Corrosion Behavior of High-Mn Austenitic Fe–Mn–Al–Cr–C Steels in NaCl and NaOH Solutions
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. XRD Analysis
3.2. Microstructure and Surface Characterization
3.3. Electrochemical Corrosion Analysis
4. Conclusions
- The three high-Mn steels tested showed austenitic microstructures. After electrochemical experiments, the optical micrographs showed pitting and uniform corrosion for all samples in both chloride and alkaline solutions.
- The X-ray diffraction results indicated that the main surface corrosion products identified were Fe oxide (Fe2O3 or Fe3O4), Mn oxide (MnO2, Mn2O3, or Mn3O4), MnAl2O4, and MnFe2O4. This is due to the higher dissolution rate of Fe and Mn, which present a more active redox potential. In addition, a passivating Al2O3 oxide film was revealed.
- The PP scans showed that the cathodic kinetics decreased as the content of Mn increased. This behavior was interpreted in terms of the catalytic properties of the alloys towards the oxygen reduction reaction (ORR). The anodic branches depicted an active-to-passive transition defining a shoulder-like followed by a passivation region, an Epit, and the evolution of oxygen. In the 10 wt.% NaOH solution, the anodic branch was stable without current density oscillations, which was attributed to the spontaneous passivation imparted by the Al2O3 film. Contrarily, in the 3.5 wt.% NaCl solution current density oscillations were observed mainly in TWIP1 and TWIP2 and were attributed to a salt-film precipitation passivation mechanism. The corrosion rate was found to be higher in both electrolytes for MBIP because of the higher Mn content, while the lowest corrosion rate was recorded for the TWIP2 due to the presence of Mo and the higher Cr content imparting passivity.
- The EIS results revealed a capacitive behavior with two-time constants, one at high frequencies for the passive layer and one at low frequencies for the corrosion process. The results are in agreement with the PP scans showing the lowest corrosion rate in TWIP2 and the highest in MBIP.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bouaziz, O.; Allain, S.; Scott, C. Effect of grain and twin boundaries on the hardening mechanisms of twinning-induced plasticity steels. Scr. Mater. 2008, 58, 484–487. [Google Scholar] [CrossRef]
- De Cooman, B.C.; Chin, K.; Kim, J. High Mn TWIP steels for automotive applications. In New Trends and Developments in Automotive System Engineering; InTech: Nappanee, IN, USA, 2011. [Google Scholar]
- Pierce, D.T.; Jiménez, J.A.; Bentley, J.; Raabe, D.; Wittig, J.E. The influence of stacking fault energy on the microstructural and strain-hardening evolution of Fe–Mn–Al–Si steels during tensile deformation. Acta Mater. 2015, 100, 178–190. [Google Scholar] [CrossRef]
- Allain, S.; Chateau, J.-P.; Bouaziz, O.; Migot, S.; Guelton, N. Correlations between the calculated stacking fault energy and the plasticity mechanisms in Fe–Mn–C alloys. Mater. Sci. Eng. A 2004, 387–389, 158–162. [Google Scholar] [CrossRef]
