A Numerical Study of Geometry’s Impact on the Thermal and Mechanical Properties of Periodic Surface Structures
Abstract
:1. Introduction
2. Methods
3. Numerical Simulations Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Fee, C. 3D-printed porous bed structures. Curr. Opin. Chem. Eng. 2017, 18, 10–15. [Google Scholar] [CrossRef]
- Maskery, I.; Aboulkhair, N.T.; Aremu, A.O.; Tuck, C.J.; Ashcroft, I.A. Compressive failure modes and energy absorption in additively manufactured double gyroid lattices. Addit. Manuf. 2017, 16, 24–29. [Google Scholar] [CrossRef]
- Sychov, M.; Lebedev, L.; Dyachenko, S.V.; Nefedova, L.A. Mechanical properties of energy-absorbing structures with triply periodic minimal surface topology. Acta Astronaut. 2017, 150, 81–84. [Google Scholar] [CrossRef]
- Khan, K.; Abu Al-Rub, R. Time dependent response of architectured neovius foams. Int. J. Mech. Sci. 2017, 126, 106–119. [Google Scholar] [CrossRef]
- Monkova, K.; Monka, P.; Zetkova, I.; Hanzl, P.; Mandulak, D. Three approaches to the gyroid structure modelling as a base of lightweight component produced by additive technology. In Proceedings of the 2nd International Conference on Computational Modeling, Simulation and Applied Mathematics (CMSAM 2017), Beijing, China, 22–23 October 2017. [Google Scholar] [CrossRef] [Green Version]
- Kapfer, S.C.; Hyde, S.T.; Mecke, K.; Arns, C.H.; Schroder-Turk, G.E. Minimal surface scaffold designs for tissue engineering. Biomaterials 2011, 32, 6875–6882. [Google Scholar] [CrossRef]
- Ya, C.; Hao, L.; Hussein, A.; Young, P. Ti–6Al–4V triply periodic minimal surface structures for bone implants fabricated via selective laser melting. J. Mech. Behav. Biomed. Mater. 2015, 51, 61–73. [Google Scholar]
- Schoen, A. Infinite Periodic Minimal Surfaces without Self-Intersections; TN D-5541; NASA: Washington, DC, USA, 1970. [Google Scholar]
- Torquato, S.; Hyun, S.; Donev, A. Multifunctional composites: Optimizing microstructures for simultaneous transport of heat and electricity. Phys. Rev. Lett. 2002, 89, 266601. [Google Scholar] [CrossRef] [Green Version]
- Shi, J.; Zhu, L.; Li, L.; Li, Z.; Yang, J.; Wang, X. A TPMS-based method for modeling porous scaffolds for bionic bone tissue engineering. Sci. Rep. 2018, 8, 7395. [Google Scholar] [CrossRef] [Green Version]
- Chandler, D.L. 3-D-Graphene-Strongest-Lightest-Materials. Available online: http://news.mit.edu/2017/3-d-graphene-strongest-lightest-materials-0106 (accessed on 15 January 2021).
