Selectivity of Tungsten Oxide Synthesized by Sol-Gel Method Towards Some Volatile Organic Compounds and Gaseous Materials in a Broad Range of Temperatures
Abstract
:1. Introduction
2. Experimental
2.1. Chemicals
2.2. The Formation of Tungsten Oxide Based Gas- and VOC-Sensitive Layers on a Glass Substrate
2.3. Deposition of Platinum Contacts Over Gas- and VOC-Sensitive Tungsten Oxide Layer
2.4. Characterization of Oxide Layers
2.4.1. Characterization by X-Ray Diffraction, Scanning Electron Microscopy
2.4.2. Gas and VOCs Sensing Measurements
- (i)
- Background current (baseline) was achieved in the air (Figure 3, first phase);
- (ii)
- Then, gas was quickly exchanged in the cell and short term 1–5 s (dependent on gas or VOC and applied temperature), amperometric signal decrease was observed, this short-lasting second phase, which was induced by a very fast exchange of analyte-free air by air-based aliquot containing analyte (gas or VOC), this part was not accounted into the analytical signal;
- (iii)
- Current increase rate (ΔI′X, T) towards particular gas or VOC (here indexed as ‘X’) at particular temperature (here indexed as ‘T’); ΔI′X, T was calculated as a change of the current within one second of measurement between points A and B, which are indicated in Figure 3; the calculation of current increase (ΔI′X, T) between point A (Figure 3, point A), which corresponds to the point when amperometric signal is passing the baseline value after the short-lasting second phase and point B (Figure 3, point B), which corresponds to the point registered during 1 s of the registration of point A.
3. Results and Discussion
4. Conclusions and Future Trends
Author Contributions
Funding
Conflicts of Interest
References
- Mane, A.T.; Kulkarni, S.B.; Navale, S.T.; Ghanwat, A.A.; Shinde, N.M.; Kim, J.; Patil, V.B. NO2 Sensing Properties of Nanostructured Tungsten Oxide Thin Films. Ceram. Int. 2014, 40, 16495–16502. [Google Scholar] [CrossRef]
- Li, J.; Liu, X.; Cui, J.; Sun, J. Hydrothermal Synthesis of Self-Assembled Hierarchical Tungsten Oxides Hollow Spheres and Their Gas Sensing Properties. Appl. Mater. Interfaces 2015, 7, 10108–10114. [Google Scholar] [CrossRef] [PubMed]
- Hoel, A.; Reyes, L.F. Nanomaterials for Environmental Applications: Novel WO3-Based Gas Sensors Made by Advanced Gas Deposition. Curr. Appl. Phys. 2004, 4, 547–553. [Google Scholar] [CrossRef]
- Yao, Y.; Yin, M.; Yan, J.; Frank, S. P-Type Sub-Tungsten-Oxide Based Urchin-like Nanostructure for Superior Room Temperature Alcohol Sensor. Appl. Surf. Sci. 2018, 441, 277–284. [Google Scholar] [CrossRef]
- Ahsan, M.; Tesfamichael, T.; Ionescu, M.; Bell, J.; Motta, N. Sensors and Actuators B: Chemical Low Temperature CO Sensitive Nanostructured WO3 Thin Films Doped with Fe. Sens. Actuators B. Chem. 2012, 162, 14–21. [Google Scholar] [CrossRef] [Green Version]
- Sun, J.; Shu, X.; Tian, Y.; Tong, Z.; Bai, S.; Luo, R.; Li, D.; Chen, A. Chemical Preparation of Polypyrrole @ WO3 Hybrids with P-N Heterojunction and Sensing Performance to Triethylamine at Room Temperature. Sens. Actuators B. Chem. 2017, 238, 510–517. [Google Scholar] [CrossRef]