- Shyamal, S.; Farahani, M.G.; Allam, T.; Hamada, A.S.; Haase, C.; Kömi, J.I.; Chakraborti, P.C.; Sahu, P. Activation of a hybrid twinning mechanism in a Cr-Ni-Si-V-N medium manganese austenitic steel containing precipitates. Scr. Mater. 2021, 192, 83–88. [Google Scholar] [CrossRef]
- Allam, T.; Guo, X.; Lipińska-Chwałek, M.; Hamada, A.; Ahmed, E.; Bleck, W. Impact of precipitates on the hydrogen embrittlement behavior of a V-alloyed medium-manganese austenitic stainless steel. J. Mater. Res. Technol. 2020, 9, 13524–13538. [Google Scholar] [CrossRef]
- Chun, Y.S.; Park, K.T.; Lee, C.S. Delayed static failure of twinning-induced plasticity steels. Scr. Mater. 2012, 66, 960–965. [Google Scholar] [CrossRef]
- Grajcar, A. Corrosion Resistance of High-Mn Austenitic Steels for the Automotive Industry; Shih, H., Ed.; InTech: Rijeka, Croatia, 2012. [Google Scholar]
- Yoo, J.D.; Park, K.T. Microband-induced plasticity in a high Mn–Al–C light steel. Mater. Sci. Eng. A 2008, 496, 417–424. [Google Scholar] [CrossRef]
- Zambrano, O.A. Stacking fault energy maps of Fe-Mn-Al-C-Si steels: Effect of temperature, grain size, and variations in compositions. J. Eng. Mater. Technol. Trans. 2016, 138, 041010. [Google Scholar] [CrossRef]
- Jacob, R.; Raman Sankaranarayanan, S.; Kumaresh Babu, S.P. Recent advancements in manganese steels—A review. Mater. Today Proc. 2020, 27, 2852–2858. [Google Scholar] [CrossRef]
- Bouaziz, O.; Allain, S.; Scott, C.P.; Cugy, P.; Barbier, D. High manganese austenitic twinning induced plasticity steels: A review of the microstructure properties relationships. Curr. Opin. Solid State Mater. Sci. 2011, 15, 141–168. [Google Scholar] [CrossRef]
- De Cooman, B.C.; Estrin, Y.; Kim, S.K. Twinning-induced plasticity (TWIP) steels. Acta Mater. 2018, 142, 283–362. [Google Scholar] [CrossRef]
- Dieudonné, T.; Marchetti, L.; Wery, M.; Miserque, F.; Tabarant, M.; Chêne, J.; Allely, C.; Cugy, P.; Scott, C.P. Role of copper and aluminum on the corrosion behavior of austenitic Fe–Mn–C TWIP steels in aqueous solutions and the related hydrogen absorption. Corros. Sci. 2014, 83, 234–244. [Google Scholar] [CrossRef]
- Jiménez, J.A.; Caruana, G.; Adeva, P.; Frommeyer, G. Mechanical properties of new stainless steels based on the system Fe-30Mn-5A1- X Cr-0.5C. Steel Res. 2002, 73, 20–25. [Google Scholar] [CrossRef]
- Soulami, A.; Choi, K.S.; Shen, Y.F.; Liu, W.N.; Sun, X.; Khaleel, M.A. On deformation twinning in a 17.5% Mn–TWIP steel: A physically based phenomenological model. Mater. Sci. Eng. A 2011, 528, 1402–1408. [Google Scholar] [CrossRef]
- Sugimoto, K.; Kikuchi, R.; Hashimoto, S. Development of high strength low alloy TRIP-aided steels with annealed martensite matrix. Steel Res. 2002, 73, 253–258. [Google Scholar] [CrossRef]
- Allam, T.; Guo, X.; Sevsek, S.; Lipińska-Chwałek, M.; Hamada, A.; Ahmed, E.; Bleck, W. Development of a Cr-Ni-V-N medium manganese steel with balanced mechanical and corrosion properties. Metals 2019, 9, 705. [Google Scholar] [CrossRef] [Green Version]