- Jung, G.S.; Yeo, J.; Tian, Z.; Qin, Z.; Buehler, M.J. Unusually low and density-insensitive thermal conductivity of three-dimensional gyroid graphene. Nanoscale 2017, 9, 13477–13484. [Google Scholar] [CrossRef]
- Krawiec, P.; Domek, G.; Warguła, Ł.; Waluś, K.; Adamiec, J. The application of the optical system ATOS II for rapid prototyping methods of non-classical models of cogbelt pulleys. In Proceedings of the Machine Modelling and Simulations 2017 (MMS 2017), Sklené Teplice, Slovakia, 5–8 September 2017. [Google Scholar]
- Maresky, H.S.; Rootman, J.M.; Klar, M.M.; Levitt, M.; Kossar, A.P.; Zucker, D.; Glazier, M.; Kalmanovich-Avnery, S.; Aviv, R.; Ertl-Wagner, B.; et al. Bringing prevost’s sign into the third dimension: Artificial intelligence estimation of conjugate gaze adjusted length (CGAL) and correlation with acute ischemic stroke. Medicine 2020, 99, e23330. [Google Scholar] [CrossRef]
- Fabri, A.; Pion, S. CGAL–The Computational Geometry Algorithms Library. In Proceedings of the 17th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems (ACM GIS ’09), Seattle, WA, USA, 4–6 November 2009; pp. 538–539. [Google Scholar]
- Wang, B.; Mei, G.; Xu, N. Method for generating high-quality tetrahedral meshes of geological models by utilizing CGAL. MethodsX 2020, 7, 101061. [Google Scholar] [CrossRef] [PubMed]
- Yang, L.; Yan, C.; Han, C.; Chen, P.; Yang, S.; Shi, Y. Mechanical response of a triply periodic minimal surface cellular structures manufactured by selective laser melting. Int. J. Mech. Sci. 2018, 148, 149–157. [Google Scholar] [CrossRef]
- Abueidda, D.W.; Bakir, M.; Al-Rub RK, A.; Bergström, J.S.; Sobh, N.A.; Jasiuk, I. Mechanical properties of 3D printed polymeric cellular materials with triply periodic minimal surface architectures. Mater. Des. 2017, 122, 255–267. [Google Scholar] [CrossRef]
- Wang, X.; Wang, C.; Zhou, X.; Wang, D.; Zhang, M.; Gao, Y.; Wang, L.; Zhang, P. Evaluating lattice mechanical properties for lightweight heat-resistant load-bearing structure design. Materials 2020, 13, 4786. [Google Scholar] [CrossRef] [PubMed]
- Mangipudi, K.R.; Epler, E.; Volkert, C.A. Topology-dependent scaling laws for the stiffness and strength of nanoporous gold. Acta Mater. 2016, 119, 115–122. [Google Scholar] [CrossRef]
- Zienkiewicz, O.C.; Taylor, R.L.; Zhu, J.Z. The Finite Element Method: Its Basis and Fundamentals, 7th ed.; Butterworth-Heinemann: Oxford, UK, 2013; ISBN 9781856176330. [Google Scholar]
- Gawronska, E.; Dyja, R.; Sczygiol, N. Numerical simulations of stress distribution in complex structures with various average volume fraction. Lect. Notes Eng. Comput. Sci. 2018, 2238, 677–681. [Google Scholar]
- Dyja, R.; Gawronska, E.; Grosser, A. Numerical Problems Related to Solving the Navier-Stokes Equations in Connection with the Heat Transfer with the Use of FEM. Procedia Eng. 2017, 177, 78–85. [Google Scholar] [CrossRef]
- Lord, E.; Mackay, A. Periodic Minimal Surfaces of Cubic Symmetry. Curr. Sci. 2003, 85, 346–362. [Google Scholar]
- Weatherburn, C.E. Differential Geometry of Three Dimensions; Cambridge University Press: Cambridge, UK, 1927; Volume 1. [Google Scholar]
- Jung, Y.; Chu, K.T.; Torquato, S. A Variational Level Set Approach for Surface Area Minimization of Triply Periodic Surfaces. J. Comput. Phys. 2006, 223, 711–730. [Google Scholar] [CrossRef] [Green Version]
- CGAL software. Available online: https://www.cgal.org/ (accessed on 15 January 2021).
