Compressive Behavior of (Cu0.47Zr0.45Al0.08)98Dy2 Bulk Metallic Glass at Different Strain Rates
Abstract
:1. Introduction
2. Materials and Experimental Program
3. Results and Discussion
3.1. Structure Analysis of (Cu0.47Zr0.45Al0.08)98Dy2 BMG
3.2. Mechanical Properties
3.3. Fracture Behavior
4. Conclusions
- In the quasi-static compressive tests, the yield stress of (Cu0.47Zr0.45Al0.08)98Dy2 BMG increased from 1234 MPa to 1844 MPa when the strain rate increased from 0.001 s−1 to 0.01 s−1, and the yield stress decreased to 1430 MPa at the strain rate of 0.1 s−1.
- In the dynamic compressive tests, when the strain rate increased from 1550 s−1 to 2990 s−1, the yield stress of (Cu0.47Zr0.45Al0.08)98Dy2 BMG first decreased from 1508 MPa to 1404 MPa, and then increased to 1593 MPa.
- In the quasi-static compressive tests, the fracture exhibited a typical compressive shear fracture: a vein-like pattern, and vein-like patterns were distributed mainly along one direction, which indicated that the fracture occurred in the pure shear mode.
- In the dynamic compressive tests, vein-like patterns were also observed on the fracture surface, and vein-like patterns were distributed without clear direction, and within the strain rate range in this research, the higher the strain rate, the longer the vein-like pattern could be observed. Under strain rates of 2650 s−1 and 2990 s−1, rough regions were observed in the fracture surface. The fracture surfaces indicated that fracture occurred in the pure shear mode with strain rates below 2100 s−1, whereas shear fracture and normal fracture occurred simultaneously under strain rates of 2650 s−1 and 2990 s−1.
Author Contributions
Funding
Conflicts of Interest
References
- Löffler, J.F. Bulk metallic glasses. Intermetallics 2003, 11, 529–540. [Google Scholar] [CrossRef]
- Wang, W.H.; Dong, C.; Shek, C.H. Bulk metallic glasses. Mater. Sci. Eng. R Rep. 2004, 44, 45–89. [Google Scholar] [CrossRef]
- Lin, H.; Wu, J.K.; Wang, C.; Lee, P. The corrosion behavior of mechanically alloyed Cu–Zr–Ti bulk metallic glasses. Mater. Lett. 2008, 62, 2995–2998. [Google Scholar] [CrossRef]
- Lee, P.-Y.; Cheng, Y.-M.; Chen, J.-Y.; Hu, C.-J. Formation and Corrosion Behavior of Mechanically-Alloyed Cu–Zr–Ti Bulk Metallic Glasses. Metals 2017, 7, 148. [Google Scholar] [CrossRef] [Green Version]
- Yu, L.; Tang, J.; Wang, H.; Wang, Y.; Qiao, J.; Apreutesei, M.; Normand, B. Corrosion behavior of bulk (Zr58Nb3Cu16Ni13Al10)100-xYx (x = 0, 0.5, 2.5 at.%) metallic glasses in sulfuric acid. Corros. Sci. 2019, 150, 42–53. [Google Scholar] [CrossRef]
- Zhang, W.; Zhang, Q.; Inoue, A. Fabrication of Cu–Zr–Ag–Al glassy alloy specimens with a diameter of 20 mm by water quenching. J. Mater. Res. 2008, 23, 1452–1456. [Google Scholar] [CrossRef]
- Inoue, A.; Zhang, W.; Zhang, T.; Kurosaka, K. High-strength Cu-based bulk glassy alloys in Cu–Zr–Ti and Cu–Hf–Ti ternary systems. Acta Mater. 2001, 49, 2645–2652. [Google Scholar] [CrossRef]
- Louzguine-Luzgin, D.; Kato, H.; Inoue, A. High-strength Cu-based crystal-glassy composite with enhanced ductility. Appl. Phys. Lett. 2004, 84, 1088–1089. [Google Scholar] [CrossRef]
- Hajlaoui, K.; Doisneau, B.; Yavari, A.; Botta, W.J.; Zhang, W.; Vaughan, G.; Kvick, Å.; Inoue, A.; Greer, A. Unusual room temperature ductility of glassy copper–zirconium caused by nanoparticle dispersions that grow during shear. Mater. Sci. Eng. A 2007, 105–110. [Google Scholar] [CrossRef]
