Experimental Study on Influence of Curing Time on Strength Behavior of SLA-Printed Samples Loaded with Different Strain Rates
Abstract
:1. Introduction
2. Aim of Research
3. Research Description
- -
- Static test—the ElectroForce 3330 Series II Axial (Figure 4a) achieved strain rates of 0.001 1/s and 0.84 1/s,
- -
- Dynamic test—the impact hammer (own construction, Figure 4b) achieved strain rates of 500 1/s and 1000 1/s,
- -
- Hopkinson’s bar test—the Split Hopkinson’s Pressure Bar (SHPB, own construction, Figure 4c) achieved strain rates of 4317, 5157, 6281, and 7994 1/s.
- -
- Step 1: the geometry of the samples was designed in Solid Works (Version 28, 2020) and transformed to PreForm (Version 3.3.2) software to prepare the printing process. The supports were automatically set in the model (Figure 5a).
- -
- -
- Step 3: the supports were removed mechanically by using a knife, and the samples were cleaned using an isopropanol bath (Figure 5b).
- -
- Step 4: the samples were exposed to UV radiation and annealed in a thermal chamber at 60 °C for periods of 5, 30, and 60 min for each process.
4. Results and Discussion
- -
- engineering stress:
- -
- engineering strain:
- -
- average value:
- -
- standard deviation:
- -
- double-sided confidence interval:
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Vaezi, M.; Seitz, H.; Yang, S. A review on 3D micro-additive manufacturing technologies. Int. J. Adv. Manuf. Technol. 2013, 67, 1721–1754. [Google Scholar] [CrossRef]
- Attaran, M. The rise of 3-D printing: The advantages of additive manufacturing over traditional manufacturing. Bus. Horiz. 2017, 60, 677–688. [Google Scholar] [CrossRef]
- Hamzah, H.H.; Saiful, A.S.; Aya, A.; Pate, B.A. 3D printable conductive materials for the fabrication of electrochemical sensors: A mini review. Electrochem. Commun. 2018, 96, 27–31. [Google Scholar] [CrossRef]
- Miedzińska, D.; Małek, E.; Popławski, A. Numerical modelling of resins used in stereolitography rapid prototyping. Appl. Comput. Sci. 2019, 15, 16–26. [Google Scholar]
- Zhao, T.; Yu, R.X.; Cheng, B.; Zhang, Y.; Yang, X.; Zhao, X.; Zhao, Y.; Huang, W. 4D printing of shape memory polyurethane via stereolithography. Eur. Polym. J. 2018, 101, 120–126. [Google Scholar] [CrossRef]
- Quintana, R.; Choi, J.-W.; Puebla, K.; Wicker, R. Effects of build orientation on tensile strength for stereolithography-manufactured ASTM D-638 type I specimens. Int. J. Adv. Manuf. Technol. 2010, 46, 201–215. [Google Scholar] [CrossRef]
- Kazemi, M.; Rahimi, A.R. Supports effect on tensile strength of the stereolithography parts. Rapid Prototyp. J. 2015, 21, 79–88. [Google Scholar] [CrossRef]
- Chantarapanich, N.; Puttawibul, P.; Sitthiseripratip, K.; Sucharitpwatskul, S.; Songklanakarin, S.C. Study of the mechanical properties of photo-cured epoxy resin fabricated by stereolithography process. J. Sci. Technol. 2013, 35, 91–98. [Google Scholar]
- Belter, J.T.; Dollar, A.M. Strengthening of 3D Printed Fused Deposition Manufactured Parts Using the Fill Compositing Technique. PLoS ONE 2015, 10, 128–146. [Google Scholar] [CrossRef] [PubMed]
- Szykiedans, K.; Credo, W. Mechanical Properties of FDM and SLA Low-cost 3-D Prints. Procedia Eng. 2016, 136, 257–262. [Google Scholar] [CrossRef] [Green Version]
- Sakly, A.; Kenzari, S.; Bonin, D.; Corbel, S.; Fournée, V. A novel quasicrystal-resin composite for stereolithography. Mater. Des. 2014, 56, 280–285. [Google Scholar] [CrossRef]
- Dar, U.A.; Mian, H.H.; Abid, M.; Topa, A.; Sheikh, M.Z.; Bilal, M. Experimental and numerical investigation of compressive behavior of lattice structures manufactured through projection micro stereolithography. Mater. Today 2020, 25, 101563. [Google Scholar] [CrossRef]