- Kannan, M.B.; Raman, R.K.S.; Khoddam, S.; Liyanaarachchi, S. Corrosion behavior of twinning-induced plasticity (TWIP) steel. Mater. Corros. 2013, 64, 231–235. [Google Scholar] [CrossRef]
- Kannan, M.B.; Raman, R.K.S.; Khoddam, S. Comparative studies on the corrosion properties of a Fe–Mn–Al–Si steel and an interstitial-free steel. Corros. Sci. 2008, 50, 2879–2884. [Google Scholar] [CrossRef]
- Hamada, A.S.; Karjalainen, L.P. Nitric acid resistance of new type Fe-Mn-Al stainless steels. Can. Metall. Q. 2006, 45, 41–48. [Google Scholar] [CrossRef]
- Tuan, Y.H.; Wang, C.S.; Tsai, C.Y.; Chao, C.G.; Liu, T.F. Corrosion behaviors of austenitic Fe–30Mn–7Al–xCr–1C alloys in 3.5% NaCl solution. Mater. Chem. Phys. 2009, 114, 595–598. [Google Scholar] [CrossRef]
- Mejía Gómez, J.A.; Antonissen, J.; Palacio, C.A.; De Grave, E. Effects of Si as alloying element on corrosion resistance of weathering steel. Corros. Sci. 2012, 59, 198–203. [Google Scholar] [CrossRef]
- Rosalbino, F.; Carlini, R.; Parodi, R.; Zanicchi, G.; Scavino, G. Investigation of passivity and its breakdown on Fe3Al–Si and Fe3Al–Ge intermetallics in chloride-containing solution. Corros. Sci. 2014, 85, 394–400. [Google Scholar] [CrossRef]
- Chou, J.S.; Chao, C.G. Tensile properties of a DO3-containing Fe–Mn–Al–Si–C alloy at elevated temperatures. Scr. Metall. Mater. 1992, 26, 1417–1421. [Google Scholar] [CrossRef]
- Li, D.G.; Wang, J.D.; Chen, D.R.; Liang, P. Molybdenum addition enhancing the corrosion behaviors of 316 L stainless steel in the simulated cathodic environment of proton exchange membrane fuel cell. Int. J. Hydrog. Energy 2015, 40, 5947–5957. [Google Scholar] [CrossRef]
- Razavi, R.; Gholami, H.; Zirepour, G.; Zamani, D.; Saboktakin, M.; Monajati, H. Study corrosion of high-Mn steels with Mo in 3.5% NaCl solution. Int. Conf. Adv. Mater. Eng. 2011, 15, 36–40. [Google Scholar]
- Ha, H.Y.; Lee, T.H.; Bae, J.H.; Chun, D. Molybdenum effects on pitting corrosion resistance of FeCrMnMoNC austenitic stainless steels. Metals 2018, 8, 653. [Google Scholar] [CrossRef] [Green Version]
- Dong, Z.H.; Guo, X.P.; Zheng, J.X.; Xu, L.M. Investigation on inhibition of CrO42− and MoO42− ions on carbon steel pitting corrosion by electrochemical noise analysis. J. Appl. Electrochem. 2002, 32, 395–400. [Google Scholar] [CrossRef]
- Refaey, S.A.M.; Abd El Rehim, S.S.; Taha, F.; Saleh, M.B.; Ahmed, R.A. Inhibition of chloride localized corrosion of mild steel by PO43−, CrO42−, MoO42−, and NO2− anions. Appl. Surf. Sci. 2000, 158, 190–196. [Google Scholar] [CrossRef]
- Wan, H.; Cai, Y.; Song, D.; Chen, C. Effect of Cr/Mo carbides on corrosion behaviour of Fe–Mn–C twinning induced plasticity steel. Corros. Sci. 2020, 167, 108518. [Google Scholar] [CrossRef]
- Martin, U.; Ress, J.; Bosch, J.; Bastidas, D.M. Effect of Thermo-Mechanical Processing on the Corrosion Behavior of Fe–30Mn–5Al–0.5C TWIP Steel. Appl. Sci. 2020, 10, 9104. [Google Scholar] [CrossRef]
- Jabłońska, M.; Niewielski, G.; Kawalla, R. High manganese TWIP steel—Technological plasticity and selected properties. Solid State Phenom. 2013, 212, 87–90. [Google Scholar] [CrossRef]