- Han, X.; Qin, Y.; Qin, K.; Li, X.; Wang, S.; Mi, J.; Song, K.; Wang, L. Glass-Forming Ability and Early Crystallization Kinetics of Novel Cu-Zr-Al-Co Bulk Metallic Glasses. Metals 2016, 6, 225. [Google Scholar] [CrossRef] [Green Version]
- Louzguine-Luzgin, D.V.; Jiang, J. On Long-Term Stability of Metallic Glasses. Metals 2019, 9, 1076. [Google Scholar] [CrossRef] [Green Version]
- Fan, J.; Yang, L. Damage mechanisms of bulk metallic glasses under high-rate compression. Int. J. Impact Eng. 2017, 106, 217–222. [Google Scholar] [CrossRef]
- Chen, G.; Hao, Y.; Chen, X.-W.; Hao, H. Compressive behaviour of tungsten fibre reinforced Zr-based metallic glass at different strain rates and temperatures. Int. J. Impact Eng. 2017, 106, 110–119. [Google Scholar] [CrossRef]
- Bruck, H.A.; Rosakis, A.J.; Johnson, W.L. The dynamic compressive behavior of beryllium bearing bulk metallic glasses. J. Mater. Res. 1996, 11, 503–511. [Google Scholar] [CrossRef] [Green Version]
- Lu, J.; Ravichandran, G.; Johnson, W.L. Deformation behavior of the Zr41.2Ti13.8Cu12.5Ni10Be22.5 bulk metallic glass over a wide range of strain-rates and temperatures. Acta Mater. 2003, 51, 3429–3443. [Google Scholar] [CrossRef]
- Li, M.; Jiang, M.; Yang, S.; Jiang, F.; He, L.; Sun, J. Effect of strain rate on yielding strength of a Zr-based bulk metallic glass. Mater. Sci. Eng. A 2017, 680, 21–26. [Google Scholar] [CrossRef] [Green Version]
- Li, H.; Subhash, G.; Gao, X.-L.; Kecskes, L.J.; Dowding, R.J. Negative strain rate sensitivity and compositional dependence of fracture strength in Zr/Hf based bulk metallic glasses. Scr. Mater. 2003, 49, 1087–1092. [Google Scholar] [CrossRef]
- Mukai, T.; Nieh, T.; Kawamura, Y.; Inoue, A.; Higashi, K. Effect of strain rate on compressive behavior of a Pd40Ni40P20 bulk metallic glass. Intermettalics 2002, 10, 1071–1077. [Google Scholar] [CrossRef]
- Chen, T.-H.; Tsai, C.-K. The Microstructural Evolution and Mechanical Properties of Zr-Based Metallic Glass under Different Strain Rate Compressions. Materials 2015, 8, 1831–1840. [Google Scholar] [CrossRef] [Green Version]
- Zhang, J.; Park, J.M.; Kim, D.H.; Kim, H.S. Effect of strain rate on compressive behavior of Ti45Zr16Ni9Cu10Be20 bulk metallic glass. Mater. Sci. Eng. A 2007, 449, 290–294. [Google Scholar] [CrossRef]
- Liu, L.; Dai, L.-H.; Bai, Y.; Wei, B.; Yu, G. Strain rate-dependent compressive deformation behavior of Nd-based bulk metallic glass. Intermetallics 2005, 13, 827–832. [Google Scholar] [CrossRef] [Green Version]
- Hsu, K.C.; Chen, T.H.; Fang, T.H.; Hsu, Y.K. Mechanical Property and Fracture Characteristic of Ti–Cu–Ni–Alx Bulk Metallic Glasses under Different Strain Rates. Mater. Trans. 2020, 61, 1607–1612. [Google Scholar] [CrossRef]
- Tian, Y.B.; Lin, J.G.; Li, W.; Ma, M.; Luo, Z.C.; Jiang, W.J. Deformation behavior of a Cu-based amorphous alloy under different strain rates. J. Appl. Phys. 2011, 109, 083508. [Google Scholar] [CrossRef]
- Inoue, A.; Zhang, W.; Zhang, T.; Kurosaka, K. Cu-Based Bulk Glassy Alloys with Good Mechanical Properties in Cu-Zr-Hf-Ti System. Mater. Trans. 2001, 42, 1805–1812. [Google Scholar] [CrossRef]
- Davies, E.; Hunter, S. The dynamic compression testing of solids by the method of the split Hopkinson pressure bar. J. Mech. Phys. Solids 1963, 11, 155–179. [Google Scholar] [CrossRef]
- Xue, Y.-F.; Cai, H.-N.; Wang, L.; Zhang, H.-F.; Cheng, H.-W. Testing of high-strength Zr-based bulk metallic glass with the Split Hopkinson Pressure Bar. J. Beijing Inst. Technol. 2008, 1, 24. [Google Scholar]