- Fry, C.; Mihalko, A.; Michael, R.; Piovesan, D. Mechanical property determination of a stereolithographic resin subjected to compressive loading. In Proceedings of the ASME 2018 International Mechanical Engineering Congress and Exposition, Pittsburgh, PA, USA, 9–15 November 2018. IMECE2018-87600, V003T04A008. [Google Scholar]
- Li, Y.; Peng, S.; Miao, J.-T.; Zheng, L.; Zhong, J.; Wu, L.; Weng, Z. Isotropic stereolithography resin toughened by core-shell particles. Chem. Eng. J. 2020, 394, 124873. [Google Scholar] [CrossRef]
- Patel, D.K.; Sakhaei, A.; Layani, M.; Zhang, B.; Ge, Q.; Magdassi, S. Highly Stretchable and UV Curable Elastomers for Digital Light Processing Based 3D Printing. Adv. Mater. 2017, 29, 1606000. [Google Scholar] [CrossRef]
- Sagias, V.D.; Giannakopoulos, K.I.; Stergiou, C. Mechanical properties of 3D printed polymer specimens. Procedia Struct. Integr. 2018, 10, 85–90. [Google Scholar] [CrossRef]
- Dizon, J.R.C.; Espera, A.H.; Chen, Q.; Advincula, R.C. Mechanical characterization of 3D-printed polymers. Addit. Manuf. 2018, 20, 44–67. [Google Scholar] [CrossRef]
- Maso, A.D.; Cosmi, F. Mechanical characterization of 3D-printed objects. Mater. Today 2018, 5, 26739–26746. [Google Scholar]
- Mercado-Colmenero, J.M.; Martin-Doñate, C.; Moramarco, V.; Attolico, M.A.; Renna, G.; Rodriguez-Santiago, M.; Casavola, C. Mechanical Characterization of the Plastic Material GF-PA6 Manufactured Using FDM Technology for a Compression Uniaxial Stress Field via an Experimental and Numerical Analysis. Polymers 2020, 12, 246. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Casavola, C.; Cazzato, A.; Moramarco, V.; Renna, G. Mechanical behaviour of ABS-Fused Filament Fabrication compounds under impact tensile loadings. Materials 2019, 12, 1295. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, S.; Ma, Y.; Deng, Z.; Zhang, K.; Dai, S. Implementation of an elastoplastic constitutive model for 3D-printed materials fabricated by stereolithography. Addit. Manuf. 2020, 33, 101104. [Google Scholar] [CrossRef]
- Puebla, K.; Arcaute, K.; Quintana, R.; Wicker, R.B. Effects of environmental conditions, aging, and build orientations on the mechanical properties of ASTM type I specimens manufactured via stereolithography. Rapid Prototyp. J. 2012, 18, 374–388. [Google Scholar] [CrossRef]
- Dulieu-Barton, J.M.; Fulton, M.C. Mechanical Properties of a Typical Stereolithography Resin. Strain 2008, 6, 81–87. [Google Scholar] [CrossRef]
- Layton, A.C.; Rosen, D.W. The Effect of Layer Orientation on the Tensile Properties of Net Shape Parts Fabricated in Stereolithography. In Proceedings of the SFF Symposium, Austin, TX, USA, 6–8 August 2001; pp. 289–300. [Google Scholar]
- Salmoria, G.V.; Ahrens, C.H.; Beal, V.E.; Pires, A.T.N.; Soldi, V. Evaluation of post-curing and laser manufacturing parameters on the properties of SOMOS 7110 photosensitive resin used in stereolithography. Mater. Des. 2009, 30, 758–763. [Google Scholar] [CrossRef]
- Chockalingam, K.; Jawahar, N.; Ramanathan, K.N.; Banerjee, P.S. Optimization of stereolithography process parameters for part strength using design of experiments. Int. J. Adv. Manuf. Technol. 2006, 29, 79–88. [Google Scholar] [CrossRef]
- Chockalingam, K.; Jawahar, N.; Chandrasekhar, U. Influence of layer thickness on mechanical properties in stereolithography. Rapid Prototyp. J. 2006, 12, 106–113. [Google Scholar] [CrossRef]
- Zguris, Z. How Mechanical Properties of Stereolithography 3D Prints are Affected by UV Curing. Formlabs White Paper. Available online: www.formlabs.com (accessed on 9 November 2020).
