Material Design Methodology for Optimized Wear-Resistant Thermoplastic–Matrix Composites Based on Polyetheretherketone and Polyphenylene Sulfide
Abstract
:1. Introduction
- I.
- Simulation problems: Operational properties of the materials are governed by their chemical composition, volume distribution of phases and their characteristics, type of interface interaction, etc. The listed properties are a set of control parameters determined experimentally. At present, various numerical methods are often used to predict them due to development of computer technologies that enable to solve large systems of equations [5,6,7,8]. These methods are based on variational principles and subsequent averaging of obtained values over a representative volume.
- II.
- Design issues: They are inverse simulation problems. When solving them, it is necessary to determine a set of control parameters that provides the material with the specified properties formulated as unilateral (“no more” or “no less”) or bilateral limits (“from and to” or “plus or minus value”).
2. Formulation of the Problem
3. Materials and Methods
4. Results and Discussion
4.1. Design of PEEK-Based Wear-Resistant Composites
4.2. Design of PPS-Based Wear-Resistant Composites
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Markov, K.Z. Elementary Micromechanics of Heterogeneous Media. In Heterogeneous Media, Modeling and Simulation in Science; Markov, K., Preziosi, L., Eds.; Engineering and Technology, Birkhäuser: Boston, MA, USA, 2000. [Google Scholar]
- Qin, Q.H.; Yang, Q.S. Macro-Micro Theory on Multifield Coupling Behavior of Heterogeneous Materials; Springer: Berlin/Heidelberg, Germany, 2009; ISBN 978-3-540-78258-2. [Google Scholar]
- Wang, M.; Pan, N. Predictions of effective physical properties of complex multiphase materials. Mater. Sci. Eng. R Rep. 2008, 63, 1–30. [Google Scholar] [CrossRef]
- Böhm, H.J. A Short Introduction to Basic Aspects of Continuum Micromechanics; ILSB Report/ILSB-Arbeitsbericht 206 (supersedes CDL–FMD Report 3–1998); ILSB Vienna University of Technology: Vienna, Austria, 2008. [Google Scholar]
- Garboczi, E.J.; Berryman, J.G. Elastic moduli of a material containing composite inclusions: Effective medium theory and finite element computations. Mech. Mater. 2001, 33, 455–470. [Google Scholar] [CrossRef]
- Yang, Q.S.; Qin, Q.H. Modelling the effective elasto-plastic properties of unidirectional composites reinforced by fibre bundles under transverse tension and shear loading. Mater. Sci. Eng. A 2003, 344, 140–145. [Google Scholar] [CrossRef]
- Würkner, M.; Berger, H.; Gabbert, U. On numerical evaluation of effective material properties for composite structures with rhombic fiber arrangements. Int. J. Eng. Sci. 2011, 49, 322–332. [Google Scholar] [CrossRef]
- Mancarella, F.; Style, R.W.; Wettlaufer, J.S. Surface tension and the Mori–Tanaka theory of non-dilute soft composite solids. Proc. R. Soc. A 2016, 472, 1–9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, J.; Wang, J.; Lin, J.; Guo, Q.; Chen, K.; Ma, L. Multiobjective optimization of injection molding process parameters based on Opt LHD, EBFNN, and MOPSO. Int. J. Adv. Manuf. Technol. 2015, 85, 2857–2872. [Google Scholar] [CrossRef]
- McDowell, D.L.; Backman, D. Simulation-Assisted Design and Accelerated Insertion of Materials. In Computational Methods for Microstructure-Property Relationships; Somnath, G., Dennis, D., Eds.; Springer: New York, NY, USA, 2011; pp. 617–647. ISBN 978-1-4419-0642-7. [Google Scholar]
- Mayda, M. An Efficient Simulation-Based Search Method for Reliability-Based Robust Design Optimization of Mechanical Components. Mechanics 2017, 23, 696–702. [Google Scholar] [CrossRef] [Green Version]