- Zheng, M.; Tang, H.; Hu, Q.; Zheng, S.; Li, L.; Xu, J.; Pang, H. Tungsten-Based Materials for Lithium-Ion Batteries. Adv. Funtional Mater. 2018, 28, 1707500. [Google Scholar] [CrossRef]
- Huang, Z.F.; Song, J.; Pan, L.; Zhang, X.; Wang, L.; Zou, J.J. Tungsten Oxides for Photocatalysis, Electrochemistry, and Phototherapy. Adv. Mater. 2015, 27, 5309–5327. [Google Scholar] [CrossRef]
- Sivakarthik, P.; Thangaraj, V.; Parthibavarman, M. A Facile and One-Pot Synthesis of Pure and Transition Metals (M = Co & Ni) Doped WO3 Nanoparticles for Enhanced Photocatalytic Performance. J. Mater. Sci. Mater. Electron. 2017, 28, 5990–5996. [Google Scholar]
- Chandra, N.; Nath, D.; Yo, S.; Won, H.; Lee, J.; Park, H. Nano Energy Stand-Alone Photoconversion of Carbon Dioxide on Copper Oxide Wire Arrays Powered by Tungsten Trioxide/Dye-Sensitized Solar Cell Dual Absorbers. Nano Energy 2016, 25, 51–59. [Google Scholar]
- Zheng, G.; Wang, J.; Liu, H.; Murugadoss, V. Tungsten Oxide Nanostructures and Nanocomposites for Photoelectrochemical Water Splitting. Nanoscale 2019, 11, 18968–18994. [Google Scholar] [CrossRef] [PubMed]
- Gao, W.; Ling, Y.; Liu, X.; Sun, J. Simple Point Contact WO3 Sensor for NO2 Sensing and Relevant Impedance Analysis. Int. J. Miner. Metall. Mater. 2012, 19, 1142–1148. [Google Scholar] [CrossRef]
- Lemire, A.; Lollman, D.B.B.; Al Mohammad, A.; Gillet, E.; Aguir, K. Reactive R.F. Magnetron Sputtering Deposition of WO3 Thin Films. Sens. Actuators B Chem. 2002, 84, 43–48. [Google Scholar] [CrossRef]
- Hu, L.; Hu, P.; Chen, Y.; Lin, Z.; Qiu, C. Synthesis and Gas-Sensing Property of Highly Self-Assembled Tungsten Oxide Nanosheets. Front. Chem. 2018, 6, 4–7. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nakakura, S.; Farhan, A.; Hirano, T.; Tanabe, E. Direct Synthesis of Highly Crystalline Single-Phase Hexagonal Tungsten Oxide Nanorods by Spray Pyrolysis. Adv. Powder Technol. 2019, 30, 6–12. [Google Scholar] [CrossRef]
- Poongodi, S.; Suresh, P.; Mangalaraj, D.; Ponpandian, N.; Meena, P.; Masuda, Y.; Lee, C. Electrodeposition of WO3 Nanostructured Thin Films for Electrochromic and H2S Gas Sensor Applications. J. Alloys Compd. 2017, 719, 71–81. [Google Scholar] [CrossRef]
- Yan, D.; Li, S.; Liu, S.; Tan, M.; Cao, M. Electrodeposited Tungsten Oxide Films onto Porous Silicon for NO2 Detection at Room Temperature. J. Alloys Compd. 2018, 735, 718–727. [Google Scholar] [CrossRef]
- Yamaguchi, Y.; Imamura, S.; Ito, S.; Nishio, K.; Fujimoto, K. Sensors and Actuators B: Chemical Influence of Oxygen Gas Concentration on Hydrogen Sensing of Pt/WO3 Thin Film Prepared by Sol–Gel Process. Sens. Actuators B. Chem. 2015, 216, 394–401. [Google Scholar] [CrossRef]
- Chai, Y.; Ha, F.Y.; Yam, F.K.; Hassan, Z. Fabrication of Tungsten Oxide Nanostructure by Sol-Gel Method. Procedia Chem. 2016, 19, 113–118. [Google Scholar] [CrossRef] [Green Version]
- Zhou, D.; Che, B.; Kong, J.; Lu, X. A Nanocrystalline Tungsten Oxide Electrochromic via a Complexation-Assisted Sol–Gel Method. J. Mater. Chem. C 2016, 4, 8041. [Google Scholar] [CrossRef]
- Au, B.W.; Chan, K.; Knipp, D. Effect of Film Thickness on Electrochromic Performance of Sol-Gel Deposited Tungsten Oxide (WO3). Opt. Mater. 2019, 94, 387–392. [Google Scholar]