- Miedzińska, D.; Gieleta, R.; Małek, E. Experimental study of strength properties of SLA resins under low and high strain rates. Mech. Mater. 2020, 141, 103245. [Google Scholar] [CrossRef]
- The Ultimate Guide to Stereolithography (SLA) 3D printing. Available online: www.formlabs.com (accessed on 10 December 2020).
- Chen, W.W.; Song, B. Split Hopkinson (Kolsky) Bar: Design, Testing and Applications; Springer: New York, NY, USA, 2011. [Google Scholar]
- Li, Z.; Lambros, J. Strain rate effects on the thermomechanical behavior of polymers. Int. J. Solids Struct. 2001, 38, 3549–3562. [Google Scholar] [CrossRef]
- Kalnaus, S.; Wang, Y.; Li, J.; Kumar, A.; Turner, J.A. Temperature and strain rate dependent behavior of polymer separator for Li-ion batteries. Extrem. Mech. Lett. 2018, 20, 73–80. [Google Scholar] [CrossRef]
- Bendarma, A.; Jankowiak, T.; Rusinek, A.; Łodygowski, T.; Jia, B.; Miguélez, M.H.; Klosak, M. Dynamic Behavior of Aluminum Alloy Aw 5005 Undergoing Interfacial Friction and Specimen Configuration in Split Hopkinson Pressure Bar System at High Strain Rates and Temperatures. Materials 2020, 13, 4614. [Google Scholar] [CrossRef]
- Chen, G.; Ke, Z.; Ren, C.; Li, J. Constitutive Modeling for Ti-6Al-4V Alloy Machining Based on the SHPB Tests and Simulation. Chin. J. Mech. Eng. 2016, 29, 962–970. [Google Scholar] [CrossRef]
Test | Sample Height (mm) | Sample Diameter (mm) | Strain Rate (1/s) |
---|---|---|---|
Static | 5 | 6 | 0.001 |
5 | 6 | 0.84 | |
Dynamic | 3 | 12 | 500 |
3 | 12 | 1000 | |
SHPB | 2.5 | 12 | 4317 |
2 | 12 | 5157 | |
1.5 | 12 | 6281 | |
1 | 12 | 7994 |
Stress at the 0.05 Strain (MPa) | ||||||||
---|---|---|---|---|---|---|---|---|
Strain Rate and Curing Time | 1 | 2 | 3 | Standard Deviation, s | x1 | x2 | xn | |
0.001 1/s, 5 min | 14.15 | 13.66 | 14.76 | 14.19 | 0.55 | 13.26 | 15.12 | 14.19 |
0.84 1/s, 5 min | 32.72 | 34.45 | 32.62 | 33.26 | 1.03 | 31.53 | 35.00 | 33.26 |
0.001 1/s, 30 min | 21.78 | 21.46 | 21.1 | 21.45 | 0.34 | 20.87 | 22.02 | 21.45 |
0.84 1/s, 30 min | 34.91 | 38.47 | 38.55 | 37.31 | 2.08 | 33.81 | 40.81 | 37.31 |
0.001 1/s, 60 min | 20.27 | 20.18 | 22.67 | 21.04 | 1.41 | 18.66 | 23.42 | 21.04 |
0.84 1/s, 60 min | 38.7 | 38.6 | 35.09 | 37.46 | 2.06 | 34.00 | 40.93 | 37.46 |
Stress at the 0.05 Strain (MPa) | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|
Strain Rate and Curing Time | 1 | 2 | 3 | 4 | 5 | Standard Deviation, s | x1 | x2 | xn | |
500 1/s, 5 min | 31.47 | 42.43 | 34.30 | 43.43 | 49.00 | 40.13 | 7.14 | 33.32 | 46.93 | 40.05 |
1000 1/s, 5 min | 35.13 | 14.40 | 34.82 | 33.69 | 48.02 | 33.21 | 12.04 | 21.73 | 44.69 | 34.55 |
500 1/s, 30 min | 52.65 | 31.70 | 24.87 | 24.58 | 53.88 | 37.54 | 14.64 | 23.57 | 51.50 | 27.05 |
1000 1/s, 30 min | 36.25 | 34.34 | 41.05 | 48.34 | 46.65 | 41.33 | 6.17 | 35.45 | 47.21 | 41.32 |
500 1/s, 60 min | 67.59 | 58.51 | 59.44 | 56.62 | 56.76 | 59.78 | 4.52 | 55.47 | 64.10 | 57.83 |
1000 1/s, 60 min | 56.06 | 43.69 | 55.44 | 55.60 | 31.79 | 48.52 | 10.70 | 38.31 | 58.72 | 52.70 |
