; Li, Z.X.; Chang, S.Y. Wear behavior of ceramic powder cladded on carbon steel surface by gas tungsten arc welding. Ind. Lubr. Tribol. 2013, 65, 129–134. [Google Scholar] [CrossRef]
- Wang, X.H.; Song, S.L.; Zou, Z.D.; Qu, S.Y. Fabricating TiC particles reinforced Fe-based composite coatings produced by GTAW multi-layers melting process. Mater. Sci. Eng. A 2006, 441, 60–67. [Google Scholar] [CrossRef]
- Wang, X.H.; Zhang, M.; Du, B.S. Fabrication in situ TiB2-TiC-Al2O3 multiple ceramic particles reinforced Fe-based composite coatings by gas tungsten arc welding. Tribol. Lett. 2011, 41, 171–176. [Google Scholar] [CrossRef]
- Wang, X.H.; Zhang, M.; Zou, Z.D.; Song, S.L.; Han, F.; Qu, S.Y. In situ production of Fe-TiC surface composite coatings by tungsten-inert gas heat source. Surf. Coat. Technol. 2006, 200, 6117–6122. [Google Scholar] [CrossRef]
- Wang, X.H.; Song, S.L.; Qu, S.Y.; Zou, Z.D. Characterization of in situ synthesized TiC particle reinforced Fe-based composite coatings produced by multi-pass overlapping GTAW melting process. Surf. Coat. Technol. 2007, 201, 5899–5905. [Google Scholar] [CrossRef]
- Yakovlev, A.; Bertrand, P.; Smurov, I. Laser cladding of wear resistant metal matrix composite coatings. Thin Solid Films 2004, 453–454, 133–138. [Google Scholar] [CrossRef]
- Gabriel, T.; Rommel, D.; Scherm, F.; Gorywoda, M.; Glatzel, U. Laser Cladding of Ultra-Thin Nickel-Based Superalloy Sheets. Materials 2017, 10, 279. [Google Scholar] [CrossRef] [Green Version]
- Li, J.; Chen, C.; Squartini, T.; He, Q. A study on wear resistance and microcrack of the Ti3Al/TiAl+TiC ceramic layer deposited by laser cladding on Ti–6Al–4V alloy. Appl. Surf. Sci. 2010, 257, 1550–1555. [Google Scholar] [CrossRef]
- Sun, R.L.; Yang, D.Z.; Guo, L.X.; Dong, S.L. Laser cladding of Ti-6Al-4V alloy with TiC and TiC+NiCrBSi powders. Surf. Coat. Technol. 2001, 135, 307–312. [Google Scholar] [CrossRef]
- Nowotny, S.; Scharek, S.; Beyer, E.; Richter, K.-H. Laser Beam Build-Up Welding: Precision in Repair, Surface Cladding, and Direct 3D Metal Deposition. J. Therm. Spray Technol. 2007, 16, 344–348. [Google Scholar] [CrossRef]
- Ocelík, V.; Matthews, D.; De Hosson, J.T.M. Sliding wear resistance of metal matrix composite layers prepared by high power laser. Surf. Coat. Technol. 2005, 197, 303–315. [Google Scholar] [CrossRef]
- Guo, C.; Zhou, J.; Chen, J.; Zhao, J.; Yu, Y.; Zhou, H. High temperature wear resistance of laser cladding NiCrBSi and NiCrBSi/WC-Ni composite coatings. Wear 2011, 270, 492–498. [Google Scholar] [CrossRef]
- Tao, S.; Yin, Z.; Zhou, X.; Ding, C. Sliding wear characteristics of plasma-sprayed Al2O3 and Cr2O3 coatings against copper alloy under severe conditions. Tribol. Int. 2010, 43, 69–75. [Google Scholar] [CrossRef]
- Mateos, J.; Cuetos, J.M.; Fernández, E.; Vijande, R. Tribological behaviour of plasma-sprayed WC coatings with and without laser remelting. Wear 2000, 239, 274–281. [Google Scholar] [CrossRef]
- Hou, G.; An, Y.; Zhao, X.; Zhou, H.; Chen, J. Effect of critical plasma spraying parameter on microstructure and wear behavior of mullite coatings. Tribol. Int. 2016, 94, 138–145. [Google Scholar] [CrossRef]