- Wang, Z.; Wang, X.; Gao, T.; Shi, C. Mechanical behavior and deformation mechanism of triply periodic minimal surface sheet under compressive loading. Mech. Adv. Mater. Struct. 2020, 1–13. [Google Scholar] [CrossRef]
- Zhang, L.; Feih, S.; Daynes, S.; Chang, S.; Wang, M.Y.; Wei, J.; Lu, F.U. Energy absorption characteristics of metallic triply periodic minimal surface sheet structures under compressive loading. Addit. Manuf. 2018, 23, 505–515. [Google Scholar] [CrossRef]
- Yang, E.; Leary, M.; Lozanovski, B.; Downing, D.; Mazur, M.; Sarker, A.; Khorasani, A.; Jones, A.; Maconachie, T.; Bateman, S.; et al. Effect of geometry on the mechanical properties of Ti-6Al-4V Gyroid structures fabricated via SLM: A numerical study. Mater. Des. 2019, 184, 108165. [Google Scholar] [CrossRef]
- Wilczyński, D.; Malujda, I.; Talaśka, K.; Długi, R. The study of mechanical properties of natural polymers in the compacting process. Procedia Eng. 2017, 177, 411–418. [Google Scholar] [CrossRef]
- Byrne, D.P.; Lacroix, D.; Planell, J.A.; Kelly, D.J.; Prendergast, P.J. Simulation of tissue differentiation in a scaffold as a function of porosity, Young’s modulus and dissolution rate: Application of mechanobiological models in tissue engineering. Biomaterials 2008, 28, 5544–5554. [Google Scholar] [CrossRef] [PubMed]
- Hehl, F.; Yakov, I. The Cauchy Relations in Linear Elasticity Theory. J. Elast. 2002, 66. [Google Scholar] [CrossRef]
- Downing, D.; Jones, A.; Brandt, M.; Leary, M. Increased efficiency gyroid structures by tailored material distribution. Mater. Des. 2021, 197, 109096. [Google Scholar] [CrossRef]
- Khogalia, E.H.; Choo, H.L.; Yap, W.H. Performance of Triply Periodic Minimal Surface Lattice Structures Under Compressive Loading for Tissue Engineering Applications. AIP Conf. Proc. 2020, 2233, 020012. [Google Scholar]
Name | Relative Thickness δ [.] | Thickness [m] | Volume [m3] | Volume Fraction [.] | Side Area [m2] | Side Area Fraction [.] |
---|---|---|---|---|---|---|
cube | - | - | 6.400 × 10−5 | 1.0000 | 16.000 × 10−4 | 1.0000 |
diamond (D) 2 cells | 0.125 | 0.0023 | 2.633 × 10−5 | 0.4114 | 4.385 × 10−4 | 0.2741 |
diamond (D) 2 cells | 0.2 | 0.0041 | 4.254 × 10−5 | 0.6647 | 8.389 × 10-4 | 0.5243 |
diamond (D) 4 cells | 0.125 | 0.0011 | 2.638 × 10−5 | 0.4122 | 3.555 × 10−4 | 0.2222 |
diamond (D) 4 cells | 0.2 | 0.0020 | 4.266 × 10−5 | 0.6666 | 7.536 × 10−4 | 0.4710 |
gyroid (G) 2 cells | 0.125 | 0.0023 | 2.069 × 10−5 | 0.3233 | 3.603 × 10−4 | 0.2252 |
gyroid (G) 2 cells | 0.2 | 0.0040 | 3.343 × 10−5 | 0.5223 | 6.603 × 10−4 | 0.4127 |
gyroid (G) 4 cells | 0.125 | 0.0012 | 2.071 × 10−5 | 0.3235 | 2.892 × 10−4 | 0.1808 |
gyroid (G) 4 cells | 0.2 | 0.0020 | 3.347 × 10−5 | 0.5230 | 5.876 × 10−4 | 0.3673 |
primitive (P) 2 cells | 0.125 | 0.0028 | 1.828 × 10−5 | 0.2856 | 3.138 × 10−4 | 0.1961 |
Primitive (P) 2 cells | 0.2 | 0.0045 | 2.930 × 10−5 | 0.4579 | 5.545 × 10−4 | 0.3466 |
primitive (P) 4 cells | 0.125 | 0.0012 | 1.829 × 10−5 | 0.2857 | 2.733 × 10−4 | 0.1708 |
primitive (P) 4 cells | 0.2 | 0.0024 | 2.933 × 10−5 | 0.4584 | 5.096 × 10−4 | 0.3185 |
Name | Relative Thickness [.] | Number of Nodes | Number of Elements |
---|---|---|---|
cube | - | 45,142 | 245,979 |
diamond (D) 2 cells | 0.125 | 325,910 | 1,087,687 |