- Wiewiórowska, S. The influence of strain rate and strain intensity on retained austenite content in structure of steel with TRIP effect. Solid State Phenom. 2010, 165, 216–220. [Google Scholar] [CrossRef]
- Bastidas, D.M.; Medina, S.F.; Ress, J.; Jiménez, J.A.; Bastidas, J.M. Revealing austenite stability in Fe–30Mn–5Al–0.5C twinning-induced plasticity steel using differential thermal analysis. Steel Res. Int. 2020, 91, 2000076. [Google Scholar] [CrossRef]
- Fajardo, S.; Llorente, I.; Jiménez, J.A.; Bastidas, J.M.; Bastidas, D.M. Effect of Mn additions on the corrosion behaviour of TWIP Fe-Mn-Al-Si austenitic steel in chloride solution. Corros. Sci. 2019, 154, 246–253. [Google Scholar] [CrossRef]
- Fajardo, S.; Llorente, I.; Jiménez, J.A.; Calderón, N.; Herrán-Medina, D.; Bastidas, J.M.; Ress, J.; Bastidas, D.M. Influence of chromium on the passivity of thermo-mechanically processed high-Mn TWIP steels. Appl. Surf. Sci. 2020, 513, 145852. [Google Scholar] [CrossRef]
- Monrrabal, G.; Jiménez, J.A.; Ress, J.; Fajardo, S.; Bastidas, J.M.; Llorente, I.; Bastidas, D.M. Corrosion behaviour of resistance-spot-welded high-Mn austenitic TWIP steel. Corros. Eng. Sci. Technol. 2020, 55, 1–10. [Google Scholar] [CrossRef]
- Dumay, A.; Chateau, J.P.; Allain, S.; Migot, S.; Bouaziz, O. Influence of addition elements on the stacking-fault energy and mechanical properties of an austenitic Fe–Mn–C steel. Mater. Sci. Eng. A 2008, 483–484, 184–187. [Google Scholar] [CrossRef]
- De Cooman, B.C.; Kwon, O.; Chin, K.-G. State-of-the-knowledge on TWIP steel. Mater. Sci. Technol. 2012, 28, 513–527. [Google Scholar] [CrossRef]
- Schramm, R.E.; Reed, R.P. Stacking fault energies of seven commercial austenitic stainless steels. Metall. Trans. A 1975, 6, 1345–1351. [Google Scholar] [CrossRef]
- Park, J.H.; Seo, H.S.; Kim, K.Y.; Kim, S.J. The effect of Cr on the electrochemical corrosion of high Mn steel in a sweet environment. J. Electrochem. Soc. 2016, 163, C791–C797. [Google Scholar] [CrossRef]
- Mújica Roncery, L.; Weber, S.; Theisen, W. Development of Mn-Cr-(C-N) corrosion resistant Twinning Induced Plasticity Steels: Thermodynamic and diffusion calculations, production, and characterization. Metall. Mater. Trans. A 2010, 41, 2471–2479. [Google Scholar] [CrossRef]
- Mazancová, E.; Mazanec, K. The stacking fault energy evaluation of the TWIP and TRIPLEX alloys. Kov. Mater. 2009, 47, 353–358. [Google Scholar]
- Grässel, O.; Krüger, L.; Frommeyer, G.; Meyer, L.W. High strength Fe–Mn–(Al, Si) TRIP/TWIP steels development—Properties —Application. Int. J. Plast. 2000, 16, 1391–1409. [Google Scholar] [CrossRef]
- Hamada, A.S.; Sahu, P.; Porter, D.A. Indentation property and corrosion resistance of electroless nickel–phosphorus coatings deposited on austenitic high-Mn TWIP steel. Appl. Surf. Sci. 2015, 356, 1–8. [Google Scholar] [CrossRef]
- Abdel-Gawad, S.A.; Osman, W.M.; Fekry, A.M. Characterization and corrosion behavior of anodized aluminum alloys for military industries applications in artificial seawater. Surf. Interfaces 2019, 14, 314–323. [Google Scholar] [CrossRef]