- Ma, W. Thermal analysis of microstructural evolution of Al2O3 surface modified layers. Surf. Coat. Technol. 2010, 204, 1689–1696. [Google Scholar] [CrossRef] [Green Version]
- Wang, M.; Liu, Z.; Zhao, L. Microstructure of TiC/Nb-Ni cermets cladding layer. Adv. Mater. Res. 2011, 177, 92–95. [Google Scholar] [CrossRef]
- Ulutan, M.; Kılıçay, K.; Kaya, E.; Bayar, İ. Plasma transferred arc surface modification of atmospheric plasma sprayed ceramic coatings. J. Mech. Sci. Technol. 2016, 30, 3813–3818. [Google Scholar] [CrossRef]
- Quintino, L. Overview of coating technologies. In Surface Modification by Solid State Processing; Woodhead Publishing Limited: Philadelphia, PA, USA, 2014; pp. 1–24. ISBN 9780857094681. [Google Scholar]
- Gandra, J.; Krohn, H.; Miranda, R.M.; Vilaça, P.; Quintino, L.; Dos Santos, J.F. Friction surfacing-A review. J. Mater. Process. Technol. 2014, 214, 1062–1093. [Google Scholar] [CrossRef] [Green Version]
- De Macedoa, M.L.K.; Pinheiro, G.A.; dos Santos, J.F.; Strohaecker, T.R. Deposit by friction surfacing and its applications. Weld. Int. 2010, 24, 422–431. [Google Scholar] [CrossRef]
- Popov, V.A.; Zaitsev, V.A.; Belevsky, L.S.; Tulupov, S.A.; Matveyev, D.V.; Khodos, I.I.; Kovalchuk, M.N. Investigations into the structure of nanocomposite materials and coatings on their basis applied by friction cladding. Inorg. Mater. Appl. Res. 2011, 2, 57–64. [Google Scholar] [CrossRef]
- Blazynski, T.Z. Explosive Welding, Froming and Compaction; Springer: Dordrecht, The Netherlands, 1983; ISBN 9789401197533. [Google Scholar]
- Gotman, I.; Gutmanas, E.Y. Reactive Forging; Elsevier: Amsterdam, The Netherlands, 2017; pp. 265–266. ISBN 978-0-12-804173-4. [Google Scholar]
- Blazynski, T.Z. Explosively consolidated PVC-alumina powder mixtures. J. Mater. Process. Technol. 1993, 39, 389–404. [Google Scholar] [CrossRef]
- Cai, A.; Xiong, X.; Liu, Y.; An, W.; Zhou, G.; Luo, Y.; Li, T.; Li, X. Effect of consolidation parameters on mechanical properties of Cu-based bulk amorphous alloy consolidated by hot pressing. Trans. Nonferrous Met. Soc. China 2012, 22, 2032–2040. [Google Scholar] [CrossRef]
- Le Priol, A.; Le Bourhis, E.; Renault, P.O.; Muller, P.; Sik, H. Structure-stress-resistivity relationship in WTi alloy ultra-thin and thin films prepared by magnetron sputtering. J. Appl. Phys. 2013, 113, 213504. [Google Scholar] [CrossRef]
- Varin, R.A.; Zbroniec, L.; Czujko, T.; Song, Y.K. Fracture toughness of intermetallic compacts consolidated from nanocrystalline powders. Mater. Sci. Eng. A 2001, 300, 1–11. [Google Scholar] [CrossRef]
- Iordachescu, D.; Quintino, L.; Miranda, R.; Pimenta, G. Influence of shielding gases and process parameters on metal transfer and bead shape in MIG brazed joints of the thin zinc coated steel plates. Mater. Des. 2006, 27, 381–390. [Google Scholar] [CrossRef]
- Meuken, D. Explosive Welding and Cladding. AIP Conf. Proc. 2004, 1110, 706. [Google Scholar] [CrossRef]
- Kaminsky, M. Clad materials for fusion applications. Thin Solid Films 1980, 73, 117–132. [Google Scholar] [CrossRef]
- Kovacs-Coskun, T.; Volgyi, B.; Sikari-Nagl, I. Investigation of aluminum-steel joint formed by explosion welding. J. Phys. Conf. Ser. 2015, 602. [Google Scholar] [CrossRef] [Green Version]