- Raj, R.A.; Anand, M.D. Modeling And Prediction of Mechanical Strength in Electron Beam Welded Dissimilar Metal Joints of Stainless Steel 304 and Copper Using Grey Relation Analysis. Int. J. Eng. Technol. 2018, 7, 198–201. [Google Scholar] [CrossRef]
- Ibrahim, M.H.I.; Muhamad, N.; Sulong, A.B.; Jamaludin, K.R.; Nor, N.H.M.; Ahmad, S.; Zakaria, H. Parameter Optimization towards Highest Micro MIM Density by Using Taguchi Method. Key Eng. Mater. 2010, 443, 705–710. [Google Scholar] [CrossRef]
- Jou, Y.T.; Lin, W.T.; Lee, W.C.; Yeh, T.M. Integrating the Taguchi Method and Response Surface Methodology for Process Parameter Optimization of the Injection Molding. Appl. Math. Inform. Sci. 2014, 8, 1277–1285. [Google Scholar] [CrossRef] [Green Version]
- Bochkareva, S.A.; Grishaeva, N.Y.; Lyukshin, B.A.; Lyukshin, P.A.; Matolygina, N.Y.; Panov, I.L. Obtaining of Specified Effective Mechanical, Thermal, and Electrical Characteristics of Composite Filled with Dispersive Materials. Inorg. Mater. Appl. Res. 2017, 8, 651–661. [Google Scholar] [CrossRef]
- Panin, S.V.; Grishaeva, N.Y.; Lyukshin, P.A.; Lyukshin, B.A.; Panov, I.L.; Bochkareva, S.A.; Matolygina, N.Y.; Alexenko, V.O. Receiving the Recipe of the Compositions Based on UHMWPE with the Assigned Properties. Inorg. Mater. Appl. Res. 2019, 10, 299–304. [Google Scholar] [CrossRef]
- Bahadur, S. The development of transfer layers and their role in polymer tribology. Wear 2000, 245, 92–99. [Google Scholar] [CrossRef]
- Zalaznik, M.; Kalin, M.; Novak, S.; Jakša, G. Effect of the type, size and concentration of solid lubricants on the tribological properties of the polymer PEEK. Wear 2016, 364–365, 31–39. [Google Scholar] [CrossRef]
- Lu, Z.P.; Friedrich, K. On sliding friction and wear of PEEK and its composites. Wear 1995, 181–183, 624–631. [Google Scholar] [CrossRef]
- Burris, D.L.; Sawyer, W.G. A low friction and ultra-low wear rate PEEK/PTFE composite. Wear 2006, 261, 410–418. [Google Scholar] [CrossRef]
- Burris, D.L.; Sawyer, W.G. Tribological behavior of PEEK components with compositionally graded PEEK/PTFE surfaces. Wear 2007, 262, 220–224. [Google Scholar] [CrossRef]
- Vail, J.R.; Krick, B.A.; Marchman, K.R.; Sawyer, W.G. Polytetrafluoroethylene (PTFE) fiber reinforced polyetheretherketone (PEEK) composites. Wear 2011, 270, 737–741. [Google Scholar] [CrossRef]
- Bijwe, J.; Sen, S.; Ghosh, A. Influence of PTFE content in PEEK–PTFE blends on mechanical properties and tribo-performance in various wear modes. Wear 2005, 258, 1536–1542. [Google Scholar] [CrossRef]
- Schwartz, C.J.; Bahadur, S. The role of filler deformability, filler-polymer boding, and counterface material on the tribological behaviour of polyphenylene sulphide (PPS). Wear 2001, 250, 1532–1540. [Google Scholar] [CrossRef]
- Chen, Z.; Li, T.; Yang, Y.; Lui, X.; Lv, R. Mechanical and tribological properties of PA/PPS blends. Wear 2004, 257, 696–707. [Google Scholar] [CrossRef]
- Stoeffler, K.; Andjelic, S.; Legros, N.; Roberge, J.; Schougaard, S.B. Polyphenylene sulfide (PPS) composites reinforced with recycled carbon fiber. Compos. Sci. Technol. 2013, 84, 65–71. [Google Scholar] [CrossRef]
- Sebastian, R.; Noll, A.; Zhang, G.; Burkhart, T.; Wetzel, B. Friction and wear of PPS/CNT nanocomposites with formation of electric isolating transfer films. Tribol. Int. 2013, 64, 187–195. [Google Scholar] [CrossRef]
- Bochkareva, S.A.; Grishaeva, N.Y.; Lyukshin, B.A.; Lyukshin, P.A.; Matolygina, N.Y.; Panin, S.V.; Reutov, Y.A. A unified approach to determining the effective physicomechanical characteristics of filled polymer composites based on variational principles. Mech. Compos. Mater. 2019, 54, 775–788. [Google Scholar] [CrossRef]
- Standard Test Method for Rubber Property—Durometer Hardness, C-15e1; ASTM International: West Conshohocken, PA, USA, 2015.
- Standard Test Method for Tensile Properties of Plastics, ASTM D638-14; ASTM International: West Conshohocken, PA, USA, 2014.