- Li, Y.; Zhou, X.; Luo, W.; Cheng, X.; Zhu, Y.; El-Toni, A.M. Pore Engineering of Mesoporous Tungsten Oxides for Ultrasensitive Gas Sensing. Adv. Mater. Interfaces 2019, 6, 1801269. [Google Scholar] [CrossRef]
- Harale, N.S.; Dalavi, D.S.; Tarwal, N.L.; Vanalakar, S.A.; Rao, V.K. Single-Step Hydrothermally Grown Nanosheet- Assembled Tungsten Oxide Thin Films for Sensitive and Selective NO2 Gas Detection. J. Mater. Sci. 2018, 53, 6094–6105. [Google Scholar] [CrossRef]
- Gao, P.; Ji, H.; Zhou, Y.; Li, X. Selective Acetone Gas Sensors Using Porous WO3-Cr2O3 Thin Films Prepared by Sol-Gel Method. Thin Solid Films 2012, 520, 3100–3106. [Google Scholar] [CrossRef]
- Navarrete, E. AACVD and Gas Sensing Properties of Nickel Oxide Nanoparticle Decorated Tungsten Oxide. J. Mater. Chem. C 2018, 6, 5181–5192. [Google Scholar] [CrossRef]
- Urasinska-Wojcik, B.; Vincent, T.A.; Chowdhury, M.F.; Gardner, J.W. Sensors and Actuators B: Chemical Ultrasensitive WO3 Gas Sensors for NO2 Detection in Air and Low Oxygen Environment. Sens. Actuators B. Chem. 2017, 239, 1051–1059. [Google Scholar] [CrossRef]
- Khadayate, R.S.; Sali, J.V.; Patil, P.P. Acetone Vapor Sensing Properties of Screen Printed WO3 Thick Films. Talanta 2007, 72, 1077–1081. [Google Scholar] [CrossRef]
- Horsfall, L.A.; Pugh, D.C.; Blackman, S.; Parkin, I.P. An Array of WO3 and CTO Heterojunction Semiconducting Metal Oxide Gas Sensors Used as a Tool for Explosive Detection. J. Mater. Chem. A 2017, 5, 2172–2179. [Google Scholar] [CrossRef]
- Yuan, Z.; Zhang, J.; Meng, F.; Li, Y.; Li, R.; Chang, Y.; Zhao, J.; Han, E.; Wang, S. Highly Sensitive Ammonia Sensors Based on Ag-Decorated WO3 Nanorods. IEEE Trans. Nanotechnol. 2018, 17, 1252–1258. [Google Scholar] [CrossRef]
- Kim, Y.S. Thermal Treatment Effects on the Material and Gas-Sensing Properties of Room-Temperature Tungsten Oxide Nanorod Sensors. Sens. Actuators B Chem. 2009, 137, 297–304. [Google Scholar] [CrossRef]
- Damian, M.A. Characterization and Butanol Y Ethanol Sensing Properties of Mixed Tungsten Oxide and Copper Tungstate Films Obtained by Spray–Sol–Gel. Thin Solid Films 2003, 444, 104–110. [Google Scholar] [CrossRef]
- Zeng, Q.; Li, J.; Bai, J.; Li, X.; Xia, L.; Zhou, B. Preparation of Vertically Aligned WO3 Nanoplate Array Films Based on Peroxotungstate Reduction Reaction and Their Excellent Photoelectrocatalytic Performance. Appl. Catal. B Environ. 2017, 202, 388–396. [Google Scholar] [CrossRef]
- Xie, G.; Yu, J.; Chen, X.; Jiang, Y. Gas Sensing Characteristics of WO3 Vacuum Deposited Thin Films. Sens. Actuators B. 2007, 123, 909–914. [Google Scholar] [CrossRef]
- Jayatissa, A.H.; Cheng, S.; Gupta, T. Annealing Effect on the Formation of Nanocrystals in Thermally Evaporated Tungsten Oxide Thin Films. Mater. Sci. Eng. B 2004, 109, 269–275. [Google Scholar] [CrossRef]
- Zheng, H.; Ou, J.Z.; Strano, M.S.; Kaner, R.B.; Mitchell, A.; Kalantar-Zadeh, K. Nanostructured Tungsten Oxide - Properties, Synthesis, and Applications. Adv. Funct. Mater. 2011, 21, 2175–2196. [Google Scholar] [CrossRef]
- Ahmadi, M.; Sahoo, S. WO3 Nano-Ribbons: Their Phase Transformation from Tungstite (WO3xH2O) to Tungsten Oxide (WO3). J. Mater. Sci. 2014, 49, 5899–5909. [Google Scholar] [CrossRef]