- Caetano, M.; Oliveira, F.J.; Silva, R.F.; Simões, F.; Trindade, B. Effect of Ni and Cu intermediate layers on the sinterability of a Ti-35SI-10MG (% AT.) mixture synthesized by mechanical alloying. Rev. Adv. Mater. Sci. 2009, 21, 173–182. [Google Scholar]
- Valiev, R.Z.; Estrin, Y.; Horita, Z.; Langdon, T.G.; Zehetbauer, M.J.; Zhu, Y. Producing Bulk Ultrafine-Grained Materials by Severe Plastic Deformation: Ten Years Later. JOM 2016, 68, 1216–1226. [Google Scholar] [CrossRef] [Green Version]
- Tsuji, N.; Saito, Y.; Lee, S.H.; Minamino, Y. ARB (accumulative roll-bonding) and other new techniques to produce bulk ultrafine grained materials. Adv. Eng. Mater. 2003, 5, 338–344. [Google Scholar] [CrossRef]
- Li, L.; Nagai, K.; Yin, F. Progress in cold roll bonding of metals. Sci. Technol. Adv. Mater. 2008, 9, 023001. [Google Scholar] [CrossRef] [PubMed]
- Saito, Y.; Utsunomiya, H.; Tsuji, N.; Sakai, T. Novel ultra-high straining process for bulk materials—Development of the accumulative roll-bonding (ARB) process. Acta Mater. 1999, 47, 579–583. [Google Scholar] [CrossRef]
- Jamaati, R.; Toroghinejad, M.R. Investigation of the parameters of the cold roll bonding (CRB) process. Mater. Sci. Eng. A 2010, 527, 2320–2326. [Google Scholar] [CrossRef]
- Peng, D.X.; Kang, Y. Wear Behavior of Ceramic Powder and Solid Lubricant Cladding on Carbon Steel Surface. Tribol. Trans. 2015, 58, 177–185. [Google Scholar] [CrossRef]
- Yan, W.; Dai, L.; Gui, C. Characterization of TiC/Ti5Si3 in-situ synthesis composite materials on Ti-5Al-2.5Sn by argon tungsten-arc welding deposition. Appl. Mech. Mater. 2012, 182–183, 180–184. [Google Scholar] [CrossRef]
- Xiao, Y.F.; Du, H.; Li, X.F.; Xu, Y.F.; Wu, L.; He, Y.H. In situ synthesis of WC ceramic particle reinforced composite coating by GTAW. Mater. Res. Innov. 2015, 19, S9314–S9317. [Google Scholar] [CrossRef]
- Wang, H.M.; Yu, R.L.; Li, S.Q. Microstructure and tribological properties of laser clad NiO/Al2O3 self-lubrication wear-resistant ceramic matrix composite coatings. Mocaxue Xuebao Tribol. 2002, 22, 157–160. [Google Scholar]
- Zhang, S.; Zhou, J.; Guo, B.; Zhou, H.; Pu, Y.; Chen, J. Friction and wear behavior of laser cladding Ni/hBN self-lubricating composite coating. Mater. Sci. Eng. A 2008, 491, 47–54. [Google Scholar] [CrossRef]
- Tobar, M.J.; Álvarez, C.; Amado, J.M.; Rodríguez, G.; Yáñez, A. Morphology and characterization of laser clad composite NiCrBSi-WC coatings on stainless steel. Surf. Coat. Technol. 2006, 200, 6313–6317. [Google Scholar] [CrossRef]
- Wu, X. In situ formation by laser cladding of a TiC composite coating with a gradient distribution. Surf. Coat. Technol. 1999, 115, 111–115. [Google Scholar] [CrossRef]
- Zhou, S.; Huang, Y.; Zeng, X.; Hu, Q. Microstructure characteristics of Ni-based WC composite coatings by laser induction hybrid rapid cladding. Mater. Sci. Eng. A 2008, 480, 564–572. [Google Scholar] [CrossRef]
- Huang, K.; Lin, X.; Xie, C.; Yue, T.M. Microstructure and wear behaviour of laser-induced thermite reaction Al2O3 ceramic coatings on pure aluminum and AA7075 aluminum alloy. J. Wuhan Univ. Technol. Mater. Sci. Ed. 2008, 23, 89–94. [Google Scholar] [CrossRef]