diamond (D) 2 cells | 0.2 | 322,198 | 1,122,255 |
diamond (D) 4 cells | 0.125 | 551,898 | 1,731,035 |
diamond (D) 4 cells | 0.2 | 544,391 | 1,911,853 |
gyroid (G) 2 cells | 0.125 | 269,511 | 890,282 |
gyroid (G) 2 cells | 0.2 | 283,175 | 967,104 |
gyroid (G) 4 cells | 0.125 | 457,834 | 1,410,877 |
gyroid (G) 4 cells | 0.2 | 479,653 | 1,610,759 |
primitive (P) 2 cells | 0.125 | 211,320 | 706,578 |
Primitive (P) 2 cells | 0.2 | 224,711 | 775,721 |
primitive (P) 4 cells | 0.125 | 355,299 | 1,096,937 |
primitive (P) 4 cells | 0.2 | 378,416 | 1,274,439 |
Name | Relative Thickness [.] | Minimum Temperature [K] | Maximum Temperature [K] | Temperature Difference ΔT [K] |
---|---|---|---|---|
cube | - | 322.1 | 322.9 | 0.8 |
diamond (D) 2 cells | 0.125 | 313.7 | 314.5 | 0.8 |
diamond (D) 2 cells | 0.2 | 316.7 | 317.6 | 0.9 |
diamond (D) 4 cells | 0.125 | 311.6 | 312.2 | 0.6 |
diamond (D) 4 cells | 0.2 | 314.7 | 315.4 | 0.7 |
gyroid (G) 2 cells | 0.125 | 314.2 | 315.2 | 1.0 |
gyroid (G) 2 cells | 0.2 | 316.7 | 317.7 | 1.0 |
gyroid (G) 4 cells | 0.125 | 312.5 | 313.2 | 0.7 |
gyroid (G) 4 cells | 0.2 | 314.5 | 315.2 | 0.7 |
primitive (P) 2 cells | 0.125 | 314.7 | 315.5 | 0.8 |
Primitive (P) 2 cells | 0.2 | 316.1 | 316.9 | 0.8 |
primitive (P) 4 cells | 0.125 | 312.2 | 312.9 | 0.7 |
primitive (P) 4 cells | 0.2 | 314.8 | 315.5 | 0.7 |
Name | Relative Thickness [.] | Maximum Total Displacement [m] | Minimum von Mises Stress [MPa] | Maximum von Mises Stress [MPa] |
---|---|---|---|---|
cube | - | 5.803 × 106 | 6.359 × 106 | 2.710 × 107 |
diamond (D) 2 cells | 0.125 | 1.062 × 105 | 340.3 | 5.161 × 107 |
diamond (D) 2 cells | 0.2 | 1.007 × 105 | 119.5 | 6.727 × 107 |
diamond (D) 4 cells | 0.125 | 6.316 × 106 | 2216 | 3.747 × 107 |
diamond (D) 4 cells | 0.2 | 6.536 × 106 | 330.9 | 4.276 × 107 |
gyroid (G) 2 cells | 0.125 | 3.747 × 105 | 224.5 | 1.019 × 108 |
gyroid (G) 2 cells | 0.2 | 2.585 × 105 | 334.5 | 9.635 × 107 |
gyroid (G) 4 cells | 0.125 | 1.618 × 105 | 2702 | 7.621 × 107 |
gyroid (G) 4 cells | 0.2 | 1.313 × 105 | 928.5 | 7.318 × 107 |
primitive (P) 2 cells | 0.125 | 1.642 × 105 | 9.146 × 105 | 5.612 × 107 |
Primitive (P) 2 cells | 0.2 | 1.254 × 105 | 2.723 × 105 | 6.460 × 107 |
primitive (P) 4 cells | 0.125 | 1.200 × 105 | 2.247 × 105 | 5.222 × 107 |
primitive (P) 4 cells | 0.2 | 9.722 × 106 | 3.891 × 105 | 5.847 × 107 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gawronska, E.; Dyja, R. A Numerical Study of Geometry’s Impact on the Thermal and Mechanical Properties of Periodic Surface Structures. Materials 2021, 14, 427. https://doi.org/10.3390/ma14020427
Gawronska E, Dyja R. A Numerical Study of Geometry’s Impact on the Thermal and Mechanical Properties of Periodic Surface Structures. Materials. 2021; 14(2):427. https://doi.org/10.3390/ma14020427
Chicago/Turabian StyleGawronska, Elzbieta, and Robert Dyja. 2021. "A Numerical Study of Geometry’s Impact on the Thermal and Mechanical Properties of Periodic Surface Structures" Materials 14, no. 2: 427. https://doi.org/10.3390/ma14020427
APA StyleGawronska, E., & Dyja, R. (2021). A Numerical Study of Geometry’s Impact on the Thermal and Mechanical Properties of Periodic Surface Structures. Materials, 14(2), 427. https://doi.org/10.3390/ma14020427