- Soliman, H.M.A.; Kashyout, A.B.; El Nouby, M.S.; Abosehly, A.M. Effect of Hydrogen Peroxide and Oxalic Acid on Electrochromic Nanostructured Tungsten Oxide Thin Films. Int. J. Electrochem. Sci. 2012, 7, 258–271. [Google Scholar]
- Deepa, M.; Saxena, T.K.; Singh, D.P.; Sood, K.N.; Agnihotry, S.A. Spin Coated versus Dip Coated Electrochromic Tungsten Oxide Films: Structure, Morphology, Optical and Electrochemical Properties. Electrochim. Acta 2006, 51, 1974–1989. [Google Scholar] [CrossRef]
- Deepa, M.; Srivastava, A.K.; Agnihotry, S.A. Influence of Annealing on Electrochromic Performance of Template Assisted, Electrochemically Grown, Nanostructured Assembly of Tungsten Oxide. Acta Mater. 2006, 54, 4583–4595. [Google Scholar] [CrossRef]
- Van Tong, P.; Duc, N.; Van Quang, V.; Van Duy, N.; Van Hieu, N. Diameter Controlled Synthesis of Tungsten Oxide Nanorod Bundles for Highly Sensitive NO2 Gas Sensors. Sens. Actuators B. Chem. 2013, 183, 372–380. [Google Scholar] [CrossRef]
- Liu, Z.; Miyauchi, M.; Yamazaki, T.; Shen, Y. Facile Synthesis and NO2 Gas Sensing of Tungsten Oxide Nanorods Assembled Microspheres. Sens. Actuators B Chem. 2009, 140, 514–519. [Google Scholar] [CrossRef]
- Amano, F.; Ohtani, B. Fabrication and Photoelectrochemical Property of Tungsten (VI) Oxide Films with a Flake-Wall Structure W. Chem. Comun. 2010, 1, 2769–2771. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aguir, K.; Lemire, C.; Lollman, D.B.B. Electrical Properties of Reactively Sputtered WO3 Thin Films as Ozone Gas Electrical Properties of Reactively Sputtered WO3 Thin Films as Ozone Gas Sensor. Sens. Actuators 2002, 84, 3–5. [Google Scholar] [CrossRef]
- Lu, R.; Zhong, X.; Shang, S.; Wang, S.; Tang, M. Effects of Sintering Temperature on Sensing Properties of WO3 and Ag-WO3 Electrode for NO2 Sensor. R. Soc. Open Sci. 2018, 5, 171691. [Google Scholar] [CrossRef] [Green Version]
- Vuong, X.; Lan, T.; Luu, A.; Lam, H.; Tu, C. Synergistic Enhancement of Ammonia Gas-Sensing Properties at Low Temperature by Compositing Carbon Nanotubes with Tungsten Oxide Nanobricks. Vacuum 2019, 168, 108861. [Google Scholar]
- Labidi, A.; Lambert-Mauriat, C.; Jacolin, C.; Bendahan, M.; Maaref, M.; Aguir, K. Dc and Ac Characterizations of WO3 Sensors under Ethanol Vapors. Sens. Actuators B 2006, 119, 374–379. [Google Scholar] [CrossRef]
- Barsan, N.; Weimar, U.D.O. Conduction Model of Metal Oxide Gas Sensors. J. Electroceram. 2001, 7, 143–167. [Google Scholar] [CrossRef]
- Lantto, V.; Romppainen, P. Electrical Studies on the Reactions of CO with Different Oxygen Species on SNO2 Surfaces. Surf. Sci. 1987, 192, 243–264. [Google Scholar] [CrossRef]
- Hellegouarc, F.; Are, F.; Planade, R.; Amouroux, J. PECVD Prepared SNO2 Thin Films for Ethanol Sensors. Sens. Actuators B 2001, 73, 27–34. [Google Scholar] [CrossRef]
- Yu-de, W.; Zhan-xian, C.; Yan-feng, L.; Zhen-lai, Z.; Xing-hui, W. Electrical and Gas-Sensing Properties of WO3 Semiconductor Material. Solid State Electron. 2001, 45, 639–644. [Google Scholar] [CrossRef]