- Chi, W.; Sampath, S.; Wang, H. Microstructure-thermal conductivity relationships for plasma-sprayed yttria-stabilized zirconia coatings. J. Am. Ceram. Soc. 2008, 91, 2636–2645. [Google Scholar] [CrossRef]
- Zikin, A.; Hussainova, I.; Katsich, C.; Badisch, E.; Tomastik, C. Advanced chromium carbide-based hardfacings. Surf. Coat. Technol. 2012, 206, 4270–4278. [Google Scholar] [CrossRef]
- Xi, H.-H.; He, P.-F.; Wang, H.-D.; Liu, M.; Chen, S.-Y.; Xing, Z.-G.; Ma, G.-Z.; Lv, Z. Microstructure and mechanical properties of Mo coating deposited by supersonic plasma spraying. Int. J. Refract. Met. Hard Mater. 2020, 86, 105095. [Google Scholar] [CrossRef]
- Meir, S.; Kalabukhov, S.; Frage, N.; Hayun, S. Mechanical properties of Al2O3\Ti composites fabricated by spark plasma sintering. Ceram. Int. 2015, 41, 4637–4643. [Google Scholar] [CrossRef]
- Zhang, D.; Liu, Y.; Yin, Y. Preparation of Plasma Cladding Gradient Wear-Resistant Layer and Study on Its Impact Fatigue Properties. J. Therm. Spray Technol. 2016, 25, 535–545. [Google Scholar] [CrossRef]
- Mamalis, A.G.; Szalay, A.; Pantelis, D.; Pantazopoulos, G. Fabrication of thick layered superconductive ceramic (BiPbSrCaCuO)/metal composite strips by explosive cladding and rolling. J. Mater. Process. Tech. 1995, 51, 255–273. [Google Scholar] [CrossRef]
- Mamalis, A.G.; Szalay, A.; Pantelis, D.; Pantazopoulos, G. Net shape manufacturing of silver-sheathed high-Tc superconductive ceramic (Y-Ba-K-Cu-O) strip by explosive compaction/cladding and rolling. J. Mater. Process. Technol. 1996, 57, 112–120. [Google Scholar] [CrossRef]
- Mamalis, A.G.; Vottea, I.N.; Manolakos, D.E. Explosive compaction/cladding of metal sheathed/superconducting grooved plates: FE modeling and validation. Phys. C Supercond. Appl. 2004, 408–410, 881–883. [Google Scholar] [CrossRef]
- Robin, L.G.; Krishnamurthy, R.; Somasundaram, S. Wire mesh/ceramic particle reinforced aluminium based composite using explosive cladding. Mater. Sci. Forum 2017, 910, 9–13. [Google Scholar] [CrossRef]
- Mamalis, A.G.; Szalay, A.; Pantelis, D.I.; Pantazopoulos, G.; Kotsis, I.; Enisz, M. Fabrication of multi-layered steel/superconductive ceramic (Y-Ba-K-Cu-O)/silver rods by explosive powder compaction and extrusion. J. Mater. Process. Technol. 1996, 57, 155–163. [Google Scholar] [CrossRef]
- Mamalis, A.G.; Vottea, I.N.; Manolakos, D.E.; Szalay, A.; Marquis, F. Explosive compaction/cladding of YBCO discs: A numerical approach. J. Mater. Process. Technol. 2005, 161, 36–41. [Google Scholar] [CrossRef]
- Kotsis, I.; Enisz, M.; Szalay, A.; Vajda, I.; Mamalis, A.G. Effect of explosive compaction on microstructure and the physical properties of ceramic superconducting materials produced by different techniques. Mater. Sci. Forum 2003, 414–415, 121–126. [Google Scholar] [CrossRef]
- Wang, B.; Xie, F.; Li, Z.; Zhang, H. Explosive compaction of Al2O3 nanopowders. Ceram. Int. 2016, 42, 8460–8466. [Google Scholar] [CrossRef]
- Robin, L.G.; Raghukandan, K.; Saravanan, S. Effect of SS 316 Wire Mesh and SiC P Ceramic Particles on Explosive Cladding of Dissimilar Aluminium Al 5052 and Al 1100 Plates Subjected to Varied Loading Ratios. J. Manuf. Eng. 2017, 12, 185. [Google Scholar]