- Follansbee, P.S. Metals Handbook; ASM: Metals Park, OH, USA, 1985; pp. 198–203. [Google Scholar]
- Lewandowski, J.J.; Greer, A. Temperature rise at shear bands in metallic glasses. Nat. Mater. 2006, 5, 15–18. [Google Scholar] [CrossRef]
- Wu, F.-F.; Zhang, Z.; Shen, B.-L.; Mao, S.X.-Y.; Eckert, J. Size Effect on Shear Fracture and Fragmentation of a Fe57.6Co14.4B19.2Si4.8Nb4Bulk Metallic Glass. Adv. Eng. Mater. 2008, 10, 727–730. [Google Scholar] [CrossRef]
- Lankford, J.; Predebon, W.; Staehler, J.; Subhash, G.; Pletka, B.; Anderson, C. The role of plasticity as a limiting factor in the compressive failure of high strength ceramics. Mech. Mater. 1998, 29, 205–218. [Google Scholar] [CrossRef]
- Meyers, M.A. Dynamic Behavior of Materials; John Wiley & Sons: Hoboken, NJ, USA, 1994. [Google Scholar]
- Subhash, G.; Ravichandran, G.. Mechanical Testing and Evaluation; ASM Handbook; ASM International: Materials Park, OH, USA, 2000; pp. 497–504. [Google Scholar]
- Liu, L.; Dai, L.-H.; Bai, Y.; Wei, B. Initiation and propagation of shear bands in Zr-based bulk metallic glass under quasi-static and dynamic shear loadings. J. Non-Cryst. Solids 2005, 351, 3259–3270. [Google Scholar] [CrossRef]
- Li, M.; Jiang, M.; Li, G.; He, L.; Sun, J.; Jiang, F. Ductile to brittle transition of fracture of a Zr-based bulk metallic glass: Strain rate effect. Intermetallics 2016, 77, 34–40. [Google Scholar] [CrossRef]
- Freels, M.; Wang, G.; Zhang, W.; Liaw, P.; Inoue, A. Cyclic compression behavior of a Cu–Zr–Al–Ag bulk metallic glass. Intermetallics 2011, 19, 1174–1183. [Google Scholar] [CrossRef]
- Ojovan, M.I.; Louzguine-Luzgin, D. Revealing Structural Changes at Glass Transition via Radial Distribution Functions. J. Phys. Chem. B 2020, 124, 3186–3194. [Google Scholar] [CrossRef] [PubMed]
- Wright, W.J.; Saha, R.; Nix, W.D. Deformation Mechanisms of the Zr40Ti14Ni10Cu12Be24 Bulk Metallic Glass. Mater. Trans. 2001, 42, 642–649. [Google Scholar] [CrossRef] [Green Version]
- Liu, J.; Wang, L.; Cheng, H.W.; Xue, Y.-F.; Zhang, H.-F. Fracture behavior of Zr-based bulk amorphous alloy under high-speed impact. J. Trans. Beijing Inst. Technol. 2012, 32, 198–201. [Google Scholar]
- Addabedia, M. Brittle fracture dynamics with arbitrary paths III. The branching instability under general loading. J. Mech. Phys. Solids 2005, 53, 227–248. [Google Scholar] [CrossRef]
- Abraham, F.F. Unstable crack motion is predictable. J. Mech. Phys. Solids 2005, 53, 1071–1078. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Y.-T.; Zu, X.-D.; Liu, X.-K.; Huang, Z.-X.; Jin, P.-G.; Kong, J. Compressive Behavior of (Cu0.47Zr0.45Al0.08)98Dy2 Bulk Metallic Glass at Different Strain Rates. Materials 2020, 13, 5828. https://doi.org/10.3390/ma13245828
Wang Y-T, Zu X-D, Liu X-K, Huang Z-X, Jin P-G, Kong J. Compressive Behavior of (Cu0.47Zr0.45Al0.08)98Dy2 Bulk Metallic Glass at Different Strain Rates. Materials. 2020; 13(24):5828. https://doi.org/10.3390/ma13245828
Chicago/Turabian StyleWang, Yu-Ting, Xu-Dong Zu, Xiang-Kui Liu, Zheng-Xiang Huang, Peng-Gang Jin, and Jian Kong. 2020. "Compressive Behavior of (Cu0.47Zr0.45Al0.08)98Dy2 Bulk Metallic Glass at Different Strain Rates" Materials 13, no. 24: 5828. https://doi.org/10.3390/ma13245828
APA StyleWang, Y. -T., Zu, X. -D., Liu, X. -K., Huang, Z. -X., Jin, P. -G., & Kong, J. (2020). Compressive Behavior of (Cu0.47Zr0.45Al0.08)98Dy2 Bulk Metallic Glass at Different Strain Rates. Materials, 13(24), 5828. https://doi.org/10.3390/ma13245828