- Standard Test Methods for Flexural Properties of Unreinforced and Reinforced Plastics and Electrical Insulating Materials; ASTM International: West Conshohocken, PA, USA, 2017.
- Standard Test Method for Wear Testing with a Pin-on-Disk Apparatus, ASTM G99-17; ASTM International: West Conshohocken, PA, USA, 2017.
- Yamamoto, Y.; Hashimoto, M. Friction and wear of water lubricated PEEK and PPS sliding contacts: Part 2. Composites with carbon or glass fibre. Wear 2014, 257, 181–189. [Google Scholar] [CrossRef]
- Golchin, A.; Friedrich, K.; Noll, A.; Prakash, B. Tribological behaviour of carbon-filled PPS composites in water lubricated contacts. Wear 2015, 328–329, 456–463. [Google Scholar] [CrossRef]
- Friedrich, K. Polymer composites for tribological applications. Adv. Ind. Eng. Polym. Res. 2018, 1, 3–39. [Google Scholar] [CrossRef]
- Rodriguez, V.; Sukumaran, J.; Schlarb, A.K.; De Baets, P. Influence of solid lubricants on tribological properties of polyetheretherketone (PEEK). Tribol. Int. 2016, 103, 45–57. [Google Scholar] [CrossRef]
- Zang, Z.; Breidt, C.; Chang, L.; Haupert, F.; Friedrich, K. Enhancement of the wear resistance of epoxy: Short carbon fiber, graphite, PTFE and nano-TiO2. Compos. Part A Appl. Sci. Manuf. 2004, 35, 1385–1392. [Google Scholar] [CrossRef]
- Zhang, D.; Qi, H.; Zhao, F.; Zang, G.; Wang, T.; Wang, Q. Tribological performance of PPS composites under diesel lubrication conditions. Tribol. Int. 2017, 115, 338–347. [Google Scholar] [CrossRef]
Properties | Values |
---|---|
Shore D hardness | >78 |
Elastic modulus, Mpa | >3.500 |
Tensile strength, Mpa | >80 |
Elongation, % | >3% |
Friction coefficient on metal counterpart | <0.15 |
Friction coefficient on ceramic counterpart | <0.1 |
Volumetric wear on metal counterpart (distance of 3 km), mm3 | <0.05 |
Volumetric wear on ceramic counterpart (distance of 3 km), mm3 | <0.03 |
Filler Composition, % (wt.) | Density, ρ, g/cm3 | Shore D Hardness | Elastic Modulus, G, MPa | Tensile Strength, σ, MPa | Elongation, ε, % | Crystallinity, µ, % |
---|---|---|---|---|---|---|
PEEK | 1.308 | 80.1 ± 1.7 | 2.840 ± 273 | 106.9 ± 4.7 | 25.6 ± 7.2 | 32.5 |
+ 10% PTFE | 1.325 | 77.3 ± 0.3 | 2.620 ± 158 | 83.9 ± 2.4 | 5.0 ± 0.8 | 28.8 |
+ 10% CF | 1.331 | 82.5 ± 0.7 | 4.821 ± 70 | 125.4 ± 0.5 | 1.5 ± 0.3 | 26.8 |
+ 10% PTFE + 10% CF | 1.385 | 80.1 ± 0.5 | 4.238 ± 125 | 103.8 ± 5.2 | 3.9 ± 0.5 | 22.7 |
Filler Composition, % (wt.) | Friction Coefficient, ƒ | Volumetric Wear, mm3 | ||
---|---|---|---|---|
Metal Counterpart | Ceramic Counterpart | Metal Counterpart | Ceramic Counterpart | |
PEEK | 0.34 ± 0.03 | 0.27 ± 0.02 | 0.35 ± 0.03 | 0.09 ± 0.01 |
+ 10% PTFE | 0.17 ± 0.02 | 0.1 ± 0.02 | 0.028 ± 0.002 | 0.014 ± 0.02 |
+ 10% CF | 0.24 ± 0.02 | 0.25 ± 0.02 | 0.12 ± 0.03 | 1.05 ± 0.26 |
+ 10% PEEK + 10% CF | 0.11 ± 0.01 | 0.07 ± 0.02 | 0.015 ± 0.001 | 0.012 ± 0.02 |
Properties | Values |
---|---|
Shore D hardness | >75 |
Bending modulus, MPa | >8.0 |
Flexural strength, MPa | >100 |
Bending strain, % | >1.1% |