- Alpas, A.T.; Zhang, J. Effect of SiC particulate reinforcement on the dry sliding wear of aluminium-silicon alloys (A356). Wear 1992, 155, 83–104. [Google Scholar] [CrossRef]
- Economou, S.; De Bonte, M.; Celis, J.P.; Smith, R.W.; Lugscheider, E. Processing, structure and tribological behaviour of TiC-reinforced plasma sprayed coatings. Wear 1998, 220, 34–50. [Google Scholar] [CrossRef]
- Ouyang, J.H.; Pei, Y.T.; Lei, T.C.; Zhou, Y. Tribological behaviour of laser-clad TiCp composite coating. Wear 1995, 185, 167–172. [Google Scholar] [CrossRef] [Green Version]
- Tański, T. Determining of laser surface treatment parameters used for light metal alloying with ceramic powders. Materwiss. Werksttech. 2014, 45, 333–343. [Google Scholar] [CrossRef]
- Liu, Y.F.; Han, J.M.; Li, R.H.; Li, W.J.; Xu, X.Y.; Wang, J.H.; Yang, S.Z. Microstructure and dry-sliding wear resistance of PTA clad (Cr, Fe) 7 C 3 /γ-Fe ceramal composite coating. Appl. Surf. Sci. 2006, 252, 7539–7544. [Google Scholar] [CrossRef]
- An, Y.; Liu, G.; Zhao, X.; Chen, J.; Zhou, H.; Hou, G. Preparation and microstructure characterization of mullite coatings made of mullitized natural andalusite powders. J. Therm. Spray Technol. 2011, 20, 479–485. [Google Scholar] [CrossRef]
- Chandra, S.; Fauchais, P. Formation of Solid Splats During Thermal Spray Deposition. J. Therm. Spray Technol. 2009, 18, 148–180. [Google Scholar] [CrossRef]
- Fukumoto, M.; Huang, Y. Flattening Mechanism in Thermal Sprayed Nickel Particle Impinging on Flat Substrate Surface. J. Therm. Spray Technol. 1999, 8, 427–432. [Google Scholar] [CrossRef]
- Zhong, Y.-M.; Du, X.-D.; Wu, G. Effect of Powder-Feeding Modes During Plasma Spray on the Properties of Tungsten Carbide Composite Coatings. J. Mater. Eng. Perform. 2017, 26, 2285–2292. [Google Scholar] [CrossRef]
- Ghadami, F.; Sohi, M.H.; Ghadami, S. Surface & Coatings Technology Effect of TIG surface melting on structure and wear properties of air plasma-sprayed WC–Co coatings. Surf. Coat. Technol. 2014, 2–7. [Google Scholar] [CrossRef]
- Chmielewski, T.; Hudycz, M.; Krajewski, A.; Salaciński, T.; Skowrońska, B.; Świercz, R. Structure investigation of titanium metallization coating deposited onto aln ceramics substrate by means of friction surfacing process. Coatings 2019, 9, 845. [Google Scholar] [CrossRef] [Green Version]
- Heo, H.; Joung, H.; Jung, K.; Kang, C.Y. Formation of interfacial reaction layers in Al2O3/SS 430 brazed joints using Cu-7Al-3.5Zr alloys. Metals 2018, 8, 990. [Google Scholar] [CrossRef] [Green Version]
- Ponsonnet, L.; Reybier, K.; Jaffrezic, N.; Comte, V.; Lagneau, C.; Lissac, M.; Martelet, C. Relationship between surface properties (roughness, wettability) of titanium and titanium alloys and cell behaviour. Mater. Sci. Eng. C 2003, 23, 551–560. [Google Scholar] [CrossRef]
- Reddy, G.M.; Prasad, K.S.; Rao, K.S.; Mohandas, T. Friction surfacing of titanium alloy with aluminium metal matrix composite. Surf. Eng. 2011, 27, 92–98. [Google Scholar] [CrossRef]
- Guo, D.; Kwok, C.T.; Chan, S.L.I. Fabrication of stainless steel 316L/TiB2 composite coating via friction surfacing. Surf. Coat. Technol. 2018, 350, 936–948. [Google Scholar] [CrossRef]