- ASTM International. G61-86, Standard Test Method for Conducting Cyclic Potentiodynamic Polarization Measurements for Localized Corrosion Susceptibility of Iron-, Nickel-, or Cobalt-Based Alloys; ASTM International: West Conshohocken, PA, USA, 2009. [Google Scholar]
- ASTM International. G106-89, Standard Practice for Verification of Algorithm and Equipment for Electrochemical Impedance Measurements; ASTM International: West Conshohocken, PA, USA, 2015. [Google Scholar]
- Bastidas, J.M.; Torres, C.L.; Cano, E.; Polo, J.L. Influence of molybdenum on passivation of polarised stainless steels in a chloride environment. Corros. Sci. 2002, 44, 625–633. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Zhu, X. Electrochemical polarization and passive film analysis of austenitic Fe–Mn–Al steels in aqueous solutions. Corros. Sci. 1999, 41, 1817–1833. [Google Scholar] [CrossRef]
- Lins, V.F.C.; Freitas, M.A.; e Silva, E.M.P. Corrosion resistance study of Fe–Mn–Al–C alloys using immersion and potentiostatic tests. Appl. Surf. Sci. 2005, 250, 124–134. [Google Scholar] [CrossRef]
- Pourbaix, M.; Deltombe, E.C.; Vanleugenhagle, M. Atlas of Electrochemical Equilibria in Aqueous Solutions; Elsevier: Oxford, UK, 1966. [Google Scholar]
- Guidelli, R.; Compton, R.G.; Feliu, J.M.; Gileadi, E.; Lipkowski, J.; Schmickler, W.; Trasatti, S. IUPAC technical report defining the transfer coefficient in electrochemistry: An assessment (IUPAC Technical Report). Pure Appl. Chem. 2014, 86, 245–258. [Google Scholar] [CrossRef] [Green Version]
- Movassagh-Alanagh, F.; Mahdavi, M. Improving wear and corrosion resistance of AISI 304 stainless steel by a multilayered nanocomposite Ti/TiN/TiSiN coating. Surf. Interfaces 2020, 18, 100428. [Google Scholar] [CrossRef]
- Martin, U.; Ress, J.; Bosch, J.; Bastidas, D.M. Stress corrosion cracking mechanism of AISI 316LN stainless steel rebars in chloride contaminated concrete pore solution using the slow strain rate technique. Electrochim. Acta 2020, 335, 135565. [Google Scholar] [CrossRef]
- Bastidas, D.M. Interpretation of impedance data for porous electrodes and diffusion processes. Corrosion 2007, 63, 515–521. [Google Scholar] [CrossRef]
- Bastidas, J.M.; Polo, J.; Torres, C.; Cano, E. A study on the stability of AISI 316L stainless steel pitting corrosion through its transfer function. Corros. Sci. 2001, 43, 269–281. [Google Scholar] [CrossRef] [Green Version]
- Brug, G.J.; van den Eeden, A.L.G.; Sluyters-Rehbach, M.; Sluyters, J.H. The analysis of electrode impedances complicated by the presence of a constant phase element. J. Electroanal. Chem. Interfacial Electrochem. 1984, 176, 275–295. [Google Scholar] [CrossRef]
- Truc, T.A.; Thuy, T.T.; Oanh, V.K.; Hang, T.T.X.; Nguyen, A.S.; Caussé, N.; Pébère, N. 8-hydroxyquinoline-modified clay incorporated in an epoxy coating for the corrosion protection of carbon steel. Surf. Interfaces 2019, 14, 26–33. [Google Scholar] [CrossRef] [Green Version]