Friction coefficient on metal counterpart | <0.15 |
Friction coefficient on ceramic counterpart | <0.1 |
Volumetric wear on metal counterpart (distance of 3 km), mm3 | <0.5 |
Volumetric wear on ceramic counterpart (distance of 3 km), mm3 | <0.1 |
Filler Composition, % (wt.) | Density, ρ, g/cm3 | Shore D Hardness | Elastic Modulus, G, MPa | Tensile Strength, σ, MPa | Elongation, ε, % |
---|---|---|---|---|---|
PPS | 1.331 | 79.5 ± 0.5 | 3.930 ± 71 | 97.8 ± 1.6 | 2.60 ± 1.4 |
+ 15% PTFE | 1.410 | 74.1 ± 0.5 | 3.596 ± 140 | 46.0 ± 4.9 | 1.30 ± 0.1 |
+ 20% CF | 1.435 | 80.9 ± 0.3 | 7.893 ± 2197 | 120.1 ± 18.5 | 1.30 ± 0.2 |
+ 15% PTFE + 22.5% CF | 1.526 | 77.2 ± 0.5 | 10.908 ± 985 | 113.9 ± 14.3 | 1.20 ± 0.1 |
Filler Composition, % (wt.) | Friction Coefficient, ƒ | Volumetric Wear, mm3 | ||
---|---|---|---|---|
Metal Counterpart | Ceramic Counterpart | Metal Counterpart | Metal Counterpart | |
PPS | 0.30 ± 0.02 | 0.17 ± 0.03 | 0.49 ± 0.01 | 0.37 ± 0.01 |
+ 15% PTFE | 0.09 ± 0.02 | 0.05 ± 0.002 | 0.031 ± 0.009 | 0.02 ± 0.01 |
+ 20% CF | 0.31 ± 0.04 | 0.23 ± 0.03 | 0.38 ± 0.03 | 1.02 ± 0.02 |
+ 15% PTFE + 22.5% CF | 0.15 ± 0.02 | 0.06 ± 0.02 | 0.27 ± 0.04 | 0.018 ± 0.005 |
Filler Composition, % (wt.) | Friction Coefficient, ƒ | Volumetric Wear, mm3 | ||
---|---|---|---|---|
Metal SCB | Ceramic SCB | Metal SCB | Metal SCB | |
PPS + 15% PTFE + 22.5% CF | 0.15 ± 0.02 | 0.06 ± 0.02 | 0.27 ± 0.04 | 0.018 ± 0.005 |
PEEK + 15% PTFE + 20% CF | 0.13 ± 0.01 | 0.06 ± 0.01 | 0.016 ± 0.003 | 0.017 ± 0.002 |
(comparison) PEEK + 10% PTFE + 10% CF | 0.11 ± 0.01 | 0.07 ± 0.02 | 0.015 ± 0.001 | 0.012 ± 0.002 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Panin, S.V.; Lyukshin, B.A.; Bochkareva, S.A.; Kornienko, L.A.; Nguyen, D.A.; Hiep, L.T.M.; Panov, I.L.; Grishaeva, N.Y. Material Design Methodology for Optimized Wear-Resistant Thermoplastic–Matrix Composites Based on Polyetheretherketone and Polyphenylene Sulfide. Materials 2020, 13, 524. https://doi.org/10.3390/ma13030524
Panin SV, Lyukshin BA, Bochkareva SA, Kornienko LA, Nguyen DA, Hiep LTM, Panov IL, Grishaeva NY. Material Design Methodology for Optimized Wear-Resistant Thermoplastic–Matrix Composites Based on Polyetheretherketone and Polyphenylene Sulfide. Materials. 2020; 13(3):524. https://doi.org/10.3390/ma13030524
Chicago/Turabian StylePanin, Sergey V., Boris A. Lyukshin, Svetlana A. Bochkareva, Lyudmila A. Kornienko, Duc Ahn Nguyen, Le Thi My Hiep, Iliya L. Panov, and Nataliya Y. Grishaeva. 2020. "Material Design Methodology for Optimized Wear-Resistant Thermoplastic–Matrix Composites Based on Polyetheretherketone and Polyphenylene Sulfide" Materials 13, no. 3: 524. https://doi.org/10.3390/ma13030524
APA StylePanin, S. V., Lyukshin, B. A., Bochkareva, S. A., Kornienko, L. A., Nguyen, D. A., Hiep, L. T. M., Panov, I. L., & Grishaeva, N. Y. (2020). Material Design Methodology for Optimized Wear-Resistant Thermoplastic–Matrix Composites Based on Polyetheretherketone and Polyphenylene Sulfide. Materials, 13(3), 524. https://doi.org/10.3390/ma13030524