- Buzyurkin, A.E.; Kraus, E.I.; Lukyanov, Y.L. The shock wave compaction of ceramic powders. Therm. Sci. 2019, 23, S471–S476. [Google Scholar] [CrossRef] [Green Version]
- Mamalis, A.G.; Vottea, I.N.; Manolakos, D.E. Development of numerical modelling to simulate the explosive compaction/cladding of YBCO ceramic powders. Model. Simul. Mater. Sci. Eng. 2006, 14, 313–329. [Google Scholar] [CrossRef]
- Wang, B.; Wang, B.; Xie, F.; Luo, X. Microstructure and properties of the Ti/Al2O3/NiCr composites fabricated by explosive compaction/cladding. Mater. Sci. Eng. C 2015, 50, 324–331. [Google Scholar] [CrossRef]
- Mousavi, A.A.A.; Al-Hassani, S.T.S. Numerical and experimental studies of the mechanism of the wavy interface formations in explosive/impact welding. J. Mech. Phys. Solids 2005, 53, 2501–2528. [Google Scholar] [CrossRef]
- Raghukandan, K.; Ramanathan, A.R.; Rathinasabapathi, M. A study on Explosively Clad Al-SS-Al Fiber-Reinforced Metal Composites. Mater. Sci. Forum 2003, 437–438, 313–316. [Google Scholar] [CrossRef]
- Mamalis, A.G.; Vottea, I.N.; Manolakos, D.E. Fabrication of metal/sheathed high-Tc superconducting composites by explosive compaction/cladding: Numerical simulation. Mater. Sci. Eng. B Solid State Mater. Adv. Technol. 2002, 90, 254–260. [Google Scholar] [CrossRef]
- Schmidt, C.W.; Knieke, C.; Maier, V.; Höppel, H.W.; Peukert, W.; Göken, M. Accelerated grain refinement during accumulative roll bonding by nanoparticle reinforcement. Scr. Mater. 2011, 64, 245–248. [Google Scholar] [CrossRef]
- Moradgholi, J.; Monshi, A.; Farmanesh, K.; Toroghinejad, M.R.; Loghman-Estarki, M.R. Comparison of microstructure, toughness, mechanical properties and work hardening of titanium/TiO2 and titanium/SiC composites manufactured by accumulative roll bonding (ARB) process. Ceram. Int. 2017, 43, 7701–7709. [Google Scholar] [CrossRef]
- Monazzah, A.H.; Pouraliakbar, H.; Bagheri, R.; Reihani, S.M.S. Al-Mg-Si/SiC laminated composites: Fabrication, architectural characteristics, toughness, damage tolerance, fracture mechanisms. Compos. Part B Eng. 2017, 125, 49–70. [Google Scholar] [CrossRef]
- Naseri, M.; Hassani, A.; Tajally, M. Fabrication and characterization of hybrid composite strips with homogeneously dispersed ceramic particles by severe plastic deformation. Ceram. Int. 2015, 41, 3952–3960. [Google Scholar] [CrossRef]
- Monazzah, A.H.; Pouraliakbar, H.; Bagheri, R.; Reihani, S.M.S. Toughness behavior in roll-bonded laminates based on AA6061/SiCp composites. Mater. Sci. Eng. A 2014, 598, 162–173. [Google Scholar] [CrossRef]
- Mehr, V.Y.; Toroghinejad, M.R.; Rezaeian, A. The effects of oxide film and annealing treatment on the bond strength of Al-Cu strips in cold roll bonding process. Mater. Des. 2014, 53, 174–181. [Google Scholar] [CrossRef]
- Alizadeh, M.; Beni, H.A.; Ghaffari, M.; Amini, R. Properties of high specific strength Al-4wt.% Al2O3/B4C nano-composite produced by accumulative roll bonding process. Mater. Des. 2013, 50, 427–432. [Google Scholar] [CrossRef]
- Naseri, M.; Hassani, A.; Tajally, M. An alternative method for manufacturing Al/B4C/SiC hybrid composite strips by cross accumulative roll bonding (CARB) process. Ceram. Int. 2015, 41, 13461–13469. [Google Scholar] [CrossRef]