- Chen, D.; Hou, X.; Li, T.; Yin, L.; Fan, B.; Wang, H.; Li, X.; Xu, H.; Lu, H.; Zhang, R.; et al. Chemical Effects of Morphologies on Acetone-Sensing Properties of Tungsten Trioxide Nanocrystals. Sens. Actuators B. Chem. 2011, 153, 373–381. [Google Scholar] [CrossRef]
- Shi, J.; Hu, G.; Sun, Y.; Geng, M.; Wu, J.; Liu, Y.; Ge, M.; Tao, J. Chemical WO3 Nanocrystals: Synthesis and Application in Highly Sensitive Detection of Acetone. Sens. Actuators B. Chem. 2011, 156, 820–824. [Google Scholar] [CrossRef]
- Minh, N.; Kim, D.; Kim, H. Surface Gas Sensing Kinetics of a WO3 Nanowire Sensor: Part 2—Reducing Gases. Sens. Actuators B Chem. 2016, 224, 425–433. [Google Scholar]
- Li, Y.; Luo, W.; Qin, N.; Dong, J.; Wei, J.; Li, W.; Feng, S.; Chen, J.; Xu, J.; Elzatahry, A.A.; et al. Highly Ordered Mesoporous Tungsten Oxides with a Large Pore Size and Crystalline Framework for H2S Sensing. Angew. Commun. 2014, 53, 9035–9040. [Google Scholar] [CrossRef]
- Ponzoni, A.; Comini, E.; Sberveglieri, G.; Zhou, J.; Deng, S.Z.; Xu, N.S.; Wang, Z.L. Ultrasensitive and Highly Selective Gas Sensors Using Three-Dimensional Tungsten Oxide Nanowire Networks. Appl. Phys. Lett. 2006, 88, 203101. [Google Scholar] [CrossRef]
- Rai, P.; Khan, R.; Raj, S.; Majhi, S.M.; Park, K.-K.; Yu, Y.-T.; Lee, I.-H.; Sekhar, P.K. Au@Cu2O Core–shell Nanoparticles as Chemiresistors for Gas Sensor Applications: Effect of Potential Barrier Modulation on the Sensing Performance. Nanoscale 2014, 6, 581–588. [Google Scholar] [CrossRef]
- Park, S.; An, S.; Mun, Y.; Lee, C. UV-Enhanced NO2 Gas Sensing Properties of SNO2-Core/ZnO-Shell Nanowires at Room Temperature. Appl. Mater. Interfaces 2013, 5, 4285–4292. [Google Scholar] [CrossRef]
- Kulkarni, S.B.; Navale, Y.H.; Navale, S.T.; Stadler, F.J.; Ramgir, N.S.; Patil, V.B. Chemical Hybrid Polyaniline-WO3 Flexible Sensor: A Room Temperature Competence towards NH3 Gas. Sens. Actuators B. Chem. 2019, 288, 279–288. [Google Scholar] [CrossRef]
- Wang, Z.-G.; Zhang, M.-R.; Peng, H.-D.; Jiang, Q.-M.; Hou, F.; Zhong-Li, Z.; Pan, G.-B. Electrodeposition of Tungsten Oxide for High Sensitive Acetone Detection at Room Temperature. Chem. Lett. 2018, 47, 518–519. [Google Scholar] [CrossRef]
- Zhou, H.; Shi, Y.; Wang, L.; Zhang, H.; Zhao, C.; Hagfeldt, A.; Ma, T. Notable Catalytic Activity of Oxygen-Vacancy-Rich WO2.72 Nanorod Bundles as Counter Electrodes for Dye-Sensitized Solar Cells. Chem. Comun. 2013, 49, 7626–7628. [Google Scholar] [CrossRef]
- Sekhar, C.; Mahendra, R.; Joag, D.S. Low Threshold Field Electron Emission from Solvothermally Synthesized WO2.72 Nanowires. Appl. Phys. A 2010, 94, 751–756. [Google Scholar]
- Liu, X.; Song, M.; Wang, S.; He, Y. Structure and Fi Eld-Emission Properties of W/WO2.72 Heterostructures Fabricated by Vapor Deposition. Phys. E Low Dimens. Syst. Nanostruct. 2013, 53, 260–265. [Google Scholar] [CrossRef]
- Shinde, D.R.; Chavan, P.G.; Sen, S.; Joag, D.S.; More, M.A.; Gadkari, S.C.; Gupta, S.K. Enhanced Field-Emission from SNO2: WO2.72 Nanowire Heterostructures. ACS Appl. Mater. Interfaces 2011, 3, 4730–4735. [Google Scholar] [CrossRef] [PubMed]
- Patil, V.B.; Adhyapak, P.V.; Patil, P.S.; Suryavanshi, S.S.; Mulla, I.S. Hydrothermally Synthesized Tungsten Trioxide Nanorods as NO2 Gas Sensors. Ceram. Int. 2015, 41, 3845–3852. [Google Scholar] [CrossRef]