Stress at 0.05 Strain (MPa) | |||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Strain Rate and Curing Time | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | Standard Deviation, s | x1 | x2 | xn | |
4317 1/s, 5 min | 135.06 | 107.48 | 111.98 | 112.48 | 108.75 | 124.82 | 113.55 | 117.08 | 108.02 | 119.90 | 115.91 | 8.70 | 110.87 | 120.95 | 115.00 |
5157 1/s, 5 min | 134.19 | 115.13 | 128.33 | 123.11 | 113.62 | 126.15 | 113.17 | 97.49 | 117.61 | 119.64 | 118.84 | 10.16 | 112.96 | 124.73 | 118.35 |
6281 1/s, 5 min | 137.51 | 118.77 | 115.36 | 109.75 | 91.62 | 111.49 | 77.06 | 118.37 | 123.94 | 111.52 | 111.54 | 16.77 | 101.82 | 121.26 | 114.21 |
7994 1/s, 5 min | 111.24 | 142.22 | 88.40 | 137.11 | 110.35 | 79.29 | 118.02 | 64.71 | 104.44 | 101.57 | 105.74 | 24.08 | 91.77 | 119.70 | 109.12 |
4317 1/s, 30 min | 112.54 | 112.62 | 106.46 | 112.99 | 116.07 | 68.38 | 113.85 | 109.68 | 101.07 | 112.26 | 106.59 | 14.09 | 98.42 | 114.76 | 110.18 |
5157 1/s, 30 min | 62.97 | 117.21 | 109.45 | 123.52 | 113.92 | 114.36 | 123.36 | 107.41 | 143.28 | 113.71 | 112.92 | 20.28 | 101.16 | 124.68 | 115.37 |
6281 1/s, 30 min | 127.56 | 133.79 | 130.44 | 99.42 | 202.48 | 147.12 | 133.32 | 115.07 | 131.09 | 145.00 | 136.53 | 26.95 | 120.91 | 152.15 | 135.47 |
7994 1/s, 30 min | 154.12 | 77.44 | 160.67 | 124.27 | 162.50 | 132.01 | 133.15 | 127.07 | 224.82 | 176.17 | 147.22 | 38.81 | 124.73 | 169.72 | 144.92 |
4317 1/s, 60 min | 112.10 | 141.12 | 134.27 | 117.08 | 124.37 | 140.21 | 108.56 | 118.96 | 116.79 | 112.58 | 122.60 | 11.91 | 115.70 | 129.51 | 119.30 |
5157 1/s, 60 min | 112.70 | 119.86 | 129.19 | 114.79 | 148.56 | 100.46 | 128.16 | 93.39 | 121.52 | 122.49 | 119.11 | 15.41 | 110.18 | 128.05 | 118.27 |
6281 1/s, 60 min | 134.95 | 142.07 | 86.42 | 132.45 | 118.22 | 99.49 | 119.00 | 122.36 | 114.54 | 145.25 | 121.48 | 18.47 | 110.77 | 132.18 | 118.53 |
7994 1/s, 60 min | 133.98 | 199.46 | 107.83 | 93.79 | 154.40 | 87.39 | 135.92 | 119.86 | 79.28 | 132.34 | 124.43 | 35.68 | 103.74 | 145.11 | 125.99 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Miedzińska, D.; Gieleta, R.; Popławski, A. Experimental Study on Influence of Curing Time on Strength Behavior of SLA-Printed Samples Loaded with Different Strain Rates. Materials 2020, 13, 5825. https://doi.org/10.3390/ma13245825
Miedzińska D, Gieleta R, Popławski A. Experimental Study on Influence of Curing Time on Strength Behavior of SLA-Printed Samples Loaded with Different Strain Rates. Materials. 2020; 13(24):5825. https://doi.org/10.3390/ma13245825
Chicago/Turabian StyleMiedzińska, Danuta, Roman Gieleta, and Arkadiusz Popławski. 2020. "Experimental Study on Influence of Curing Time on Strength Behavior of SLA-Printed Samples Loaded with Different Strain Rates" Materials 13, no. 24: 5825. https://doi.org/10.3390/ma13245825
APA StyleMiedzińska, D., Gieleta, R., & Popławski, A. (2020). Experimental Study on Influence of Curing Time on Strength Behavior of SLA-Printed Samples Loaded with Different Strain Rates. Materials, 13(24), 5825. https://doi.org/10.3390/ma13245825