- Ardakani, M.R.K.; Amirkhanlou, S.; Khorsand, S. Cross accumulative roll bonding-A novel mechanical technique for significant improvement of stir-cast Al/Al2O3 nanocomposite properties. Mater. Sci. Eng. A 2014, 591, 144–149. [Google Scholar] [CrossRef]
- Alizadeh, M. Effects of temperature and B 4C content on the bonding properties of roll-bonded aluminum strips. J. Mater. Sci. 2012, 47, 4689–4695. [Google Scholar] [CrossRef]
- Masanta, M.; Ganesh, P.; Kaul, R.; Nath, A.K.; Choudhury, A.R. Development of a hard nano-structured multi-component ceramic coating by laser cladding. Mater. Sci. Eng. A 2009, 508, 134–140. [Google Scholar] [CrossRef]
- Gnanamuthu, D.S. Laser Surface Treatment. Opt. Eng. 1980, 19, 783–792. [Google Scholar] [CrossRef]
- Xuan, H.-F.; Wang, Q.-Y.; Bai, S.-L.; Liu, Z.-D.; Sun, H.-G.; Yan, P.-C. A study on microstructure and flame erosion mechanism of a graded Ni–Cr–B–Si coating prepared by laser cladding. Surf. Coat. Technol. 2014, 244, 203–209. [Google Scholar] [CrossRef]
S. No. | Coating | Substrate | Operating Parameters | Electrode | Shielding Gas | Ref |
---|---|---|---|---|---|---|
1 | SiC | S50C Steel | Current: 155/140/120 A Voltage: 17/20 V Speed: 8/11/14 cm/min | Thorium (DCSP) | Argon (8 L/min) | [59] |
2 | WC-Ti | Steel | Current: 100 A Speed: 13 cm/s | Thorium (DCEN) | Argon (8 L/min) | [20] |
3 | TiC | Carbon Steel | Current: 150 A Speed: 10 cm/min | Thorium | Argon (8 L/min) | [21] |
4 | TiC | AISI 1045 Steel | Current: 150 A Voltage: 15–17 V Speed: 5.5 cm/min | Thorium (DCSP) | Argon (8 L/min) | [22] |
5 | Fe-TiC | AISI 1045 Steel | Current: 90–180 A Voltage: 15–17 V Speed: 7.0–8.5 cm/min | Tungsten (DCSP) | Argon (8 L/min) | [24] |
6 | TiC/Ti5Si3 | Ti-5Al-2.5Sn | Current: 300 A Voltage: 20 V Speed: 1.5 mm/s | - | Argon (0.3 L/s) | [60] |
7 | TiB2-TiC-Al2O3 | AISI 1020 Steel | Current: 100 A Voltage: 15–17 V Speed: 1.5–2 mm/s | - | Argon (10 L/min) | [23] |
8 | WC | Q235 Steel | Current: 150 A Voltage: 16–18 V | Tungsten | Argon (8 L/min) | [61] |
S. No. | Coating | Substrate | Laser Power (kW) | Beam Scanning Speed | Ref |
---|---|---|---|---|---|
1 | CaF2/Al2O3 | Al2O3 | 2.0 | 60 mm/min | [62] |
2 | WC/TiC | Al Alloy | 2.0 | - | [31] |
3 | Ni/hBN | Stainless Steel | 1.0–3.6 | 70–500 mm/min | [63] |
4 | NiCrBSi-WC | AISI 304 Steel | 0.5–2.25 | 100–110 mm/min | [64] |
5 | TiC | Stainless Steel | 2.0 | 4–15 mm/s | [65] |
6 | WC | A3 mild Steel | 5.0 | 2000–3000 mm/min | [66] |
7 | Al2O3 | AA7075 Aluminium | 1.8 | 1500 mm/min | [67] |
S. No | Coating | Base Metal | Roller Speed | Temperature (K) |
---|---|---|---|---|
1 | Al | Cu | 1.5(m/min) | 398 |
2 | Al | Cu | 2(m/min) | 773 |
3 | B4C and SiC | Al | - | - |
4 | Al | Al2O3 | 5 rpm | 993 |
5 | Al2O3 and SiC | AA1100 | 5 rpm | 473 |
S. No. | Coating | Current(A) | Voltage(V) | Ar Gas Flow Rate(L/min) | H2 Gas Flow Rate(L/min) | Carrier Gas Flow Rate(L/min) | Spray Distance | Ref |
---|---|---|---|---|---|---|---|---|
1 | YSZ | 450 | 55 | 42 | 8 | 480 | 20 | [68] |
2 | Cr3C2-Ni | 600 | 50 | 42 | 9 | 480 | 20 | [69] |
3 | Al2O3 | 660 | 50 | 45 | 9 | 400 | 10 | [33] |