- Yoon, S.; Park, H.; Kang, C.; Jang, H.W. Extremely Sensitive and Selective NO Probe Based on Villi-like WO3 Nanostructures for Application to Exhaled Breath Analyzers. ACS Appl. Mater. Interfaces 2013, 5, 10591–10596. [Google Scholar]
- Siciliano, T.; Tepore, A.; Micocci, G.; Genga, A.; Siciliano, M.; Filippo, E. Transition from N- to P-Type Electrical Conductivity Induced by Ethanol Adsorption on α-Tellurium Dioxide Nanowires. Sens. Actuators B Chem. 2009, 138, 207–213. [Google Scholar] [CrossRef]
- Gurlo, A.; Barsan, N.; Oprea, A.; Sahm, M.; Weimar, U. An N- to P-Type Conductivity Transition Induced by Oxygen Adsorption on α-Fe2O3. Appl. Phys. Lett. 2004, 85, 2280. [Google Scholar] [CrossRef]
- Zubair, N.; Akhtar, K. High Performance Room Temperature Gas Sensor Based on Novel Morphology of Zinc Oxide Nanostructures. Trans. Nonferrous Met. Soc. China 2019, 29, 143–156. [Google Scholar] [CrossRef]
- Beniwal, A. Sol–Gel Spin Coating Assisted Room Temperature Operated Nanostructured ZnO Ethanol Sensor with Behavior Transformation. J. Sol-Gel Sci. Technol. 2018, 88, 322–333. [Google Scholar] [CrossRef]
- Joshi, N.; Silva, L.F.; Shimizu, F.M.; Mastelaro, V.R.; Peko, J.M.; Lin, L. UV-Assisted Chemiresistors Made with Gold-Modified ZnO Nanorods to Detect Ozone Gas at Room Temperature. Microchim. Acta 2019, 186, 418. [Google Scholar] [CrossRef]
- Kumar, R.; Kumar, G.; Umar, A. Zinc Oxide Nanostructures for NO2 Gas–Sensor Applications: A review. Nano Micro Lett. 2015, 7, 97–120. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Song, Y.; Chen, F.; Zhang, Y.; Zhang, S.; Liu, F.; Sun, P.; Yan, X.; Lu, G. Fabrication of Highly Sensitive and Selective Room-Temperature Nitrogen Dioxide Sensors Based on the ZnO Nano Fl Owers. Sens. Actuators B. Chem. 2019, 287, 191–198. [Google Scholar] [CrossRef]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ramanavičius, S.; Petrulevičienė, M.; Juodkazytė, J.; Grigucevičienė, A.; Ramanavičius, A. Selectivity of Tungsten Oxide Synthesized by Sol-Gel Method Towards Some Volatile Organic Compounds and Gaseous Materials in a Broad Range of Temperatures. Materials 2020, 13, 523. https://doi.org/10.3390/ma13030523
Ramanavičius S, Petrulevičienė M, Juodkazytė J, Grigucevičienė A, Ramanavičius A. Selectivity of Tungsten Oxide Synthesized by Sol-Gel Method Towards Some Volatile Organic Compounds and Gaseous Materials in a Broad Range of Temperatures. Materials. 2020; 13(3):523. https://doi.org/10.3390/ma13030523
Chicago/Turabian StyleRamanavičius, Simonas, Milda Petrulevičienė, Jurga Juodkazytė, Asta Grigucevičienė, and Arūnas Ramanavičius. 2020. "Selectivity of Tungsten Oxide Synthesized by Sol-Gel Method Towards Some Volatile Organic Compounds and Gaseous Materials in a Broad Range of Temperatures" Materials 13, no. 3: 523. https://doi.org/10.3390/ma13030523
APA StyleRamanavičius, S., Petrulevičienė, M., Juodkazytė, J., Grigucevičienė, A., & Ramanavičius, A. (2020). Selectivity of Tungsten Oxide Synthesized by Sol-Gel Method Towards Some Volatile Organic Compounds and Gaseous Materials in a Broad Range of Temperatures. Materials, 13(3), 523. https://doi.org/10.3390/ma13030523