- Mohazzab, B.F.; Jaleh, B.; Fattah-alhosseini, A.; Mahmoudi, F.; Momeni, A. Laser surface treatment of pure titanium: Microstructural analysis, wear properties, and corrosion behavior of titanium carbide coatings in Hank’s physiological solution. Surf. Interfaces 2020, 20, 100597. [Google Scholar] [CrossRef]
Sample | Mn | Al | Cr | Si | Mo | C | SFE (mJ m−2) |
---|---|---|---|---|---|---|---|
TWIP1 | 22.60 | 6.30 | 3.10 | − | − | 0.68 | 62.2 |
TWIP2 | 28.00 | 5.20 | 5.10 | 2.80 | − | 0.95 | 55.1 |
MBIP | 30.00 | 8.50 | 3.20 | − | 1.10 | 1.00 | 76.2 |
Specimen | Ecorr (VSCE) | icorr (A cm−2) | ipass (A cm−2) | βa (mV/dec) | βc (mV/dec) | B (mV) | Rp (Ω cm2) | i0,ORR (A cm−2) | αa | αc |
---|---|---|---|---|---|---|---|---|---|---|
3.5 wt.% NaCl | ||||||||||
TWIP1 | −0.41 | 2.63 × 10−4 | 4.05 × 10−3 | 80.68 | 136.44 | 22.04 | 179.36 | 4.32 × 10−8 | 0.321 | −0.189 |
TWIP2 | −0.38 | 5.41 × 10−5 | 1.22 × 10−3 | 204.92 | 277.40 | 51.24 | 947.51 | 9.35 × 10−10 | 0.126 | −0.093 |
MBIP | −0.32 | 4.34 × 10−4 | 8.46 × 10−4 | 190.37 | 363.30 | 54.31 | 125.03 | 1.52 × 10−8 | 0.135 | −0.071 |
10 wt.% NaOH | ||||||||||
TWIP1 | −0.68 | 1.48 × 10−4 | 9.94 × 10−3 | 107.27 | 121.45 | 24.77 | 167.22 | 3.82 × 10−7 | 0.240 | –0.212 |
TWIP2 | −0.44 | 2.65 × 10−5 | 6.49 × 10−3 | 207.90 | 592.99 | 66.93 | 2525.51 | 5.86 × 10−10 | 0.124 | −0.043 |
MBIP | −0.41 | 1.27 × 10−4 | 9.41 × 10−3 | 58.26 | 71.05 | 13.92 | 109.60 | 6.06 × 10−7 | 0.443 | −0.362 |
Specimen | Rs Ω cm2 | Rfilm Ω cm2 | Yfilm µS cm−2 sn1 | n1 | Rct Ω cm2 | Ydl µS cm−2 sn2 | n2 | χ2 * |
---|---|---|---|---|---|---|---|---|
3.5 wt.% NaCl | ||||||||
TWIP1 | 28.1 | 607.7 | 0.6 | 0.596 | 2220 | 0.02 | 0.638 | 1.97 × 10−3 |
TWIP2 | 27.3 | 142.5 | 6.2 | 0.588 | 21593 | 0.01 | 0.841 | 6.11 × 10−3 |
MBIP | 26.0 | 206.9 | 21.6 | 0.492 | 952 | 0.01 | 0.770 | 2.91 × 10−3 |
10 wt.% NaOH | ||||||||
TWIP1 | 32.1 | 215.3 | 28.7 | 0.466 | 3324 | 0.05 | 0.711 | 4.41 × 10−3 |
TWIP2 | 31.2 | 136.6 | 5.4 | 0.607 | 11310 | 0.01 | 0.847 | 6.48 × 10−3 |
MBIP | 30.1 | 295.1 | 42.4 | 0.536 | 555 | 0.03 | 0.718 | 8.69 × 10−3 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bosch, J.; Martin, U.; Aperador, W.; Bastidas, J.M.; Ress, J.; Bastidas, D.M. Corrosion Behavior of High-Mn Austenitic Fe–Mn–Al–Cr–C Steels in NaCl and NaOH Solutions. Materials 2021, 14, 425. https://doi.org/10.3390/ma14020425
Bosch J, Martin U, Aperador W, Bastidas JM, Ress J, Bastidas DM. Corrosion Behavior of High-Mn Austenitic Fe–Mn–Al–Cr–C Steels in NaCl and NaOH Solutions. Materials. 2021; 14(2):425. https://doi.org/10.3390/ma14020425
Chicago/Turabian StyleBosch, Juan, Ulises Martin, Willian Aperador, José M. Bastidas, Jacob Ress, and David M. Bastidas. 2021. "Corrosion Behavior of High-Mn Austenitic Fe–Mn–Al–Cr–C Steels in NaCl and NaOH Solutions" Materials 14, no. 2: 425. https://doi.org/10.3390/ma14020425
APA StyleBosch, J., Martin, U., Aperador, W., Bastidas, J. M., Ress, J., & Bastidas, D. M. (2021). Corrosion Behavior of High-Mn Austenitic Fe–Mn–Al–Cr–C Steels in NaCl and NaOH Solutions. Materials, 14(2), 425. https://doi.org/10.3390/ma14020425