4 | Cr2O3 | 620 | 50 | 45 | 12 | 400 | 10 | [33] |
5 | Zr2O3 | 700 | 55 | 42 | 8 | 400 | 15 | [68] |
6 | Mo | 500 | 65 | 27 | 15 | 3–6 | 10 | [70] |
7 | Al2O3 | 500 | 70 | 50 | 15 | 2–6 | 10 | [71] |
8 | 3Al2O3∙2SiO2 | 450 | 50 | 35 | 0.5 | 8 | 10 | [35] |
9 | Cr3C2 | 100 | 30 | 15 | 1.7 | 2 | 8 | [72] |
S No. | Dimensions of the Flyer Plate, mm | Dimensions of the Parent Plate, mm | Type of Explosive | Detonation Velocity, Lid | Initial Set-Up Angle | Collision Angle | Stand-Off Distance | The Thickness of the Explosive He | Impact Mass Ratio, R | The Velocity of the Flyer Plate, V | Peak Shock Pressure, P | Ref |
---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | 200 × 40 × 2 | 200 × 40 × 2 | Paxit | 4000 | 0 | 13 | 2 | 25 | 0.6 | 1047 | 10 | [73] |
2 | 90 × 30 × 2 | 200 × 40 × 5 | Nitrammite | 4000 | 0 | 15 | 2 | 35 | 1.2 | 1286 | 11 | [74] |
3 | 210 × 30 × 1.5 | 187 × 38 × 1.5 | Paxit | 4000 | 0 | 12 | 2 | 30 | 0.9 | 2200 | 8.6 | [75] |
4 | 80 × 60 × 2 | 80 × 60 × 5 | SUN90 | 4500 | 0 | 0 | 3.5 | 28 | 0.9 | 1500 | 13 | [76] |
5 | 215 × 70 × 5 | 210 × 60 × 4 | Nitrammite | 4000 | 6 | 16.1 | 4 | 40 | 1.05 | 1780 | 14 | [77] |
6 | 100 × 100 × 4 | Ø100 × 36 | Amonit | 4500 | 0 | 10 | 4 | 25 | 0.8 | 1100 | 7 | [78] |
7 | 165×70×1.5 | 100 × 55 × 6 | Amonit | 4500 | 0 | 13 | 4 | 30 | 0.85 | 2000 | 6 | [78] |
8 | 200 × 50 × 3 | 180 × 40 × 3 | Paxit | 4000 | 0 | 15 | 2 | 2.5 | 0.7 | 1800 | 5 | [79] |
9 | Φ19.05 (OD) × 1.65 (Wall) × 240 | Φ13.75 × 240 | Nitrammite | 4000 | 0 | 0 | 3 | 11 | 0.9 | 1700 | 5.2 | [80] |
10 | 80 × 60 × 2 | 80 × 60 × 5 | SUN 90 | 4500 | 0 | 14 | 6.5 | 25 | 0.75 | 2100 | 7 | [81] |
Process | Max. Coating Thickness Obtained (mm) | Dilution | Porosity |
---|---|---|---|
GTAW | 0.2–10 | 5–15% | 2–8% |
Laser Beam | 0.2–2 | <5% | <0.1% |
PTA | 0.5–5 | 5–15% | <0.5–2% |
Friction Stir | 0.5–3 | <3% | 0.5–1% |
Explosion | 0.1–0.5 | <3% | <1% |
ARB | 1.5–5 | 5–15% | 1–5% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Selvaraj, S.K.; Srinivasan, K.; Deshmukh, J.; Agrawal, D.; Mungilwar, S.; Jagtap, R.; Hu, Y.-C. Performance Comparison of Advanced Ceramic Cladding Approaches via Solid-State and Traditional Welding Processes: A Review. Materials 2020, 13, 5805. https://doi.org/10.3390/ma13245805
Selvaraj SK, Srinivasan K, Deshmukh J, Agrawal D, Mungilwar S, Jagtap R, Hu Y-C. Performance Comparison of Advanced Ceramic Cladding Approaches via Solid-State and Traditional Welding Processes: A Review. Materials. 2020; 13(24):5805. https://doi.org/10.3390/ma13245805
Chicago/Turabian StyleSelvaraj, Senthil Kumaran, Kathiravan Srinivasan, Jainendra Deshmukh, Darshit Agrawal, Sailam Mungilwar, Rucha Jagtap, and Yuh-Chung Hu. 2020. "Performance Comparison of Advanced Ceramic Cladding Approaches via Solid-State and Traditional Welding Processes: A Review" Materials 13, no. 24: 5805. https://doi.org/10.3390/ma13245805
APA StyleSelvaraj, S. K., Srinivasan, K., Deshmukh, J., Agrawal, D., Mungilwar, S., Jagtap, R., & Hu, Y. -C. (2020). Performance Comparison of Advanced Ceramic Cladding Approaches via Solid-State and Traditional Welding Processes: A Review. Materials, 13(24), 5805. https://doi.org/10.3390/ma13245805